The assignment is due at the beginning of class on December 5, 2007.

Problem 1 (10 points) 1. Find a function whose domain is the set of real numbers \mathbb{R} and whose range is the set of rational numbers \mathbb{Q} .

2. Find a function whose domain is the set of natural numbers \mathbb{N} and whose range is the set of integers \mathbb{Z} .

Problem 2 (10 points) Prove or disprove: If f and g are functions from A to B, then $f \cap g$ is a function.

Problem 3 (10 points) 1. Find functions $f: B \to C$, $g: A \to B$ and $h: A \to B$ such that $f \circ g = f \circ h$, yet $g \neq h$.

2. Suppose $f:A\to B$ is a function with range(f)=B. Prove or disprove: If $g:B\to C$ and $h:B\to C$ satisfy $g\circ f=h\circ f$, then g=h.

Problem 4 (10 points) Let $f: A \to B$ and $g: C \to D$ be two functions. Define

$$f \times g = \{((a, c), (b, d)) \mid (a, b) \in f \land (c, d) \in g\}.$$

Show that $f \times g$ is a function from $A \times C$ to $B \times D$. Find an explicit expression for $f \times g$.

Problem 5 (10 points) Let A and B be sets with m and n elements respectively. What is the probability that a relation from A to B chosen at random is a function?

[©] November 28, 2007

¹The probability is the ratio of the number of distinct functions from A to B to the number of all distinct relations form A to B.