Analysis

The problems are due on Thursday, September 10.

For all students:

Problem 1 Let A be a subset of a metric space (X, d). Show that the following two definitions are equivalent:

- The interior of A is the set of all interior points of A.
- The interior of A is the union of all open sets contained in A.

Problem 2 Let Y be a subset of the metric space (X, d).

- **a**. Show that (Y, d) is also a metric space.
- **b**. Show that a set A is open in Y if and only if there is an open set O in X such that $A = O \cap Y$.

Problem 3 Let C be the space of all real-valued continuous functions on [0, 1], endowed with the norm $||f|| = \max_{x \in [0,1]} |f(x)|$. Recall that $(C, ||\cdot||)$ is a normed vector space. Let

$$A = \{ f \in C \mid f(1/3) \neq 0 \}$$

- **a**. Is A open? Is it closed?
- **b**. Find the interior, the closure and the boundary of A.

Problem 4 Let X be a \mathbb{R} -vector space, and let $\langle \cdot, \cdot \rangle$ be an inner product on X. As usual, we set $||x|| = \sqrt{\langle x, x \rangle}$ for $x \in X$. Show the following hold for all $x, y \in X$:

- **a**. $2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x y||^2$ **b**. $||x + y|| ||x - y|| \le ||x||^2 + ||y||^2$
- **c**. $4\langle x, y \rangle = ||x + y||^2 ||x y||^2$

For graduate students:

Problem 5 Let $(X, \|\cdot\|)$ be a normed \mathbb{R} -vector space such that

$$2\|x\|^{2} + 2\|y\|^{2} = \|x + y\|^{2} + \|x - y\|^{2}$$
(1)

holds for all $x, y \in X$. Identity (1) is called the "parallelogram identity". Show that

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$$

then defines an inner product on X.