Homework 6

The assignment is due at the beginning of class on April 22, 2013.

Problem 1 (10 points) Let $A \subseteq \mathbb{R}$. An element $m \in A$ is called *maximum* of A, if $m \ge a$ for all $a \in A$. Show that every finite non-empty set of real numbers has a maximum.

Problem 2 (10 points) Let R be a relation from the set A to the set B, and S be a relation from the set B to the set C. Prove that $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Problem 3 (10 points) Let R be a relation from A to B. For an element $b \in B$ define the set $R_b := \{a \in A \mid (a,b) \in R\}$. Show

$$\bigcup_{b\in B} R_b = \operatorname{Dom} R.$$

Problem 4 (10 points) Define a relation R on \mathbb{R} as follows: a R b if a - b is irrational. Prove or disprove: R is (a) reflexive, (b) symmetric, (c) transitive.

Problem 5 (10 points) Let $S = \{(x, y) | x^2 + (y - 1)^2 = 4\}$ and $T = \{(x, y) | x^2 + y^2 \le 1\}$ be two relations on \mathbb{R} . Find $T \circ S$.