Math 3341

Homework 1

The assignment is due at the beginning of class on September 13, 2010.

Problem 1 (20 points) A non-empty set is called bounded if it is bounded from above and bounded from below.

- 1. Write down definitions for "bounded from below" and for greatest lower bound (infimum).
- 2. Show that the following three statements are equivalent:
 - Every set of real numbers that is bounded from above has a supremum.
 - Every set of real numbers that is bounded from below has an infimum.
 - Every bounded set of real numbers has both an infimum and a supremum.

Problem 2 (10 points) Show that the sequence $\left(\frac{2n^2-1}{n^2+4}\right)_{n=1}^{\infty}$ converges to 2.

Problem 3 (10 points) 1. Show: If $(|a_n|)_{n=1}^{\infty}$ converges to 0, then $(a_n)_{n=1}^{\infty}$ converges to 0.

- 2. Prove or give a counterexample: If $(a_n)_{n=1}^{\infty}$ converges, then $(|a_n|)_{n=1}^{\infty}$ converges.
- 3. Prove or give a counterexample: If $(|a_n|)_{n=1}^{\infty}$ converges, then $(a_n)_{n=1}^{\infty}$ converges.

Problem 4 (10 points) Let A be a bounded set of real numbers. Show that there is a sequence $(a_n)_{n=1}^{\infty}$ of elements in A that converges to $\sup A$.