Helmut Knaust

Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79968-0514

hknaust@utep.edu

Summer II 2007

Last edit: July 14, 2007

(日)

The Set of Natural Numbers

Task 1.1

Let P(n) be a predicate with domain \mathbb{N} . If

- P(1) is true, and
- 2 Whenever P(n) is true, then P(n+1) is true,

then P(n) is true for all $n \in \mathbb{N}$.

Introduction

The Set of Natural Numbers

Task 1.2

Show that the square root of 2 is irrational. ($\sqrt{2}$ is the positive real number whose square is 2.)

Math 3341	Introduction to Analysis
Introducti	on
Groups	

Exercise 1.3

Write down the axioms G1–G5 explicitly for the multiplicative group ($\mathbb{Q} \setminus \{0\}, \cdot$).

Maximum and Minimum

Exercise 1.4

Show that a set can have at most one maximum.

Maximum and Minimum

Exercise 1.4

Show that a set can have at most one maximum.

Exercise 1.5

Characterize all subsets A of the set of real numbers with the property that min $A = \max A$.

Maximum and Minimum

Exercise 1.4

Show that a set can have at most one maximum.

Exercise 1.5

Characterize all subsets A of the set of real numbers with the property that min $A = \max A$.

Task 1.6

Show that finite non-empty sets of real numbers always have a minimum.

<ロト < 回 > < 回 > < 回 > < 回 >

The Absolute Value

Exercise 1.7

For all $a, b \in \mathbb{R}$:

$|a+b| \le |a|+|b|$

The Absolute Value

Exercise 1.7

For all $a, b \in \mathbb{R}$:

$$|\boldsymbol{a} + \boldsymbol{b}| \le |\boldsymbol{a}| + |\boldsymbol{b}|$$

Exercise 1.8

For all $a, b \in \mathbb{R}$:

$$|\boldsymbol{a} - \boldsymbol{b}| \geq \left||\boldsymbol{a}| - |\boldsymbol{b}|\right|$$

Natural Numbers and Dense Sets inside the Real Numbers

Exercise 1.9

Show that for every positive real number r, there is a natural number n, such that $0 < \frac{1}{n} < r$.

Natural Numbers and Dense Sets inside the Real Numbers

Exercise 1.9

Show that for every positive real number r, there is a natural number n, such that $0 < \frac{1}{n} < r$.

Task 1.10

The set of rational numbers \mathbb{Q} is dense in \mathbb{R} .

Natural Numbers and Dense Sets inside the Real Numbers

Exercise 1.9

Show that for every positive real number r, there is a natural number n, such that $0 < \frac{1}{n} < r$.

Task 1.10

The set of rational numbers \mathbb{Q} is dense in \mathbb{R} .

Task 1.11

The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

<ロト < 回 > < 回 > < 回 > < 回 >

Sequences and Accumulation Points

Convergent Sequences

Exercise 2.1

Let $(a_n)_{n \in \mathbb{N}}$ denote the sequence of prime numbers in their natural order. What is a_5 ?

Sequences and Accumulation Points

Convergent Sequences

Exercise 2.1

Let $(a_n)_{n \in \mathbb{N}}$ denote the sequence of prime numbers in their natural order. What is a_5 ?

Exercise 2.2

Write the sequence 0, 1, 0, 2, 0, 3, 0, 4, ... *as a function* $\varphi : \mathbb{N} \to \mathbb{R}$.

Sequences and Accumulation Points

Convergent Sequences

Exercise 2.3

Spend some quality time studying the figure on the next slide. Explain how the pictures and the parts in the definition correspond to each other. Also reflect on how the "rigorous" definition above relates to your prior understanding of what it means for a sequence to converge.

Convergent Sequences

(i) A sequence (x_n) converges to the limit *a* if ...

Convergent Sequences

(i) A sequence (x_n) converges to the limit *a* if ... (ii) ... for all $\varepsilon > 0 \dots$

Convergent Sequences

(i) A sequence (x_n) converges to the limit *a* if ... (ii) ... for all $\varepsilon > 0 \dots$ (iii)... there is an $N \in \mathbb{N}$, such that ...

Convergent Sequences

(i) A sequence (x_n) converges to the limit *a* if ... (ii) ... for all $\varepsilon > 0$... (iii)... there is an $N \in \mathbb{N}$, such that ... (iv) ... $|x_n - a| < \varepsilon$ for all $n \ge N$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sequences and Accumulation Points

Convergent Sequences

Exercise 2.4

- Write down formally (using ε-N language) what it means that a given sequence (a_n)_{n∈N} does not converge to the real number a.
- Similarly, write down what it means for a sequence to diverge.

Convergent Sequences

Exercise 2.5

Show that the sequence $a_n = \frac{(-1)^n}{\sqrt{n}}$ converges to 0.

Convergent Sequences

Exercise 2.5

Show that the sequence
$$a_n = \frac{(-1)^n}{\sqrt{n}}$$
 converges to 0.

Exercise 2.6

Show that the sequence
$$a_n = 1 - \frac{1}{n^2 + 1}$$
 converges to 1.

Sequences and Accumulation Points

Convergent Sequences

Task 2.7

Show: If a sequence converges to two real numbers a and b, then a = b.

Sequences and Accumulation Points

Convergent Sequences

Exercise 2.8

Give an example of a bounded sequence which does not converge.

Sequences and Accumulation Points

Convergent Sequences

Exercise 2.8

Give an example of a bounded sequence which does not converge.

Task 2.9

Every convergent sequence is bounded.

Sequences and Accumulation Points

Arithmetic of Converging Sequences

Task 2.10

If the sequence (a_n) converges to a, and the sequence (b_n) converges to b, then the sequence $(a_n + b_n)$ is also convergent and its limit is a + b.

Arithmetic of Converging Sequences

Task 2.10

If the sequence (a_n) converges to a, and the sequence (b_n) converges to b, then the sequence $(a_n + b_n)$ is also convergent and its limit is a + b.

Task 2.11

If the sequence (a_n) converges to a, and the sequence (b_n) converges to b, then the sequence $(a_n \cdot b_n)$ is also convergent and its limit is $a \cdot b$.

・ コ ト ・ 雪 ト ・ ヨ ト ・

Math 3341 Introduction to Analysis Sequences and Accumulation Points Arithmetic of Converging Sequences

Task 2.12

Let (a_n) be a sequence converging to $a \neq 0$. Then there are a $\delta > 0$ and an $M \in \mathbb{N}$ such that $|a_m| > \delta$ for all $m \ge M$.

Task 2.12

Let (a_n) be a sequence converging to $a \neq 0$. Then there are a $\delta > 0$ and an $M \in \mathbb{N}$ such that $|a_m| > \delta$ for all $m \geq M$.

Task 2.13

Let the sequence (b_n) with $b_n \neq 0$ for all $n \in \mathbb{N}$ converge to $b \neq 0$. Then the sequence $\left(\frac{1}{b_n}\right)$ is also convergent and its limit is $\frac{1}{b}$.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日

Sequences and Accumulation Points

Arithmetic of Converging Sequences

Task 2.14

Let (a_n) be a sequence converging to a. If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.

Sequences and Accumulation Points

Monotone Sequences

Task 2.15

Let $a_1 = 1$ and $a_{n+1} = \sqrt{2a_n + 1}$ for all $n \in \mathbb{N}$. Show that the sequence (a_n) converges.

Sequences and Accumulation Points

Monotone Sequences

Exercise 2.16

Find the supremum of each of the following sets:

The closed interval [-2,3]

Sequences and Accumulation Points

Monotone Sequences

Exercise 2.16

Find the supremum of each of the following sets:

- The closed interval [-2,3]
- 2 The open interval (0,2)

Sequences and Accumulation Points

Monotone Sequences

Exercise 2.16

Find the supremum of each of the following sets:

- The closed interval [-2,3]
- 2 The open interval (0,2)

Sequences and Accumulation Points

Monotone Sequences

Exercise 2.16

Find the supremum of each of the following sets:

- The closed interval [-2,3]
- 2 The open interval (0,2)
- **3** The set $\{x \in \mathbb{Z} \mid x^2 < 5\}$

Monotone Sequences

Exercise 2.17

Let (a_n) be an increasing bounded sequence. By the Completeness Axiom the sequence converges to some real number a. Show that its range $\{a_n \mid n \in \mathbb{N}\}$ has a supremum, and that the supremum equals a.

Monotone Sequences

Exercise 2.17

Let (a_n) be an increasing bounded sequence. By the Completeness Axiom the sequence converges to some real number a. Show that its range $\{a_n \mid n \in \mathbb{N}\}$ has a supremum, and that the supremum equals a.

Task 2.18

The Completeness Axiom is equivalent to the following: Every non-empty set of real numbers which is bounded from above has a supremum.

(日)

Subsequences

Exercise 2.19

Let $(a_n)_{n \in \mathbb{N}} = \left(\frac{1}{n}\right)_{n \in \mathbb{N}}$. Which of the following sequences are subsequences of $(a_n)_{n \in \mathbb{N}}$? 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$...

For the subsequence examples, also find the function $\psi : \mathbb{N} \to \mathbb{N}$.

Subsequences

Exercise 2.19

Let $(a_n)_{n \in \mathbb{N}} = (\frac{1}{n})_{n \in \mathbb{N}}$. Which of the following sequences are subsequences of $(a_n)_{n \in \mathbb{N}}$? 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$... 2, $\frac{1}{2}$, 1, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{5}$...

・ロット (雪) (日) (日)

For the subsequence examples, also find the function $\psi : \mathbb{N} \to \mathbb{N}$.

Subsequences

Exercise 2.19

Let $(a_n)_{n \in \mathbb{N}} = (\frac{1}{n})_{n \in \mathbb{N}}$. Which of the following sequences are subsequences of $(a_n)_{n \in \mathbb{N}}$? 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$... $\frac{1}{2}$, 1, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{5}$... 1, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{10}$, $\frac{1}{15}$...

・ロット (雪) (日) (日)

For the subsequence examples, also find the function $\psi : \mathbb{N} \to \mathbb{N}$.

Subsequences

Exercise 2.19

Let $(a_n)_{n \in \mathbb{N}} = \left(\frac{1}{n}\right)_{n \in \mathbb{N}}$. Which of the following sequences are subsequences of $(a_n)_{n \in \mathbb{N}}$? **1**, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$... $2 \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5} \dots$ **3** $1, \frac{1}{3}, \frac{1}{6}, \frac{1}{10}, \frac{1}{15} \dots$ $(1,1,\frac{1}{3},\frac{1}{3},\frac{1}{5},\frac{1}{5},\dots)$ For the subsequence examples, also find the function $\psi: \mathbb{N} \to \mathbb{N}.$

Subsequences

Task 2.20

If a sequence converges, then all of its subsequences converge to the same limit.

Subsequences

Task 2.20

If a sequence converges, then all of its subsequences converge to the same limit.

Task 2.21

Show that every sequence of real numbers has an increasing subsequence or it has a decreasing subsequence.

Subsequences

Task 2.20

If a sequence converges, then all of its subsequences converge to the same limit.

Task 2.21

Show that every sequence of real numbers has an increasing subsequence or it has a decreasing subsequence.

Task 2.22 (Bolzano-Weierstrass)

Every bounded sequence of real numbers has a converging subsequence.

(日)

Subsequences

Task 2.23

Suppose the sequence (a_n) does **not** converge to the real number L. Then there is an $\varepsilon > 0$ and a subsequence (a_{n_k}) of (a_n) such that

 $|a_{n_k} - L| \ge \varepsilon$ for all $k \in \mathbb{N}$.

Subsequences

Task 2.23

Suppose the sequence (a_n) does **not** converge to the real number L. Then there is an $\varepsilon > 0$ and a subsequence (a_{n_k}) of (a_n) such that

$$a_{n_k} - L | \geq \varepsilon$$
 for all $k \in \mathbb{N}$.

Task 2.24

Let (a_n) be a **bounded** sequence. Suppose all of its **convergent** subsequences converge to the same limit a. Then (a_n) itself converges to a.

(日)

Sequences and Accumulation Points

Cauchy Sequences

Exercise 2.25

Every convergent sequence is a Cauchy sequence.

Sequences and Accumulation Points

Cauchy Sequences

Exercise 2.25

Every convergent sequence is a Cauchy sequence.

Exercise 2.26

Every Cauchy sequence is bounded.

Sequences and Accumulation Points

Cauchy Sequences

Task 2.27

If a Cauchy sequence has a converging subsequence with limit a, then the Cauchy sequence itself converges to a.

Sequences and Accumulation Points

Cauchy Sequences

Task 2.27

If a Cauchy sequence has a converging subsequence with limit a, then the Cauchy sequence itself converges to a.

Task 2.28

Every Cauchy sequence is convergent.

Accumulation Points

Task 2.29

A sequence (a_n) converges to $L \in \mathbb{R}$ if and only if every neighborhood of L contains all but a finite number of the terms of the sequence (a_n) .

Accumulation Points

Task 2.29

A sequence (a_n) converges to $L \in \mathbb{R}$ if and only if every neighborhood of L contains all but a finite number of the terms of the sequence (a_n) .

Task 2.30

The real number x is an accumulation point of the set S if and only if every neighborhood of x contains an element of S different from x.

(日)

Sequences and Accumulation Points

Accumulation Points

Exercise 2.31

Sequences and Accumulation Points

Accumulation Points

Exercise 2.31

Sequences and Accumulation Points

Accumulation Points

Exercise 2.31

Accumulation Points

Exercise 2.31

Sequences and Accumulation Points

Accumulation Points

Exercise 2.32

Find a set of real numbers with exactly two accumulation points.

Sequences and Accumulation Points

Accumulation Points

Exercise 2.32

- Find a set of real numbers with exactly two accumulation points.
- 2 Find a set of real numbers whose accumulation points form a sequence (a_n) with $a_n \neq a_m$ for all $n \neq m$.

Sequences and Accumulation Points

Accumulation Points

Task 2.33

Show that x is an accumulation point of the set S if and only if there is a sequence (x_n) of elements in S with $x_n \neq x_m$ for all $n \neq m$ such that (x_n) converges to x.

Accumulation Points

Task 2.33

Show that x is an accumulation point of the set S if and only if there is a sequence (x_n) of elements in S with $x_n \neq x_m$ for all $n \neq m$ such that (x_n) converges to x.

Task 2.34

Every infinite bounded set of real numbers has at least one accumulation point.

Sequences and Accumulation Points

Accumulation Points

Task 2.35

Let S be a non-empty set of real numbers which is bounded from above. Show: If $\sup S \notin S$, then $\sup S$ is an accumulation point of S.

Definition and Examples

Definition

Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function.

We say that the LIMIT of f(x) at x_0 is equal to $L \in \mathbb{R}$, if for all $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x)-L|<\varepsilon$$

whenever $x \in D$ and $|x - x_0| < \delta$. In this case we write $\lim_{x \to x_0} f(x) = L$.

Definition and Examples

Definition

Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function and let x_0 be an accumulation point of D.

We say that the LIMIT of f(x) at x_0 is equal to $L \in \mathbb{R}$, if for all $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x)-L|<\varepsilon$$

whenever $x \in D$ and $|x - x_0| < \delta$. In this case we write $\lim_{x \to x_0} f(x) = L$.

Definition and Examples

Definition

Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function and let x_0 be an accumulation point of D.

We say that the LIMIT of f(x) at x_0 is equal to $L \in \mathbb{R}$, if for all $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x)-L|<\varepsilon$$

whenever $x \in D$ and $0 < |x - x_0| < \delta$. In this case we write $\lim_{x \to x_0} f(x) = L$.

Definition and Examples

Exercise 3.1

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Does f(x) have a limit a $x_0 = 0$? If so, what is the limit?

Definition and Examples

Definition and Examples

Exercise 3.2

Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function and let x_0 be an accumulation point of D. Then the following are equivalent:

- $\lim_{x \to x_0} f(x) \text{ exists and is equal to } L.$
- 2 Let (x_n) be any sequence of elements in D that converges to x₀, and satisfies that x_n ≠ x₀ for all n ∈ N. Then the sequence f(x_n) converges to L.

Definition and Examples

Exercise 3.2

Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function and let x_0 be an accumulation point of D. Then the following are equivalent:

- $\lim_{x\to x_0} f(x) \text{ exists and is equal to } L.$
- 2 Let (x_n) be any sequence of elements in D that converges to x₀, and satisfies that x_n ≠ x₀ for all n ∈ N. Then the sequence f(x_n) converges to L.

Exercise 3.3

What strategy does Exercise 3.2 suggest to show non-existence of a limit at a point?

Definition and Examples

Exercise 3.4

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} |x|/x, & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Does f(x) have a limit a $x_0 = 0$? If so, what is the limit?

Math 3341	Introduction to Analysis	
Limits		
Definiti	ion and Examples	

(ロ)、(型)、(E)、(E)、(E)、(O)

Definition and Examples

Exercise 3.5

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Does f(x) have a limit a $x_0 = 0$? If so, what is the limit?

Definition and Examples

Limits

Definition and Examples

Exercise 3.6

Let $f:(0,1]\to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

For which values of x_0 does f(x) have a limit a x_0 ? What is the limit?

Limits

Definition and Examples

Task 3.7

Let $f:(0,1]\to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ with } p, q \text{ relatively prime} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

For which values of x_0 does f(x) have a limit a x_0 ? What is the limit?

Math 3341	Introduction to Analysis
Limits	
Definiti	ion and Examples

Limits

Definition and Examples

Exercise 3.8

Let $D \subseteq \mathbb{R}$, let $f : D \to \mathbb{R}$ be a function and let x_0 be an accumulation point of D. If f(x) has a limit at x_0 , then there is a $\delta > 0$ and an M > 0 such

that

 $|f(x)| \leq M$ for all $x \in (x_0 - \delta, x_0 + \delta) \cap D$.

Definition and Examples

Definition

Let *D* be a set of real numbers and $x_0 \in D$. A function $f: D \to \mathbb{R}$ is said to be CONTINUOUS at x_0 if the following holds: For all $\varepsilon > 0$ there is a $\delta > 0$ such that for all $x \in D$ with

$$|\boldsymbol{x}-\boldsymbol{x}_0|<\delta,$$

we have that

$$|f(x)-f(x_0)|<\varepsilon.$$

(日)

Definition and Examples

Exercise 4.1

Let D be a set of real numbers and $x_0 \in D$ be an accumulation point of D. Then the function $f : D \to \mathbb{R}$ is continuous at x_0 if and only if $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition and Examples

Exercise 4.1

Let D be a set of real numbers and $x_0 \in D$ be an accumulation point of D. Then the function $f : D \to \mathbb{R}$ is continuous at x_0 if and only if $\lim_{x \to x_0} f(x) = f(x_0)$.

Exercise 4.2

Let D be a set of real numbers and $x_0 \in D$. Assume also that x_0 is not an accumulation point of D. Then the function $f : D \to \mathbb{R}$ is continuous at x_0 .

(日)

Definition and Examples

Exercise 4.3

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \left\{ egin{array}{cc} |x|, & {\it if } x \in \mathbb{Q} \ x^2, & {\it if } x \in \mathbb{R} \setminus \mathbb{Q} \end{array}
ight.$$

For which values of x_0 is f(x) continuous?

Definition and Examples

Exercise 4.4

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Is f(x) continuous at $x_0 = 0$?

Math 3341 Introduction to Analysis

Continuity

Definition and Examples

Definition and Examples

Exercise 4.5

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Is f(x) continuous at $x_0 = 0$?

Definition and Examples

Definition and Examples

Exercise 4.6

Let $f:(0,1]\to \mathbb{R}$ be defined by

$$f(x) = \left\{ egin{array}{cc} 1, & {\it if } x \in \mathbb{Q} \ 0, & {\it if } x \in \mathbb{R} \setminus \mathbb{Q} \end{array}
ight.$$

For which values of x_0 is f(x) continuous?

Definition and Examples

Exercise 4.7

Let $f:(0,1]\to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ with } p, q \text{ relatively prime} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

For which values of x_0 is f(x) continuous?

Math 3341	Introduction to Analysis
Continuity	
Definiti	on and Examples

Combinations of Continuous Functions

Task 4.8

Let $D, E \subseteq \mathbb{R}$, and let $f : D \to \mathbb{R}$ be a function continuous at $x_0 \in D$. Assume $f(D) \subseteq E$. Suppose $g : E \to \mathbb{R}$ is a function continuous at $f(x_0)$. Then the composition $g \circ f : D \to \mathbb{R}$ is continuous at x_0 .

Uniform Continuity

Exercise 4.9

If $f : D \to \mathbb{R}$ is uniformly continuous on D, then f is continuous on D. What is the difference between continuity and uniform continuity?

Uniform Continuity

Exercise 4.9

If $f : D \to \mathbb{R}$ is uniformly continuous on D, then f is continuous on D. What is the difference between continuity and uniform continuity?

Exercise 4.10

Let $f: (0,1) \to \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$. Show that f is not uniformly continuous on (0,1).

(日)

Uniform Continuity

Task 4.11

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b]. Show that f is uniformly continuous on [a, b].

Uniform Continuity

Task 4.11

Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function on the closed interval [a, b]. Show that f is uniformly continuous on [a, b].

Task 4.12

Let $f : D \to \mathbb{R}$ be uniformly continuous on D. If D is a bounded subset of \mathbb{R} , then f(D) is also bounded.

Uniform Continuity

Exercise 4.13

Let $f : D \to \mathbb{R}$ be a Lipschitz function on D. Then f is uniformly continuous on D.

Uniform Continuity

Exercise 4.13

Let $f : D \to \mathbb{R}$ be a Lipschitz function on D. Then f is uniformly continuous on D.

Task 4.14

Show: The function $f(x) = \sqrt{x}$ is uniformly continuous on the interval [0, 1], but it is not a Lipschitz function on the interval [0, 1].

(日)

Math 3341 Introduction to Analysis

Continuity

Continuous Functions on Closed Intervals

Exercise 4.15

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b]. Then f is bounded on [a, b].

Continuous Functions on Closed Intervals

Task 4.16

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b]. Then f has an absolute maximum (and an absolute minimum) on [a, b].

Continuous Functions on Closed Intervals

Task 4.17 (Intermediate Value Theorem)

Let $f : I \to \mathbb{R}$ be a continuous function on the interval I. Let $a, b \in I$. If $d \in (f(a), f(b))$, then there is a real number $c \in (a, b)$ such that f(c) = d.

Continuous Functions on Closed Intervals

Continuous Functions on Closed Intervals

Task 4.18

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b]. Then $f([a, b]) := \{f(x) \mid x \in [a, b]\}$ is also a closed bounded interval.

Continuous Functions on Closed Intervals

Task 4.19

Let $f : [a, b] \to \mathbb{R}$ be strictly increasing (or decreasing, resp.) and continuous on [a, b]. Show that f has an inverse on f([a, b]), which is strictly increasing (or decreasing, resp.) and continuous.

Continuous Functions on Closed Intervals

Task 4.19

Let $f : [a, b] \to \mathbb{R}$ be strictly increasing (or decreasing, resp.) and continuous on [a, b]. Show that f has an inverse on f([a, b]), which is strictly increasing (or decreasing, resp.) and continuous.

Task 4.20

Show that $\sqrt{x} : [0, \infty) \to \mathbb{R}$ is continuous on $[0, \infty)$.

A D > A P > A D > A D >

Definition and Examples

Definition

Let *D* be a set of real numbers and let $x_0 \in D$ be an accumulation point of *D*. The function $f : D \to \mathbb{R}$ is said to be DIFFERENTIABLE at x_0 , if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists.

In this case, we call the limit above the DERIVATIVE of f at x_0 and write

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Definition and Examples

Exercise 5.1

Use the definition to show that $\sqrt[3]{x} : \mathbb{R} \to \mathbb{R}$ is differentiable at $x_0 = -27$ and that its derivative at $x_0 = -27$ equals $\frac{1}{27}$.

Definition and Examples

Exercise 5.1

Use the definition to show that $\sqrt[3]{x} : \mathbb{R} \to \mathbb{R}$ is differentiable at $x_0 = -27$ and that its derivative at $x_0 = -27$ equals $\frac{1}{27}$.

Exercise 5.2

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Is f(x) differentiable at $x_0 = 0$?

(日)

Definition and Examples

Definition and Examples

Exercise 5.3

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \ x \in \mathbb{R} \\ 0, & \text{if } x = 0 \end{cases}$$

Is f(x) differentiable at $x_0 = 0$? Using your Calculus knowledge, compute the derivative at points $x_0 \neq 0$. Is the derivative continuous at $x_0 = 0$?

(日)

Definition and Examples

Math 3341 Introduction to Analysis

The Derivative

Techniques of Differentiation

Exercise 5.4

Suppose $f : D \to \mathbb{R}$ is differentiable at $x_0 \in D$. Show that f is continuous at x_0 .

The Derivative

Techniques of Differentiation

Exercise 5.4

Suppose $f : D \to \mathbb{R}$ is differentiable at $x_0 \in D$. Show that f is continuous at x_0 .

Exercise 5.5

Give an example of a function with a point at which f is continuous, but not differentiable.

Techniques of Differentiation

Exercise 5.6

Let $f, g : D \to \mathbb{R}$ be differentiable at $x_0 \in D$. Then the function f + g is differentiable at x_0 , with $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.

Techniques of Differentiation

Exercise 5.6

Let $f, g : D \to \mathbb{R}$ be differentiable at $x_0 \in D$. Then the function f + g is differentiable at x_0 , with $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.

Task 5.7

Let $f, g : D \to \mathbb{R}$ be differentiable at $x_0 \in D$. Then the function $f \cdot g$ is differentiable at x_0 , with

$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0).$$

(1)

Techniques of Differentiation

Exercise 5.8

Show that polynomials are differentiable everywhere. Compute the derivative of a polynomial of the form

$$P(x)=\sum_{k=0}^n a_k x^k.$$

The Derivative

Techniques of Differentiation

Task 5.9

State and prove the "Quotient Rule".

The Derivative

Techniques of Differentiation

Task 5.9

State and prove the "Quotient Rule".

Task 5.10

State and prove the "Chain Rule".

The Mean-Value Theorem and its Applications

Task 5.11

Suppose $f : [a, b] \to \mathbb{R}$ has either a local maximum or a local minimum at $x_0 \in (a, b)$. If f is differentiable at x_0 , then $f'(x_0) = 0$.

The Mean-Value Theorem and its Applications

Task 5.11

Suppose $f : [a, b] \to \mathbb{R}$ has either a local maximum or a local minimum at $x_0 \in (a, b)$. If f is differentiable at x_0 , then $f'(x_0) = 0$.

Task 5.12

Suppose $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) = 0, then there exists a $c \in (a, b)$ with f'(c) = 0.

A D > A B > A B > A B >

The Mean-Value Theorem and its Applications

Task 5.13

Suppose $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). Then there exists a $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b}$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

The Derivative

The Mean-Value Theorem and its Applications

The Derivative

The Mean-Value Theorem and its Applications

Exercise 5.14

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing.

The Mean-Value Theorem and its Applications

Exercise 5.15

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].

The Derivative

The Mean-Value Theorem and its Applications

Exercise 5.16

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If $f'(x) \neq 0$ for all $x \in (a, b)$, then f is injective.

The Mean-Value Theorem and its Applications

Task 5.17

Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b] such that $f'(x) \neq 0$ for all $x \in [a, b]$. Then f is injective; its inverse f^{-1} is differentiable on f([a, b]). Moreover, setting y = f(x), we have

$$\left(f^{-1}\right)'(y) = \frac{1}{f'(x)}$$

(日)