Analysis

The problems are due on Thursday, December 3.

For all students:

Problem 1 Let K be a compact subset of \mathbb{R} , and for all $n \in \mathbb{N}$ let $f_n : K \to \mathbb{R}$ be a continuous function. Prove or disprove: If (f_n) converges pointwise to a continuous function $f : K \to \mathbb{R}$, then (f_n) converges uniformly to f.

Problem 2 A function $f : \mathbb{R} \to \mathbb{R}$ is called *lower semi-continuous* if whenever $x \in \mathbb{R}$ and $\alpha \in \mathbb{R}$ satisfy $f(x) > \alpha$, there exists a $\delta > 0$ such that $f(y) > \alpha$ for all $y \in \mathbb{R}$ satisfying $|x - y| < \delta$.

- 1. Find a function $f : \mathbb{R} \to \mathbb{R}$ that is lower semi-continuous, but not continuous.
- 2. Show: If a sequence of lower semi-continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ satisfies
 - (a) $f_{n+1}(x) \ge f_n(x)$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$, and
 - (b) (f_n) converges pointwise to a function f,

then f is also lower semi-continuous.

Problem 3 Let $f : \mathbb{R} \to \mathbb{R}$ be the limit of a uniformly converging sequence of polynomials $P_n : \mathbb{R} \to \mathbb{R}$. Show that f is a polynomial.

For graduate students:

Problem 4 (20 points) Let $(f_n) : \mathbb{R} \to [0,1]$ be a sequence of *increasing* functions, i.e. satisfying $f_n(x) \leq f_n(y)$ for all $x \leq y$ and all $n \in \mathbb{N}$. The problem will establish that a subsequence of (f_n) converges pointwise on \mathbb{R} .

- 1. Show that there is a subsequence (f_{n_k}) of (f_n) , which converges at all rational points in \mathbb{R} , say $\lim_{k\to\infty} f_{n_k}(q) =: f(q)$ for all rational numbers q.
- 2. For $x \in \mathbb{R}$ define $f(x) := \sup\{f(q) \mid q \leq x, q \text{ is rational}\}$. Using the monotonicity of the functions involved, show that $f(x) = \lim_{k \to \infty} f_{n_k}(x)$ for all $x \in \mathbb{R}$, at which f is continuous.
- 3. Show that a further subsequence of (f_{n_k}) converges to f for all $x \in \mathbb{R}$. Hint: How many points are there, at which f is discontinuous?