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Math 3341 Introduction to Analysis

Introduction

The Set of Natural Numbers

Task 1.1
Let P(n) be a predicate with domain N. If

1 P(1) is true, and
2 Whenever P(n) is true, then P(n + 1) is true,

then P(n) is true for all n ∈ N.
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Introduction

The Set of Natural Numbers

Task 1.2

Show that the square root of 2 is irrational. (
√

2 is the positive
real number whose square is 2.)
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Introduction

Groups

Exercise 1.3
Write down the axioms G1–G5 explicitly for the multiplicative
group (Q \ {0}, ·).
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Introduction

Maximum and Minimum

Exercise 1.4
Show that a set can have at most one maximum.

Exercise 1.5
Characterize all subsets A of the set of real numbers with the
property that min A = max A.

Task 1.6
Show that finite non-empty sets of real numbers always have a
minimum.
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Introduction

Maximum and Minimum

Exercise 1.4
Show that a set can have at most one maximum.

Exercise 1.5
Characterize all subsets A of the set of real numbers with the
property that min A = max A.

Task 1.6
Show that finite non-empty sets of real numbers always have a
minimum.
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Introduction

Maximum and Minimum

Exercise 1.4
Show that a set can have at most one maximum.

Exercise 1.5
Characterize all subsets A of the set of real numbers with the
property that min A = max A.

Task 1.6
Show that finite non-empty sets of real numbers always have a
minimum.
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Introduction

The Absolute Value

Exercise 1.7
For all a,b ∈ R:

|a + b| ≤ |a|+ |b|

Exercise 1.8
For all a,b ∈ R:

|a− b| ≥
∣∣∣∣|a| − |b|∣∣∣∣
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Introduction

The Absolute Value

Exercise 1.7
For all a,b ∈ R:

|a + b| ≤ |a|+ |b|

Exercise 1.8
For all a,b ∈ R:

|a− b| ≥
∣∣∣∣|a| − |b|∣∣∣∣



Math 3341 Introduction to Analysis

Introduction

Natural Numbers and Dense Sets inside the Real Numbers

Exercise 1.9
Show that for every positive real number r , there is a natural

number n, such that 0 <
1
n
< r .

Task 1.10
The set of rational numbers Q is dense in R.

Task 1.11
The set of irrational numbers R \Q is dense in R.
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Introduction

Natural Numbers and Dense Sets inside the Real Numbers

Exercise 1.9
Show that for every positive real number r , there is a natural

number n, such that 0 <
1
n
< r .

Task 1.10
The set of rational numbers Q is dense in R.

Task 1.11
The set of irrational numbers R \Q is dense in R.
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Introduction

Natural Numbers and Dense Sets inside the Real Numbers

Exercise 1.9
Show that for every positive real number r , there is a natural

number n, such that 0 <
1
n
< r .

Task 1.10
The set of rational numbers Q is dense in R.

Task 1.11
The set of irrational numbers R \Q is dense in R.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.1
Let (an)n∈N denote the sequence of prime numbers in their
natural order. What is a5?

Exercise 2.2
Write the sequence 0,1,0,2,0,3,0,4, . . . as a function
ϕ : N→ R.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.1
Let (an)n∈N denote the sequence of prime numbers in their
natural order. What is a5?

Exercise 2.2
Write the sequence 0,1,0,2,0,3,0,4, . . . as a function
ϕ : N→ R.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.3
Spend some quality time studying the figure on the next slide.
Explain how the pictures and the parts in the definition
correspond to each other. Also reflect on how the “rigorous”
definition above relates to your prior understanding of what it
means for a sequence to converge.
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Sequences and Accumulation Points

Convergent Sequences

(i) A sequence (xn) converges to the limit a if . . .

(ii) . . . for all
ε > 0 . . . (iii). . . there is an N ∈ N, such that . . . (iv) . . .
|xn − a| < ε for all n ≥ N.
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(i) A sequence (xn) converges to the limit a if . . . (ii) . . . for all
ε > 0 . . .

(iii). . . there is an N ∈ N, such that . . . (iv) . . .
|xn − a| < ε for all n ≥ N.
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(i) A sequence (xn) converges to the limit a if . . . (ii) . . . for all
ε > 0 . . . (iii). . . there is an N ∈ N, such that . . .

(iv) . . .
|xn − a| < ε for all n ≥ N.
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Sequences and Accumulation Points

Convergent Sequences

(i) A sequence (xn) converges to the limit a if . . . (ii) . . . for all
ε > 0 . . . (iii). . . there is an N ∈ N, such that . . . (iv) . . .
|xn − a| < ε for all n ≥ N.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.4
1 Write down formally (using ε-N language) what it means

that a given sequence (an)n∈N does not converge to the
real number a.

2 Similarly, write down what it means for a sequence to
diverge.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.5

Show that the sequence an =
(−1)n
√

n
converges to 0.

Exercise 2.6

Show that the sequence an = 1− 1
n2 + 1

converges to 1.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.5

Show that the sequence an =
(−1)n
√

n
converges to 0.

Exercise 2.6

Show that the sequence an = 1− 1
n2 + 1

converges to 1.
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Sequences and Accumulation Points

Convergent Sequences

Task 2.7
Show: If a sequence converges to two real numbers a and b,
then a = b.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.8
Give an example of a bounded sequence which does not
converge.

Task 2.9
Every convergent sequence is bounded.
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Sequences and Accumulation Points

Convergent Sequences

Exercise 2.8
Give an example of a bounded sequence which does not
converge.

Task 2.9
Every convergent sequence is bounded.
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Sequences and Accumulation Points

Arithmetic of Converging Sequences

Task 2.10
If the sequence (an) converges to a, and the sequence (bn)
converges to b, then the sequence (an + bn) is also convergent
and its limit is a + b.

Task 2.11
If the sequence (an) converges to a, and the sequence (bn)
converges to b, then the sequence (an · bn) is also convergent
and its limit is a · b.
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Sequences and Accumulation Points

Arithmetic of Converging Sequences

Task 2.10
If the sequence (an) converges to a, and the sequence (bn)
converges to b, then the sequence (an + bn) is also convergent
and its limit is a + b.

Task 2.11
If the sequence (an) converges to a, and the sequence (bn)
converges to b, then the sequence (an · bn) is also convergent
and its limit is a · b.
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Sequences and Accumulation Points

Arithmetic of Converging Sequences

Task 2.12

Let (an) be a sequence converging to a 6= 0. Then there are a
δ > 0 and an M ∈ N such that |am| > δ for all m ≥ M.

Task 2.13
Let the sequence (bn) with bn 6= 0 for all n ∈ N converge to

b 6= 0. Then the sequence
(

1
bn

)
is also convergent and its

limit is
1
b

.
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Sequences and Accumulation Points

Arithmetic of Converging Sequences
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Let (an) be a sequence converging to a 6= 0. Then there are a
δ > 0 and an M ∈ N such that |am| > δ for all m ≥ M.

Task 2.13
Let the sequence (bn) with bn 6= 0 for all n ∈ N converge to

b 6= 0. Then the sequence
(

1
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)
is also convergent and its

limit is
1
b

.



Math 3341 Introduction to Analysis

Sequences and Accumulation Points

Arithmetic of Converging Sequences

Task 2.14
Let (an) be a sequence converging to a. If an ≥ 0 for all n ∈ N,
then a ≥ 0.
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Sequences and Accumulation Points

Monotone Sequences

Task 2.15

Let a1 = 1 and an+1 =
√

2an + 1 for all n ∈ N. Show that the
sequence (an) converges.
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Sequences and Accumulation Points

Monotone Sequences

Exercise 2.16
Find the supremum of each of the following sets:

1 The closed interval [−2,3]

2 The open interval (0,2)
3 The set {x ∈ Z | x2 < 5}
4 The set {x ∈ Q | x2 < 3}.
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Sequences and Accumulation Points

Monotone Sequences
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Find the supremum of each of the following sets:

1 The closed interval [−2,3]

2 The open interval (0,2)
3 The set {x ∈ Z | x2 < 5}
4 The set {x ∈ Q | x2 < 3}.
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Sequences and Accumulation Points

Monotone Sequences

Exercise 2.17
Let (an) be an increasing bounded sequence. By the
Completeness Axiom the sequence converges to some real
number a. Show that its range {an | n ∈ N} has a supremum,
and that the supremum equals a.

Task 2.18
The Completeness Axiom is equivalent to the following: Every
non-empty set of real numbers which is bounded from above
has a supremum.
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Sequences and Accumulation Points

Monotone Sequences
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Sequences and Accumulation Points

Subsequences

Exercise 2.19

Let (an)n∈N =
(1

n

)
n∈N. Which of the following sequences are

subsequences of (an)n∈N?

1 1,
1
2
,
1
3
,
1
4
,
1
5
. . .

2
1
2
,1,

1
4
,
1
3
,
1
6
,
1
5
. . .

3 1,
1
3
,
1
6
,

1
10
,

1
15

. . .

4 1,1,
1
3
,
1
3
,
1
5
,
1
5
. . .

For the subsequence examples, also find the function
ψ : N→ N.
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Sequences and Accumulation Points

Subsequences

Task 2.20
If a sequence converges, then all of its subsequences converge
to the same limit.

Task 2.21
Show that every sequence of real numbers has an increasing
subsequence or it has a decreasing subsequence.

Task 2.22 (Bolzano-Weierstrass)
Every bounded sequence of real numbers has a converging
subsequence.
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Subsequences
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If a sequence converges, then all of its subsequences converge
to the same limit.
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subsequence or it has a decreasing subsequence.

Task 2.22 (Bolzano-Weierstrass)
Every bounded sequence of real numbers has a converging
subsequence.



Math 3341 Introduction to Analysis

Sequences and Accumulation Points

Subsequences

Task 2.20
If a sequence converges, then all of its subsequences converge
to the same limit.

Task 2.21
Show that every sequence of real numbers has an increasing
subsequence or it has a decreasing subsequence.

Task 2.22 (Bolzano-Weierstrass)
Every bounded sequence of real numbers has a converging
subsequence.
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Sequences and Accumulation Points

Subsequences

Task 2.23
Suppose the sequence (an) does not converge to the real
number L. Then there is an ε > 0 and a subsequence (ank ) of
(an) such that

|ank − L| ≥ ε for all k ∈ N.

Task 2.24

Let (an) be a bounded sequence. Suppose all of its
convergent subsequences converge to the same limit a. Then
(an) itself converges to a.



Math 3341 Introduction to Analysis

Sequences and Accumulation Points

Subsequences

Task 2.23
Suppose the sequence (an) does not converge to the real
number L. Then there is an ε > 0 and a subsequence (ank ) of
(an) such that

|ank − L| ≥ ε for all k ∈ N.

Task 2.24

Let (an) be a bounded sequence. Suppose all of its
convergent subsequences converge to the same limit a. Then
(an) itself converges to a.
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Sequences and Accumulation Points

Cauchy Sequences

Exercise 2.25
Every convergent sequence is a Cauchy sequence.

Exercise 2.26
Every Cauchy sequence is bounded.
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Sequences and Accumulation Points

Cauchy Sequences

Exercise 2.25
Every convergent sequence is a Cauchy sequence.

Exercise 2.26
Every Cauchy sequence is bounded.
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Sequences and Accumulation Points

Cauchy Sequences

Task 2.27
If a Cauchy sequence has a converging subsequence with limit
a, then the Cauchy sequence itself converges to a.

Task 2.28
Every Cauchy sequence is convergent.
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Sequences and Accumulation Points

Cauchy Sequences

Task 2.27
If a Cauchy sequence has a converging subsequence with limit
a, then the Cauchy sequence itself converges to a.

Task 2.28
Every Cauchy sequence is convergent.
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Sequences and Accumulation Points

Accumulation Points

Task 2.29
A sequence (an) converges to L ∈ R if and only if every
neighborhood of L contains all but a finite number of the terms
of the sequence (an).

Task 2.30
The real number x is an accumulation point of the set S if and
only if every neighborhood of x contains an element of S
different from x.
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Sequences and Accumulation Points

Accumulation Points
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different from x.
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Sequences and Accumulation Points

Accumulation Points

Exercise 2.31
Find all accumulation points of the following sets:

1 Q

2 N
3 [a,b)

4

{
1
n
| n ∈ N

}
.
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4
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1
n
| n ∈ N

}
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Sequences and Accumulation Points

Accumulation Points

Exercise 2.32
1 Find a set of real numbers with exactly two accumulation

points.

2 Find a set of real numbers whose accumulation points form
a sequence (an) with an 6= am for all n 6= m.
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Sequences and Accumulation Points

Accumulation Points

Exercise 2.32
1 Find a set of real numbers with exactly two accumulation

points.
2 Find a set of real numbers whose accumulation points form

a sequence (an) with an 6= am for all n 6= m.
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Sequences and Accumulation Points

Accumulation Points

Task 2.33
Show that x is an accumulation point of the set S if and only if
there is a sequence (xn) of elements in S with xn 6= xm for all
n 6= m such that (xn) converges to x.

Task 2.34
Every infinite bounded set of real numbers has at least one
accumulation point.
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Sequences and Accumulation Points

Accumulation Points

Task 2.33
Show that x is an accumulation point of the set S if and only if
there is a sequence (xn) of elements in S with xn 6= xm for all
n 6= m such that (xn) converges to x.

Task 2.34
Every infinite bounded set of real numbers has at least one
accumulation point.
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Sequences and Accumulation Points

Accumulation Points

Task 2.35
Let S be a non-empty set of real numbers which is bounded
from above. Show: If sup S 6∈ S, then sup S is an accumulation
point of S.
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Limits

Definition and Examples

Definition
Let D ⊆ R, let f : D → R be a function.

and let x0 be an
accumulation point of D.

We say that the LIMIT of f (x) at x0 is equal to L ∈ R, if for all
ε > 0 there is a δ > 0 such that

|f (x)− L| < ε

whenever x ∈ D and

0 <

|x − x0| < δ.
In this case we write lim

x→x0
f (x) = L.
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We say that the LIMIT of f (x) at x0 is equal to L ∈ R, if for all
ε > 0 there is a δ > 0 such that

|f (x)− L| < ε

whenever x ∈ D and
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Limits

Definition and Examples

Definition
Let D ⊆ R, let f : D → R be a function

.

and let x0 be an
accumulation point of D.
We say that the LIMIT of f (x) at x0 is equal to L ∈ R, if for all
ε > 0 there is a δ > 0 such that

|f (x)− L| < ε

whenever x ∈ D and 0 <|x − x0| < δ.
In this case we write lim

x→x0
f (x) = L.
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Limits

Definition and Examples

Exercise 3.1
Let f : R→ R be defined by

f (x) =

{
x sin

( 1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Does f (x) have a limit a x0 = 0? If so, what is the limit?
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Limits

Definition and Examples
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Limits

Definition and Examples

Exercise 3.2

Let D ⊆ R, let f : D → R be a function and let x0 be an
accumulation point of D. Then the following are equivalent:

1 lim
x→x0

f (x) exists and is equal to L.

2 Let (xn) be any sequence of elements in D that converges
to x0, and satisfies that xn 6= x0 for all n ∈ N. Then the
sequence f (xn) converges to L.

Exercise 3.3
What strategy does Exercise 3.2 suggest to show
non-existence of a limit at a point?
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Limits

Definition and Examples

Exercise 3.2

Let D ⊆ R, let f : D → R be a function and let x0 be an
accumulation point of D. Then the following are equivalent:

1 lim
x→x0

f (x) exists and is equal to L.

2 Let (xn) be any sequence of elements in D that converges
to x0, and satisfies that xn 6= x0 for all n ∈ N. Then the
sequence f (xn) converges to L.

Exercise 3.3
What strategy does Exercise 3.2 suggest to show
non-existence of a limit at a point?
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Limits

Definition and Examples

Exercise 3.4

Let f : R→ R be defined by

f (x) =

{
|x |/x , if x 6= 0, x ∈ R

0, if x = 0

Does f (x) have a limit a x0 = 0? If so, what is the limit?
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Limits

Definition and Examples
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Limits

Definition and Examples

Exercise 3.5
Let f : R→ R be defined by

f (x) =

{
sin
( 1

x

)
, if x 6= 0, x ∈ R

0, if x = 0

Does f (x) have a limit a x0 = 0? If so, what is the limit?
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Limits

Definition and Examples
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Limits

Definition and Examples

Exercise 3.6
Let f : (0,1]→ R be defined by

f (x) =

{
1, if x ∈ Q
0, if x ∈ R \Q

For which values of x0 does f (x) have a limit a x0? What is the
limit?
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Limits

Definition and Examples

Task 3.7

Let f : (0,1]→ R be defined by

f (x) =


1
q
, if x =

p
q

with p,q relatively prime

0, if x ∈ R \Q

For which values of x0 does f (x) have a limit a x0? What is the
limit?
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Limits

Definition and Examples
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Limits

Definition and Examples

Exercise 3.8
Let D ⊆ R, let f : D → R be a function and let x0 be an
accumulation point of D.
If f (x) has a limit at x0, then there is a δ > 0 and an M > 0 such
that

|f (x)| ≤ M for all x ∈ (x0 − δ, x0 + δ) ∩ D.
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Continuity

Definition and Examples

Definition
Let D be a set of real numbers and x0 ∈ D. A function
f : D → R is said to be CONTINUOUS at x0 if the following holds:
For all ε > 0 there is a δ > 0 such that for all x ∈ D with

|x − x0| < δ,

we have that
|f (x)− f (x0)| < ε.
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Continuity

Definition and Examples

Exercise 4.1
Let D be a set of real numbers and x0 ∈ D be an accumulation
point of D. Then the function f : D → R is continuous at x0 if
and only if lim

x→x0
f (x) = f (x0).

Exercise 4.2
Let D be a set of real numbers and x0 ∈ D. Assume also that x0
is not an accumulation point of D. Then the function f : D → R
is continuous at x0.
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Continuity

Definition and Examples

Exercise 4.1
Let D be a set of real numbers and x0 ∈ D be an accumulation
point of D. Then the function f : D → R is continuous at x0 if
and only if lim

x→x0
f (x) = f (x0).

Exercise 4.2
Let D be a set of real numbers and x0 ∈ D. Assume also that x0
is not an accumulation point of D. Then the function f : D → R
is continuous at x0.
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Continuity

Definition and Examples

Exercise 4.3
Let f : R→ R be defined by

f (x) =

{
|x |, if x ∈ Q
x2, if x ∈ R \Q

For which values of x0 is f (x) continuous?
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Continuity

Definition and Examples

Exercise 4.4
Let f : R→ R be defined by

f (x) =

{
x sin

( 1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f (x) continuous at x0 = 0?
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Continuity

Definition and Examples

Exercise 4.5
Let f : R→ R be defined by

f (x) =

{
sin
( 1

x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f (x) continuous at x0 = 0?



Math 3341 Introduction to Analysis

Continuity

Definition and Examples



Math 3341 Introduction to Analysis

Continuity

Definition and Examples

Exercise 4.6
Let f : (0,1]→ R be defined by

f (x) =

{
1, if x ∈ Q
0, if x ∈ R \Q

For which values of x0 is f (x) continuous?
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Continuity

Definition and Examples

Exercise 4.7
Let f : (0,1]→ R be defined by

f (x) =


1
q
, if x =

p
q

with p,q relatively prime

0, if x ∈ R \Q

For which values of x0 is f (x) continuous?
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Definition and Examples
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Continuity

Combinations of Continuous Functions

Task 4.8
Let D,E ⊆ R, and let f : D → R be a function continuous at
x0 ∈ D. Assume f (D) ⊆ E. Suppose g : E → R is a function
continuous at f (x0). Then the composition g ◦ f : D → R is
continuous at x0.
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Continuity

Uniform Continuity

Exercise 4.9
If f : D → R is uniformly continuous on D, then f is continuous
on D. What is the difference between continuity and uniform
continuity?

Exercise 4.10

Let f : (0,1)→ R be defined by f (x) =
1
x

. Show that f is not
uniformly continuous on (0,1).
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Continuity

Uniform Continuity

Exercise 4.9
If f : D → R is uniformly continuous on D, then f is continuous
on D. What is the difference between continuity and uniform
continuity?

Exercise 4.10

Let f : (0,1)→ R be defined by f (x) =
1
x

. Show that f is not
uniformly continuous on (0,1).
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Continuity

Uniform Continuity

Task 4.11
Let f : [a,b]→ R be a continuous function on the closed
interval [a,b]. Show that f is uniformly continuous on [a,b].

Task 4.12
Let f : D → R be uniformly continuous on D. If D is a bounded
subset of R, then f (D) is also bounded.
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Continuity

Uniform Continuity

Task 4.11
Let f : [a,b]→ R be a continuous function on the closed
interval [a,b]. Show that f is uniformly continuous on [a,b].

Task 4.12
Let f : D → R be uniformly continuous on D. If D is a bounded
subset of R, then f (D) is also bounded.
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Continuity

Uniform Continuity

Exercise 4.13
Let f : D → R be a Lipschitz function on D. Then f is uniformly
continuous on D.

Task 4.14

Show: The function f (x) =
√

x is uniformly continuous on the
interval [0,1], but it is not a Lipschitz function on the interval
[0,1].
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Continuity

Uniform Continuity

Exercise 4.13
Let f : D → R be a Lipschitz function on D. Then f is uniformly
continuous on D.

Task 4.14

Show: The function f (x) =
√

x is uniformly continuous on the
interval [0,1], but it is not a Lipschitz function on the interval
[0,1].
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Continuity

Continuous Functions on Closed Intervals

Exercise 4.15

Let f : [a,b]→ R be a continuous function on the closed
interval [a,b]. Then f is bounded on [a,b].
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Continuity

Continuous Functions on Closed Intervals

Task 4.16
Let f : [a,b]→ R be a continuous function on the closed
interval [a,b]. Then f has an absolute maximum (and an
absolute minimum) on [a,b].
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Continuity

Continuous Functions on Closed Intervals

Task 4.17 (Intermediate Value Theorem)
Let f : I → R be a continuous function on the interval I. Let
a,b ∈ I. If d ∈ (f (a), f (b)), then there is a real number c ∈ (a,b)
such that f (c) = d.
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Continuity

Continuous Functions on Closed Intervals

Task 4.18
Let f : [a,b]→ R be a continuous function on the closed
interval [a,b]. Then f ([a,b]) := {f (x) | x ∈ [a,b]} is also a
closed bounded interval.
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Continuity

Continuous Functions on Closed Intervals

Task 4.19
Let f : [a,b]→ R be strictly increasing (or decreasing, resp.)
and continuous on [a,b]. Show that f has an inverse on
f ([a,b]), which is strictly increasing (or decreasing, resp.) and
continuous.

Task 4.20

Show that
√

x : [0,∞)→ R is continuous on [0,∞).



Math 3341 Introduction to Analysis

Continuity

Continuous Functions on Closed Intervals

Task 4.19
Let f : [a,b]→ R be strictly increasing (or decreasing, resp.)
and continuous on [a,b]. Show that f has an inverse on
f ([a,b]), which is strictly increasing (or decreasing, resp.) and
continuous.

Task 4.20

Show that
√

x : [0,∞)→ R is continuous on [0,∞).
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The Derivative

Definition and Examples

Definition
Let D be a set of real numbers and let x0 ∈ D be an
accumulation point of D. The function f : D → R is said to be
DIFFERENTIABLE at x0, if

lim
x→x0

f (x)− f (x0)

x − x0
exists.

In this case, we call the limit above the DERIVATIVE of f at x0
and write

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0
.
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The Derivative

Definition and Examples

Exercise 5.1

Use the definition to show that 3
√

x : R→ R is differentiable at

x0 = −27 and that its derivative at x0 = −27 equals
1

27
.

Exercise 5.2
Let f : R→ R be defined by

f (x) =

{
x sin

( 1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f (x) differentiable at x0 = 0?
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The Derivative

Definition and Examples

Exercise 5.1

Use the definition to show that 3
√

x : R→ R is differentiable at

x0 = −27 and that its derivative at x0 = −27 equals
1

27
.

Exercise 5.2
Let f : R→ R be defined by

f (x) =

{
x sin

( 1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f (x) differentiable at x0 = 0?
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The Derivative

Definition and Examples

Exercise 5.3
Let f : R→ R be defined by

f (x) =

{
x2 sin

( 1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f (x) differentiable at x0 = 0? Using your Calculus knowledge,
compute the derivative at points x0 6= 0. Is the derivative
continuous at x0 = 0?
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The Derivative

Definition and Examples
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The Derivative

Techniques of Differentiation

Exercise 5.4
Suppose f : D → R is differentiable at x0 ∈ D. Show that f is
continuous at x0.

Exercise 5.5
Give an example of a function with a point at which f is
continuous, but not differentiable.
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The Derivative

Techniques of Differentiation

Exercise 5.4
Suppose f : D → R is differentiable at x0 ∈ D. Show that f is
continuous at x0.

Exercise 5.5
Give an example of a function with a point at which f is
continuous, but not differentiable.
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The Derivative

Techniques of Differentiation

Exercise 5.6
Let f ,g : D → R be differentiable at x0 ∈ D. Then the function
f + g is differentiable at x0, with (f + g)′(x0) = f ′(x0) + g′(x0).

Task 5.7
Let f ,g : D → R be differentiable at x0 ∈ D. Then the function
f · g is differentiable at x0, with

(f · g)′(x0) = f ′(x0) · g(x0) + f (x0) · g′(x0).



Math 3341 Introduction to Analysis

The Derivative

Techniques of Differentiation

Exercise 5.6
Let f ,g : D → R be differentiable at x0 ∈ D. Then the function
f + g is differentiable at x0, with (f + g)′(x0) = f ′(x0) + g′(x0).

Task 5.7
Let f ,g : D → R be differentiable at x0 ∈ D. Then the function
f · g is differentiable at x0, with

(f · g)′(x0) = f ′(x0) · g(x0) + f (x0) · g′(x0).
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The Derivative

Techniques of Differentiation

Exercise 5.8
Show that polynomials are differentiable everywhere.
Compute the derivative of a polynomial of the form

P(x) =
n∑

k=0

akxk .
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The Derivative

Techniques of Differentiation

Task 5.9
State and prove the “Quotient Rule”.

Task 5.10

State and prove the “Chain Rule”.
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The Derivative

Techniques of Differentiation

Task 5.9
State and prove the “Quotient Rule”.

Task 5.10

State and prove the “Chain Rule”.
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The Derivative

The Mean-Value Theorem and its Applications

Task 5.11

Suppose f : [a,b]→ R has either a local maximum or a local
minimum at x0 ∈ (a,b). If f is differentiable at x0, then
f ′(x0) = 0.

Task 5.12

Suppose f : [a,b]→ R is continuous on [a,b] and differentiable
on (a,b).
If f (a) = f (b) = 0, then there exists a c ∈ (a,b) with f ′(c) = 0.



Math 3341 Introduction to Analysis

The Derivative

The Mean-Value Theorem and its Applications

Task 5.11

Suppose f : [a,b]→ R has either a local maximum or a local
minimum at x0 ∈ (a,b). If f is differentiable at x0, then
f ′(x0) = 0.

Task 5.12

Suppose f : [a,b]→ R is continuous on [a,b] and differentiable
on (a,b).
If f (a) = f (b) = 0, then there exists a c ∈ (a,b) with f ′(c) = 0.
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The Derivative

The Mean-Value Theorem and its Applications

Task 5.13
Suppose f : [a,b]→ R is continuous on [a,b] and differentiable
on (a,b).
Then there exists a c ∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b − a
.
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The Derivative

The Mean-Value Theorem and its Applications

Exercise 5.14
Let f : [a,b]→ R be continuous on [a,b] and differentiable on
(a,b).
If f ′(x) > 0 for all x ∈ (a,b), then f is strictly increasing.
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The Derivative

The Mean-Value Theorem and its Applications

Exercise 5.15
Let f : [a,b]→ R be continuous on [a,b] and differentiable on
(a,b).
If f ′(x) = 0 for all x ∈ (a,b), then f is constant on [a,b].
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The Derivative

The Mean-Value Theorem and its Applications

Exercise 5.16
Let f : [a,b]→ R be continuous on [a,b] and differentiable on
(a,b).
If f ′(x) 6= 0 for all x ∈ (a,b), then f is injective.
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The Derivative

The Mean-Value Theorem and its Applications

Task 5.17
Let f : [a,b]→ R be differentiable on [a,b] such that f ′(x) 6= 0
for all x ∈ [a,b].
Then f is injective; its inverse f−1 is differentiable on f ([a,b]).
Moreover, setting y = f (x), we have(

f−1
)′

(y) =
1

f ′(x)
.


	Introduction
	The Set of Natural Numbers
	Groups
	Fields
	The Completeness Axiom
	Summary: An Axiomatic System for the Set of Real Numbers
	Maximum and Minimum
	The Absolute Value
	Natural Numbers and Dense Sets inside the Real Numbers

	Sequences and Accumulation Points
	Convergent Sequences
	Arithmetic of Converging Sequences
	Monotone Sequences
	Subsequences
	Cauchy Sequences
	Accumulation Points

	Limits
	Definition and Examples

	Continuity
	Definition and Examples
	Combinations of Continuous Functions
	Uniform Continuity
	Continuous Functions on Closed Intervals

	The Derivative
	Definition and Examples
	Techniques of Differentiation
	The Mean-Value Theorem and its Applications


