Boolean Algebras

Statements and their connectives on the one hand, and sets and set connectives on the other hand behave somewhat analogously. The English mathematician *George Boole* (1815–1864) made this idea precise by describing what he called "algebra of logic". Today we use the name "Boolean Algebra" in his honor instead:

A Boolean Algebra is a set \mathcal{B} together with two "connectives" \sqcap and \sqcup satisfying the following properties:

- 1. Closure Laws:
 - (a) If A and B are two elements in \mathcal{B} , then $A \sqcap B$ is also an element in \mathcal{B} .
 - (b) If A and B are two elements in \mathcal{B} , then $A \sqcup B$ is also an element in \mathcal{B} .
- 2. Commutative Laws:
 - (a) $A \sqcap B = B \sqcap A$ for all elements A and B in \mathcal{B} .
 - (b) $A \sqcup B = B \sqcup A$ for all elements A and B in \mathcal{B} .
- 3. Distributive Laws:
 - (a) $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements A, B and C in \mathcal{B} .
 - (b) $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A, B and C in \mathcal{B} .
- 4. There are elements $N \in \mathcal{B}$ (called the *null element*) and $O \in \mathcal{B}$ (the *one element*) such that
 - (a) $A \sqcap N = N$ and $A \sqcap O = A$ for all elements A in \mathcal{B} .
 - (b) $A \sqcup O = O$ and $A \sqcup N = A$ for all elements A in \mathcal{B} .
- 5. For every element A in \mathcal{B} there is an element B in \mathcal{B} such that $A \sqcap B = N$ and $A \sqcup B = O$.