Theorem: The following four statements are
equivalent
(1) let $S \subseteq \mathbb{N}$. If S satisfies
(a) $1 \in S$
and (b) $n \in S \Rightarrow(n+1) \in S$,
then $S=\mathbb{N}$.
(2) let $P(n)$ be a predicate with domain \mathbb{N}. Suppose
(a) $P(a)$ is true
and (b) Whenever $P(n)$ is true, then $P(n+1)$ is true.
Then $P(n)$ is true for all $n \in \mathbb{N}$
(3) let $P(n)$ be a predicate U. domain \mathbb{N}.

Suppose
(a) $P(1)$ is true
and (b) Menever $P(k)$ is true for all $R \leqslant n$, then $P(n+1)$ is tue.
Then $P(m)$ is toe for all $n \in \mathbb{N}$.
(4) Ever you - empty subset of N has a smallest element.

Proof: $(1) \Rightarrow(2)$ let $S=\{n \in \mathbb{N} \mid P(n)$ is true $\}$
Then by $(2 a), 1 \in S$. Now Suppose $n \in S$, ie. $P(n)$ is $w e$. Ten by $(2 b)$, $P(n+1)$ is the, no $(n+1) \in S$. B $(1), S=\mathbb{N}$
$(2) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (4) Suppose there is a non-ampts set K without a Smallest element. Let $S=\mathbb{N} \backslash K$.
let $P(n)$ be the predicate: $n \in S$.
Clear, $P(1)$ is true: if $1 \notin S$, then $1 \in K$, and
thus' 1 will be the sinallest element in 'K. Now suppose $P(k)$ is true for del $k \leq n$; thus $1,2,3, \ldots, n \in S$. So $1,2, \ldots, n \notin K$. If $(n+1) \in k$, then $n+1$ is the smallest element of K; than $(n+1) \notin K$, i.e. $(n+1) \in S$. Thus $P(n+1)$ is true, so $P(n)$ is the for all $n \in \mathbb{N}$. consqueaty $S=\mathbb{N}$ and $K=\varnothing$, a contradiction.
(4) \Rightarrow (1) Suppose $S \subseteq \mathbb{N}$ satisfies (Ia) and (Ib) but $S \nsubseteq N$. Then $K=\mathbb{N} \backslash S \neq \varnothing$ $B_{y}(4)$ it has a smallest element, say $n \in K$ is K 's smallest element. Ten $n=1$ or $n-1 \notin K$. In the first case, $1 \notin S$, contradicting (Ia). In the second case (16) Applied to ($n-1$) implies that $n \in S$, no $n \notin K$, contrary to our assumption.
que. a.

