Homework 5

The assignment is due at the beginning of class on October 17, 2007.

Problem 1 (10 points) Prove for all natural numbers $n \ge 5$: $2^n > n^2$.

Problem 2 (10 points) Let $n \in \mathbb{N}$. Conjecture a formula for the expression

$$a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)}$$

and prove your conjecture by induction.

Problem 3 (10 points) Use induction to show the following theorem: If a set has n elements, then its power set has 2^n elements. (See Homework 2 Problem 3.)

For a natural number n, let \mathcal{D}_n denote the set of the divisors of n. For example, $\mathcal{D}_{42} = \{1, 2, 3, 6, 7, 14, 21, 42\}$ and $\mathcal{D}_{12} = \{1, 2, 3, 4, 6, 12\}$. For $m, n \in \mathbb{N}$ let $m \sqcap n$ denote the greatest common divisor of n and m, and $m \sqcup n$ their least common multiple. For instance $6 \sqcap 4 = 2$ and $6 \sqcup 4 = 12$. It turns out that \mathcal{D}_{42} with these two operations \sqcap and \sqcup forms a Boolean Algebra, while \mathcal{D}_{12} does **not**.

Problem 4 (10 points) Verify Boolean Algebra Laws 3, 4 and 5 for \mathcal{D}_{42} .

Problem 5 (10 points) 1. Show that \mathcal{D}_{12} does not form a Boolean Algebra.

2. Conjecture for which values of n the set \mathcal{D}_n forms a Boolean Algebra.