The assignment is due at the beginning of class on November 26, 2007.

Problem 1 (10 points) On the set of natural numbers \mathbb{N} consider the partial order

$$n \mid m \Leftrightarrow n \text{ is a divisor of } m.$$

- 1. Draw a Hasse diagram for the set $A = \{1, 2, 3, 4, 5, \dots, 12, 13, 14, 15\}$ endowed with this partial order.
- 2. Find three upper bounds for A.
- 3. Find the largest element of A, or show that it does not exist.
- 4. Find the maximal elements of A, or show that none exist.

Problem 2 (10 points) Consider \mathbb{R}^2 with the lexicographical order \leq_{ℓ} :

$$(a,b) \le_{\ell} (c,d) \quad \Leftrightarrow \quad (a < c) \lor ((a = c) \land (b \le d)).$$

- 1. Show that \leq_{ℓ} is a linear order on \mathbb{R}^2 .
- 2. Find a subset of $(\mathbb{R}^2, \leq_{\ell})$ that is bounded from above, but fails to have a least upper bound.

Problem 3 (10 points) Consider the relation " \leq " on a Boolean Algebra \mathcal{B} defined by

$$A \preceq B \Leftrightarrow A \sqcup B = B$$

for $A, B \in \mathcal{B}$. You already proved in Homework 8 that this relation is reflexive and transitive. Prove that \leq is also anti-symmetric.

Problem 4 (10 points) Consider the Boolean Algebra S_1 , defined in Homework 3. Draw a *Hasse diagram* for S_1 endowed with the partial order \leq .

Problem 5 (10 points) Let \mathcal{B} be a Boolean Algebra with null-element N, partially ordered by \leq . We say that $A \in \mathcal{B}$ is an ATOM of \mathcal{B} if N is the immediate predecessor of A.

- 1. Find all atoms of $\mathcal{P}(\{1, 2, 3, 4\})$.
- 2. Find all atoms of \mathcal{D}_{42} , defined in Homework 5.
- 3. Assume additionally that \mathcal{B} has finitely many elements. Show that for every $B \in \mathcal{B}$ with $B \neq N$ there is an atom A such that $A \leq B$.