The assignment is due at the beginning of class on September 7, 2011.

Problem 1 (10 points) Suppose a set S of real numbers has a maximum, call it m. Show that m is also the supremum of S.

Problem 2 (10 points) Let $A = \{x \in \mathbb{Q} \mid x^2 \leq 3\}$. Show that A is bounded from above, but that A has no maximum.

Problem 3 (10 points) Let A and B be two sets of real numbers.

- 1. Assume that $\emptyset \neq A \subseteq B$ and that B is bounded from above. Show that A is bounded from above, and moreover that $\sup A \leq \sup B$.
- 2. State a similar theorem for sets that are bounded from below. (No proof required.)

Problem 4 (10 points) A non-empty set is called *bounded* if it is bounded from above and bounded from below.

Assume that every bounded set of real numbers has both an infimum and a supremum. Show that this implies the Completeness Axiom for the Real Numbers.

Hint: This is not as easy as it may look at first glance.

Problem 5 (10 points) 1. Show the triangle inequality:

$$|x+y| \le |x| + |y|$$
 holds for all $x, y \in \mathbb{R}$.

2. Show the reverse triangle inequality:

$$|x-y| \ge ||x|-|y||$$
 holds for all $x, y \in \mathbb{R}$.

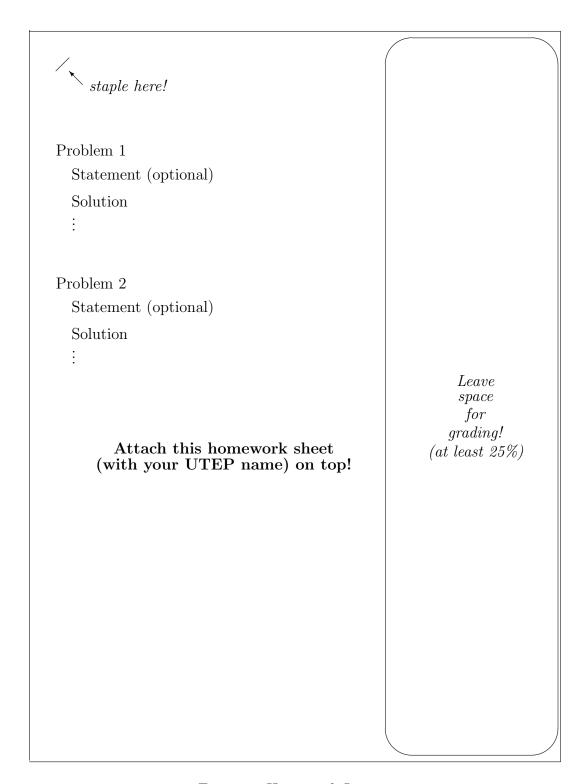


Figure 1: Homework Layout