Math 3341

Homework 7

The assignment is due at the beginning of class on April 27.

Problem 1 (10 points) Let $f : [a, b] \to \mathbb{R}$ be an increasing function. Show that $\lim_{x \to a} f(x)$ exists. What can you say about the relationship between this limit and f(a)?

Problem 2 (10 points) Let $f, g : \mathbb{R} \to \mathbb{R}$ be two continuous functions. Define

 $h(x) = \max\{f(x), g(x)\}$ for all $x \in \mathbb{R}$.

Show that h is continuous on \mathbb{R} .

Problem 3 (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} , and assume that for all $\varepsilon > 0$ there is an N > 0 such that $|f(x)| < \varepsilon$ for all x satisfying |x| > N. Show that f is uniformly continuous on \mathbb{R} .

Let $f : [a,b] \to \mathbb{R}$ be a function. We say f satisfies (*) if there is an M > 0 such that $|f(x) - f(y)| \le M \cdot |x - y|$ for all $x, y \in [a,b]$.

Problem 4 (10 points) Show: If f satisfies (*), then f is uniformly continuous on [a, b].

Problem 5 (10 points) Let $f : [0,1] \to \mathbb{R}$ be given by $f(x) = \sqrt{x}$. Show that f does not satisfy (*).