Homework 2

The assignment is due at the beginning of class on September 22, 2010.

Problem 1 (10 points) Let $\mathcal{A}(S)$ denote the set of accumulation points of a set S. Suppose S and T are sets of real numbers.

- 1. Show: If $S \subseteq T$, then $\mathcal{A}(S) \subseteq \mathcal{A}(T)$.
- 2. Show that $\mathcal{A}(S \cup T) = \mathcal{A}(S) \cup \mathcal{A}T$.
- 3. Is it true that $\mathcal{A}(S \cap T) = \mathcal{A}(S) \cap \mathcal{A}(T)$? (Give a proof or provide a counterexample.)

Problem 2 (15 points) Find the set of accumulation points of the set $\left\{\frac{1}{m+n} \mid m, n \in \mathbb{N}\right\}$.

Problem 3 (10 points) Problem 23 on page 55.

Problem 4 (15 points) For a real number x the floor function $\lfloor . \rfloor$ is defined as

 $\lfloor x \rfloor = \max\{m \in \mathbb{Z} \mid m \le x\}.$

Similarly, the ceiling function [.] is defined as

$$\lceil x \rceil = \min\{m \in \mathbb{Z} \mid m \ge x\}.$$

1. Show that the sequence (a_n) defined by

$$a_n = \frac{\lfloor \pi \rfloor + \lfloor 2\pi \rfloor + \lfloor 3\pi \rfloor + \dots + \lfloor n\pi \rfloor}{n^2}$$

converges to $\frac{\pi}{2}$.

2. Investigate the convergence behavior of the sequence (b_n) with

$$b_n = \frac{\lceil x \rceil + \lceil 4x \rceil + \lceil 9x \rceil + \dots + \lceil n^2x \rceil}{n^3}$$

for arbitrary $x \in \mathbb{R}$.