
5 The Derivative

5.1 Definition and Examples

Let D be a set of real numbers and let x0 ∈ D be an accumulation point of D. The
function f : D → R is said to be differentiable at x0, if

lim
x→x0

f(x) − f(x0)

x − x0

exists.

In this case, we call the limit above the derivative of f at x0 and write

f ′(x0) = lim
x→x0

f(x) − f(x0)

x − x0

.

Exercise 5.1
Use the definition above to show that 3

√
x : R → R is differentiable at x0 = −27

and that its derivative at x0 = −27 equals
1

27
.

Exercise 5.2
Let f : R → R be defined by

f(x) =

{

x sin
(

1

x

)

, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) differentiable at x0 = 0? See Figure 3 on page 25.

Exercise 5.3
Let f : R → R be defined by

f(x) =

{

x2 sin
(

1

x

)

, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) differentiable at x0 = 0? Using your Calculus knowledge, compute the
derivative at points x0 6= 0. Is the derivative continuous at x0 = 0? See Figure 9
on the next page.



44 The Derivative

Figure 9: The graph of x2 sin (1/x)

5.2 Techniques of Differentiation

Exercise 5.4
Suppose f : D → R is differentiable at x0 ∈ D. Show that f is continuous at x0.

Exercise 5.5
Give an example of a function with a point at which f is continuous, but not
differentiable.

Exercise 5.6
Let f, g : D → R be differentiable at x0 ∈ D. Then the function f+g is differentiable
at x0, with (f + g)′(x0) = f ′(x0) + g′(x0).

Next come some of the “Calculus Classics”, beginning with the “Product Rule”:
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Task 5.7
Let f, g : D → R be differentiable at x0 ∈ D. Then the function f ·g is differentiable
at x0, with

(f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0).

In particular, if c ∈ R, then

(c · f)′(x0) = c · f ′(x0).

Exercise 5.8
Show that polynomials are differentiable everywhere.

Compute the derivative of a polynomial of the form

P (x) =

n
∑

k=0

akxk.

Task 5.9
State and prove the “Quotient Rule”.

Task 5.10
State and prove the “Chain Rule”12.

5.3 The Mean-Value Theorem and its Applications

Let D be a subset of R, and let f : D → R be a function. We say that f has a local

maximum at x0 ∈ D, if there is a neighborhood U of x0, such that

f(x) ≤ f(x0) for all x ∈ U.
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Similarly, we say that f has a local minimum at x0 ∈ D, if there is a neighborhood U
of x0, such that

f(x) ≥ f(x0) for all x ∈ U.

The next result is commonly known as the First Derivative Test13.

Task 5.11
Suppose f : [a, b] → R has either a local maximum or a local minimum at x0 ∈ (a, b).
If f is differentiable at x0, then f ′(x0) = 0.

Task 5.12
Suppose14f : [a, b] → R is continuous on [a, b] and differentiable on (a, b).

If f(a) = f(b) = 0, then there exists a c ∈ (a, b) with f ′(c) = 0.

A much more useful version of Task 5.12 is known as the Mean Value Theorem:

Figure 10: The Mean Value Theorem
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Task 5.13
Suppose f : [a, b] → R is continuous on [a, b] and differentiable on (a, b).

Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

See Figure 10 on the page before.

Do not confuse the Mean Value Theorem with the Intermediate Value Theorem!

Nearly all properties of differentiable functions follow from the Mean Value Theorem.
The exercises and tasks below are such examples of straightforward applications of the
Mean-Value Theorem.

Exercise 5.14
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing.

Exercise 5.15
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

A function f : D → R is called injective (or 1–1), if x 6= y implies f(x) 6= f(y) for all
x, y ∈ D.

Exercise 5.16
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) 6= 0 for all x ∈ (a, b), then f is injective.
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Task 5.17
Let f : [a, b] → R be differentiable on [a, b] such that f ′(x) 6= 0 for all x ∈ [a, b].

Then f is injective; its inverse f−1 is differentiable on f([a, b]). Moreover, setting
y = f(x), we have

(

f−1
)′

(y) =
1

f ′(x)
.

5.4 The Derivative and the Intermediate Value Property*

We say that a function f : [a, b] → R has the Intermediate Value Property on
[a, b] if the following holds: Let x1, x2 ∈ [a, b], and let

y ∈ (f(x1), f(x2)).

Then there is an x ∈ (x1, x2) satisfying f(x) = y.

Recall that we saw earlier that every continuous function has the intermediate value
property, see Task 4.17.

On the other hand, not every function with the intermediate value property is continu-
ous:

Optional Task 5.1
Let f : [−1, 1] → R be defined by

f(x) =

{

sin
(

1

x

)

, if x 6= 0, x ∈ R

0, if x = 0

Show that f has the intermediate value property on the interval [−1, 1]. See Figure 5
on page 28.

The rest of this section will establish the surprising fact that derivatives have the inter-
mediate value property, even though they are not necessarily continuous (see Task 5.3).

Optional Task 5.2
Let f : [a, b] → R be differentiable on [a, b].
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If f ′(x) 6= 0 for all x ∈ (a, b), then either f ′(x) ≥ 0 for all x ∈ [a, b] or f ′(x) ≤ 0 for
all x ∈ [a, b].

Optional Task 5.3
Let f : [a, b] → R be differentiable on [a, b]. Then f ′ : [a, b] → R has the intermediate
value property on [a, b].




