Math 3341

Homework 6

The assignment is due at the beginning of class on November 7.

For this problem set, open interval means one of the following: $(-\infty, a)$, (a, b), (a, ∞) , $(-\infty, \infty)$ with a < b, while closed interval refers to one of the following: $(-\infty, a]$, [a, b], $[a, \infty)$ with $a \le b$.

Problem 1 (10 points) Show that every open interval is the union of a countable collection of compact sets.

Problem 2 (10 points) Show that every non-empty open set is the union of a finite or countable collection of pairwise disjoint open intervals.

Problem 3 (10 points) True or false: Every non-empty closed set is the union of a finite or countable collection of closed intervals.

- **Problem 4 (10 points)** 1. Show that every open set is the union of a countable collection of closed sets.
 - 2. Show that every closed set is the intersection of a countable collection of open sets.

Problem 5 (10 points) Show that $\mathbb{R} \setminus \mathbb{Q}$ is the intersection of a countable collection of open sets.