Homework 5

The assignment is due at the beginning of class on April 7, 2011.

Problem 1 (10 points) Let $f, g: D \to \mathbb{R}$ be two **bounded** functions that are uniformly continuous on D. Show that their product $f \cdot g$ is uniformly continuous on D.

Problem 2 (15 points) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} , and assume that for all $\varepsilon > 0$ there is an N > 0 such that $|f(x)| < \varepsilon$ for all x satisfying |x| > N. Show that f is uniformly continuous on \mathbb{R} .

Problem 3 (15 points) Let $f : [a,b] \to \mathbb{R}$ be a function. We say f satisfies (*) if there is an M > 0 such that $|f(x) - f(y)| \le M \cdot |x - y|$ for all $x, y \in [a,b]$.

- 1. Show: If f satisfies (*), then f is uniformly continuous on [a, b].
- 2. Let $f:[0,1] \to \mathbb{R}$ be given by $f(x) = \sqrt{x}$. Show that f does not satisfy (*).

Problem 4 (10 points) Let S be a set of real numbers satisfying the following property: Every sequence in S has a subsequence that converges to an element in S.

- 1. Show that S is bounded.
- 2. Show that S is closed.