() we choose an integer \f in
in the Mth partial sum &

tference S~ "‘Iin y all the [Cl'mﬁ
/€ .
A lanyr] <e,

that s,,, — s7,, — O and that the
riginal series. 0

-convergence of an infinite ge-

“an of the series (2.1) satisfy

oo [Gnt1l/|@n] > 1, then it

oo [@nt1]/]an] < g < 1. Then,
arger than ¢ and we have

Clan), lan+3| < ¢3lan], ete.
< g < 1), the series ) ;5 |ai)

juence {|a,|} is monotonically
(2.3) is not satisfied. ]

s a, = z"/nl. Here, we have
s (1.2.18) converges absolutely
« converge absolutely for all .
ipplied because |a,11/|an| =

msup,, ., V]a,| > 1, thet it

anumber ¢ < 1 that is strictly
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AN>0 Vn>N V| <q.

This implies lan] < ¢™ tor n > N, and a comparison with the geometric series
yields the absolute convergence of Yoo a;. If limsup,, ., ¥/|an| > 1, then the

condition (2.3) is not satisfied and the series cannot converge. a

Double Series

Consider a two-dimensional array of real numbers

apo + @1 + @ + a3 +... — So
+ + + + +
a9 + ann + @2 + a3 t... = 81
+ + + + +
asg + ao1 + axp + axy +... = 82
(.13) + T + s i
azp + a3 + a3z + azz +... = 83
+ + + + +
vg 4+ vi 4+ va + wy ... = 77

and suppose we want to sum up all of them. There are many natural ways of doing
this. One can either add up the elements of the ith row, denote the result by s;,
and then compute Yoo s;; or one can add up the elements of the jth column,
denote the result by v, and then compute Z;io v;. It is also possible to write all
elements in a linear arrangement. For example, we can start with aoo, then add the
elements a;; for which 7 + j = 1, then those with ¢ + j = 2, and so on. This gives

2.14) ago + ((llo + (L[)l) -+ ((LQU +ap; + (1,02) + ((Lgo +.. ) + ...

Here, we denote the pairs (0,0), (1,0), (0,1), (2,0),... by a(0), a(1), a(2),
a(3),..., sothat o is amap o : Ng — Ny x No, where Ng x No = {(i,7)[i €
Np,j € Np} is the so-called Cartesian product of Ny with Ng. So, we define in
general,

(2.12) Definition. A series Z;\’,OZO by, is called a linear arrangement of the double
Series (2.13) if there exists a bijective mapping 0 : Ng — No x Ng such that
k= Qg(k)-

The question now is: do the different possibilities of summation lead to the
Same value? Do we have

o0 (o0} o, 0] o0
2.15) SopF st +...= Z(Z (Lij> = Z(Za,,-]) =wvg+vr+...,
i=0 j=0 =0 =0

and do linear arrangements converge to the same value?
The counterexample of Fig.2.4a shows that this is not true without some
additional assumptions.
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[—1T+0+0+...= 0

+ + + 4+ +

O+1—-1+0+...= 0

+ + + 4+ +

0+0+1—-1+...= 0

+ o+ 4+ o+ +

0+0+0+1—.,..= 0

+ o+ o+ o+ +

S o = g = [

l+0+0+0+...=1F#0 il
ol
: b — | =
| 1 | 1) |

FIGURE 2.4a. Counterexample FIGURE2.4b. Double series

(2.13) Theorem (Cauchy 1821, “Note VII”). Suppose for the double series (2.13)
that

m m
(2.16) IB>0 Ym>0 > Y Jay| <B.

i=0 j=0

Then, all the series in (2.15) are convergent and the identities of (2.15) are satis-
fied. Furthermore, every linear arrangement of the double series converges to the
same value.

Proof. Let bg+b1+bo+. . . be alinear arrangement of the double series (2.13). The
sequence {d_""_,|b;|} is monotonically increasing and bounded (by assumption
(2.16)) so that Z;IZO |hi], and hence also Z?Zo b;, converge. Analogously, we can
establish the convergence of s; = Z‘;":O a;j and v; = Zzo ij.

Inspired by the proot of Theorem 2.9, we apply Cauchy’s criterion to the
series Y oo |bi| and have

Ve>0 HNZ() V?LZN VAZl |bn+l|+|bn+2|4"-~-+'bn+k|<5‘

For a given € > 0 and the corresponding N > 0 we choose an integer M in
such a way that all elements by, by, ..., bx are present in the box 0 < ¢ < M,
0 < j < M (see Fig.2.4b). With this choice, by, b1, ..., by appear in the sum
Zil:(] by (for I > N)as well as in > .- ;.lzo a;j (form > M and n > M).
Hence, we have torl > N, m > M, n > M,

m n {
DI

i=0 j=0 i=0

(2.17) < ‘bN+1|+~~-+|bN+k| < g,

with a sufficiently large k. We set s = Z;’io b; and take the limits [ — oo and

n — oo in (2.17). Then, we exchange the finite summations ZZZU 7,7:0 Lo

T
j=0
1 -67

Hence

The
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"IGURE 2.4b. Double series
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¢ of the double series (2.13). ’1_"he
g and bounded (by assumption
‘converge. Analogously, we can

lj = Zz o %ij-

apply Cauchy’s criterion to the

|+ [brz] + - A (D] <€

- 0 we choose an integer M in
resent in the box 0 < i < M,
0,b1,...,bn appear in the sum
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and take the lllllltS l — OO and m — OQ. IlllS yleldS, by IllCOIem
7—0 1=0
1-6,

i — 8 and —sl <e

Hence 3_;° s; and 3572 v; both converge to the same limit s. 0

The Cauchy Product of Two Series

If we want to compute the product of two infinite series Y ;2 a; and Y2 b;
we have to add all elements of the two-dimensional array

agbg agby agbs agbs
arbg aiby aiby aibs
(2-18) a2b0 a2b1 a2b2 a2b3
a3b0 as b1 a3b2 a3b3

If we arrange the elements as indicated in Eq.(2.14), we obtain the so-called
Cauchy product of the two series.

(2.14) Definition. The Cauchy product of the series 3 ;2 a; and Y72 o bj is de-
fined by

Z(Z An—j * bj) = agbo + (a0b1 + albo) + (a0b2 +aib + agbo) +
n=0 “ j=0

The question is whether the Cauchy product is a convergent series and
whether it really represents the product of the two series Eizo a; and Y >0 b;

(2.15) Counterexample (Cauchy 1821). The series
1 1 1 1
AtATGATET
converges by Leibniz’s criterion. We consider the Cauchy product of this series
with itself. Since

1-—

\/n+1—3 Vitl T n+2

(the inequality is a consequence of (n+1—z)(z+1) < (1+n/2)?for0 < z < n),
the necessary condition (2.3) for the convergence of the Cauchy product is not
satisfied (see Fig. 2.5). This example illustrates the fact that the Cauchy product
of two convergent series need not converge.
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FIGURE2.5. Divergence of the Cauchy product ot Counterexample 2.15

(2.16) Theorem (Cauchy 1821). If the two series Yoo ai and > 5o by are ab-
solutely convergent, then its Cauchy product converges and we have

i=0 =0 n=0 \ j=0

Proof. By hypothesis, we have Z?io la;] < By and Z;io |0 < Bs. Therefore,
we have for the two-dimensional array (2.18) that for all . > 0

m m

ZZ |(lzj”1)j' S BlBg,

i=0 j=0
and Theorem 2.13 can be applied. The sum of the ith row gives s; = a; - Z;io h;

and 3-8 = (300, ai)(32720 b;). By Theorem 2.13, the Cauchy product,
which is a linear arrangement of (2.18), also converges to this value. t

Examples. For |q| < 1 consider the two series

= I 1l—g+¢ -+ )
and — . e = .
= 1+ 4" —q T g

1+q+112+(13+...:-1

Their Cauchy product is

, y : 1
I+ +¢t+ %+, = —_—,
1 —q*
which, indeed, is the product of (1 — ¢)~! and (1 + q)
The Cauchy product of the absolutely convergent series

o 1 . '1:2 "“3 P d v o 1 - Ll/2 .UB
&= = +7-F§*}‘3—'+ an (AR +Z/+§+3—'—'|—

gives the series for ¢* ¥ (use the binomial identity of Theorem 1.2.1).
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Remark. The statement of Theorem 2.16 remains true if only one of the two se-
ries is absolutely convergent and the second is convergent (F. Mertens 1875, see
Exercise 2.3).

Under the assumption that the series Y mas, >, bj and also their Cauchy

product (Definition 2.14) converge, the identity (2.19) holds (Abel 1826, see Ex-
ercise 7.9).

Exchange of Infinite Series and Limits

At several places in Chap. I, we were confronted with
ing an infinite series with a limit (for example, for the derivation of the series
for e® in Sect. 1.2 and of those for sin 2 and cosz in Sect.1.4). We considered

series d,, = Z;io Snj depending on an integer parameter n, and used the fact

that litny, — e d,, = 5:;‘0 lim,, _, o 8nj. Already in Sect. 1.2 (after Eq. (1.2.17)), it
was observed that this

is not always true and that some caution is necessary. The
following theorem states sufficient conditions for the validity of such an exchange.

the problem of exchang-

(2.17) Theorem. Suppose that the elements of the sequence {505, S1j, 825, ...} all

have the same sign and that [Sny1,5] > [$ng] for all n and ;. If there exists a
bound B such that E;—‘z___“ [$nj| < B forall n > 0, then

(o0 o0
(2.20) Jim Y e =3 Jim s,
j=0 j=0

—00

Proof. The idea is to reformulate the hypotheses
is directly applicable. At the beg
can be converted to

in such a way that Theorem 2,13
inning of this section, we saw that every series
an infinite sequence by considering the partial sums (2.2).
Conversely, if the partial sums sq, sy, sy, ..
clements a; such that " a; —
8 — 81 fori > 1,

Applying this idea to the sequence {so;,

- are given, we can uniquely define
Sn. We just have to set ap = sy and a; =

S15, 524, . ..}, we define
n
Goj 1= Sgj, Gij 1= 845 — Si—1,5, SO that E Qi5 = Spj.
i=0

Replacing Snj by this expression, (2.20) becomes

(o 9] n oo
(2.21) dm >0 Y ey =3 lim 3 ay.

—00
=0 i=0 J=0 i=0

EXchanging the summations in the expression on the left side of (2.21) (this is
Permitted by Theorem L.5), we see th

We only have to verify condition (2.16
that the elements o5, 15, .

at (2.21) is equivalent to (2.15). Therefore,
). The assumptions on {505, 815, ...} imply
- all have the same sign. Hence, we have




