Homework 3

The assignment is due at the beginning of class on October 6, 2010.

Problem 1 (10 points) A sequence (a_n) is called *proper*, if $a_n \neq a_m$ for all $n \neq m$.

- 1. Show that a proper bounded sequence (a_n) converges, if $\{a_n \mid n \in \mathbb{N}\}$ has exactly one accumulation point.
- 2. Show that 1. fails if we omit the hypothesis that the sequence is bounded.
- 3. Show that 1. fails if we omit the hypothesis that the sequence is proper.

Problem 2 (15 points) Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence, and let $\varphi : \mathbb{N} \to \mathbb{N}$ be a one-to-one function. Show that the sequence $(a_{\varphi(n)})_{n=1}^{\infty}$ is Cauchy.

Problem 3 (15 points) Problem 31 on page 56.

Problem 4 (10 points) This problem outlines the beginning of a *construction* of the real numbers from the rational numbers.

Let us denote the set of all Cauchy sequences of rational numbers by \mathcal{C} . We say that two Cauchy sequences (a_n) and (b_n) of rational numbers are *equivalent*, if

$$\lim_{n \to \infty} (a_n - b_n) = 0.$$

If two Cauchy sequences (a_n) and (b_n) are equivalent, we write $(a_n) \sim (b_n)$.

1. Show that ~ is indeed an equivalence relation, i.e., show for all $(a_n), (b_n)$ and $(c_n) \in \mathcal{C}$:

- (a) $(a_n) \sim (a_n)$ (Reflexivity)
- (b) $(a_n) \sim (b_n) \Rightarrow (b_n) \sim (a_n)$ (Symmetry)
- (c) $(a_n) \sim (b_n)$ and $(b_n) \sim (c_n) \Rightarrow (a_n) \sim (c_n)$ (Transitivity)

The equivalence class $[(a_n)]$ then is the set of all Cauchy sequences of rational numbers equivalent to (a_n) :

$$[(a_n)] := \{ (b_n) \in \mathcal{C} \mid (b_n) \sim (a_n) \}$$

Note that $[(a_n)] = [(b_n)]$ if and only if $(a_n) \sim (b_n)$.

We denote the set of all such equivalence classes by \mathcal{R} . \mathcal{R} can be considered as a *model* for the set of real numbers \mathbb{R} . To every equivalence class in \mathcal{R} there corresponds in a unique way a real number in \mathbb{R} : The real number corresponding to $[(a_n)] \in \mathcal{R}$ is its limit $\lim_{n \to \infty} a_n$.

2. Show that under this correspondence an equivalence class $[(a_n)]$ represents a rational number if and only if (a_n) is equivalent to a constant sequence.

There will be a follow-up problem on a later homework sheet.