Math 4303

Worksheet #2

September 1, 2009

Suppose that addition and multiplication have already been defined for the set of natural numbers \mathbb{N} .

a. We define a relation \sim on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(m,n) \sim (m',n') \Leftrightarrow m+n'=m'+n.$$

Show that \sim defines an equivalence relation on $\mathbb{N} \times \mathbb{N}$.

b. It then makes sense to define equivalence classes $(m, n)_{\sim}$:

$$(m,n)_{\sim} := \{(m',n') \in \mathbb{N} \times \mathbb{N} \mid (m',n') \sim (m,n)\}.$$

The set of all these equivalence classes is denoted by $(\mathbb{N} \times \mathbb{N})_{\sim}$. We will identify the set of integers \mathbb{Z} with this set $(\mathbb{N} \times \mathbb{N})_{\sim}$.

Which equivalence class corresponds to the integer 0? What about the equivalence classes corresponding to the integers 1 and -3, respectively?

c. How can one define addition of two integers? More precisely, what should be the meaning of

$$(m,n)_{\sim} + (m',n')_{\sim}?$$

Is your definition well-defined?

- d. Show that addition as defined in c. is commutative.
- e. What is the neutral element in $(\mathbb{N} \times \mathbb{N})_{\sim}$ with respect to addition?
- f. Given $(m,n)_{\sim} \in (\mathbb{N} \times \mathbb{N})_{\sim}$, what is the inverse element of $(m,n)_{\sim}$ with respect to addition?
- g. How can one define multiplication of two integers? More precisely, what should be the meaning of

$$(m,n)_{\sim} \cdot (m',n')_{\sim}?$$

h. Verify that $(2,5)_{\sim} \cdot (1,2)_{\sim} = (5,2)_{\sim}$.