$$s_n = 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \cdot \dots n}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3,$$

the series converges, and the definition makes sense. In fact, the series converges very rapidly and allows us to compute e with great accuracy.

limit process; the proof provides a good illustration of operations with limits: It is of interest to note that e can also be defined by means of another

3.31 Theorem
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

$$s_n = \sum_{k=0}^n \frac{1}{k!}, \qquad t_n = \left(1 + \frac{1}{n}\right)^n.$$

By the binomial theorem,

$$t_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right).$$

Hence $t_n \leq s_n$, so that

 $\limsup_{n\to\infty} t_n \le e,$

by Theorem 3.19. Next, if $n \ge m$,

$$t_n \ge 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{m!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{m-1}{n} \right)$$

Let $n \to \infty$, keeping m fixed. We get

$$\liminf_{n\to\infty} t_n \ge 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{m!},$$

$$s_m \leq \liminf_{n \to \infty} t_n$$
.

Letting $m \to \infty$, we finally get

$$e \leq \liminf_{n \to \infty} t_n$$

(15)

The theorem follows from (14) and (15)

follows: If s_n has the same meaning as above, we have The rapidity with which the series $\sum \frac{1}{n!}$ converges can be estimated as

$$e - s_n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \cdots$$
$$< \frac{1}{(n+1)!} \left\{ 1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \cdots \right\} = \frac{1}{n!n}$$

so that

(16)

$$0 < e - s_n < \frac{1}{n!n}.$$

irrationality of e very easily. inequality (16) is of theoretical interest as well, since it enables us to prove the Thus s_{10} , for instance, approximates e with an error less than 10^{-7} . The

3.32 Theorem e is irrational

integers. By (16), **Proof** Suppose e is rational. Then e = p/q, where p and q are positive

$$0 < q!(e - s_q) < \frac{1}{q}$$

By our assumption, q!e is an integer. Since

$$q!s_q = q!\left(1 + 1 + \frac{1}{2!} + \dots + \frac{1}{q!}\right)$$

is an integer, we see that $q!(e-s_q)$ is an integer.

We have thus reached a contradiction. Since $q \ge 1$, (17) implies the existence of an integer between 0 and 1.

see page 25 of Niven's book, or page 176 of Herstein's, cited in the Bibliography. Actually, e is not even an algebraic number. For a simple proof of this,

THE ROOT AND RATIO TESTS

3.33 Theorem (Root Test) Given $\sum a_n$, put $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$.

- (a) if $\alpha < 1$, Σa_n converges; (b) if $\alpha > 1$, Σa_n diverges:
- if $\alpha > 1$, Σa_n diverges;
- if $\alpha = 1$, the test gives no information.

$$\sqrt[n]{|a_n|} < \beta$$

for $n \ge N$ [by Theorem 3.17(b)]. That is, $n \ge N$ implies

$$|a_n| < \beta^n$$
.

the comparison test Since $0 < \beta < 1$, $\Sigma \beta^n$ converges. Convergence of Σa_n follows now from

If $\alpha > 1$, then, again by Theorem 3.17, there is a sequence $\{n_k\}$ such

$$\sqrt[n_k]{|a_{n_k}|} \to \alpha.$$

 $a_n \to 0$, necessary for convergence of Σa_n , does not hold (Theorem 3.23) Hence $|a_n| > 1$ for infinitely many values of n, so that the condition

To prove (c), we consider the series

$$\sum \frac{1}{n}$$
, $\sum \frac{1}{n^2}$.

For each of these series $\alpha = 1$, but the first diverges, the second converges

3.34 Theorem (Ratio Test) The series $\sum a_n$

(a) converges if
$$\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
,

(b) diverges if
$$\left| \frac{a_{n+1}}{a_n} \right| \ge 1$$
 for $n \ge n_0$, where n_0 is some fixed integer.

Proof If condition (a) holds, we can find $\beta < 1$, and an integer N, such

$$\left|\frac{a_{n+1}}{a_n}\right| < \beta$$

for $n \ge N$. In particular

$$|a_{N+1}| < \beta |a_N|,$$

 $|a_{N+2}| < \beta |a_{N+1}| < \beta^2 |a_N|,$
 $...$
 $|a_{N+p}| < \beta^p |a_N|.$

That is,

$$|a_n| < |a_N| \beta^{-N} \cdot \beta^n$$

does not hold, and (b) follows. for $n \ge N$, and (a) follows from the comparison test, since $\Sigma \beta^n$ converges. If $|a_{n+1}| \ge |a_n|$ for $n \ge n_0$, it is easily seen that the condition $a_n \to 0$

Note: The knowledge that $\lim a_{n+1}/a_n = 1$ implies nothing about the convergence of Σa_n . The series $\Sigma 1/n$ and $\Sigma 1/n^2$ demonstrate this.

3.35 Examples

(a) Consider the series

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots,$$

for which

$$\lim_{n \to \infty} \inf \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0,$$

$$\lim_{n \to \infty} \inf \sqrt[n]{a_n} = \lim_{n \to \infty} 2^n \sqrt{\frac{1}{3^n}} = \frac{1}{\sqrt{3}},$$

$$\lim_{n \to \infty} \sup \sqrt[n]{a_n} = \lim_{n \to \infty} 2^n \sqrt{\frac{1}{2^n}} = \frac{1}{\sqrt{2}},$$

$$\lim_{n \to \infty} \sup \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{3}{2}\right)^n = +\infty.$$

The root test indicates convergence; the ratio test does not apply.

(b) The same is true for the series

$$\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots,$$

where

$$\lim_{n \to \infty} \inf \frac{a_{n+1}}{a_n} = \frac{1}{8},$$

$$\lim_{n \to \infty} \sup \frac{a_{n+1}}{a_n} = 2,$$

but

$$\lim \sqrt[n]{a_n} = \frac{1}{2}.$$

since it is usually easier to compute ratios than nth roots. However, the root above examples. test is too. This is a consequence of Theorem 3.37, and is illustrated by the gence, the root test does too; whenever the root test is inconclusive, the ratio test has wider scope. More precisely: Whenever the ratio test shows conver-3.36 Remarks The ratio test is frequently easier to apply than the root test,

divergence from the fact that a_n does not tend to zero as $n \to \infty$. Neither of the two tests is subtle with regard to divergence. Both deduce

3.37 Theorem For any sequence $\{c_n\}$ of positive numbers,

$$\lim_{n\to\infty}\inf\frac{c_{n+1}}{c_n}\leq \liminf_{n\to\infty}\sqrt[n]{c_n},$$

$$\limsup_{n\to\infty} \sqrt[n]{c_n} \le \limsup_{n\to\infty} \frac{c_{n+1}}{c_n}.$$

quite similar. Put Proof We shall prove the second inequality; the proof of the first is

$$\alpha = \limsup_{n \to \infty} \frac{c_{n+1}}{c_n}.$$

is an integer N such that If $\alpha = +\infty$, there is nothing to prove. If α is finite, choose $\beta > \alpha$. There

$$\frac{c_{n+1}}{c_n} \le \beta$$

for $n \ge N$. In particular, for any p > 0,

$$c_{N+k+1} \le \beta c_{N+k}$$
 $(k = 0, 1, ..., p-1).$

Multiplying these inequalities, we obtain

$$c_{N+p} \leq \beta^p c_N,$$

2

$$c_n \le c_N \beta^{-N} \cdot \beta^n \qquad (n \ge N).$$

Hence

$$\sqrt[n]{c_n} \leq \sqrt[n]{c_N \beta^{-N}} \cdot \beta,$$

so that

(81)

$$\limsup_{n\to\infty} \sqrt[n]{c_n} \le \beta,$$

by Theorem 3.20(b). Since (18) is true for every $\beta > \alpha$, we have

$$\limsup_{n\to\infty} \sqrt[n]{c_n} \le \alpha.$$

POWER SERIES

3.38 Definition Given a sequence $\{c_n\}$ of complex numbers, the series

$$\sum_{n=0}^{\infty} c_n z^{-1}$$

z is a complex number. is called a power series. The numbers c_n are called the coefficients of the series;

not be described so simply. zero). The behavior on the circle of convergence is much more varied and canplane as the interior of a circle of infinite radius, and a point as a circle of radius and diverges if z is in the exterior (to cover all cases, we have to consider the circle of convergence, such that (19) converges if z is in the interior of the circle of z. More specifically, with every power series there is associated a circle, the In general, the series will converge or diverge, depending on the choice

3.39 **Theorem** Given the power series $\sum c_n z^n$, put

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}, \qquad R = \frac{1}{\alpha}.$$

(If $\alpha = 0$, $R = +\infty$; if $\alpha = +\infty$, R = 0.) Then $\sum c_n z^n$ converges if |z| < R, and diverges if |z| > R.

Proof Put $a_n = c_n z^n$, and apply the root test:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = |z| \limsup_{n\to\infty} \sqrt[n]{|c_n|} = \frac{|z|}{R}.$$

Note: R is called the radius of convergence of $\sum c_n z^n$

3.40 Examples

- (a) The series $\sum n^n z^n$ has R = 0.
- apply than the root test.) (b) The series $\sum_{n=1}^{\infty} has R = +\infty$. (In this case the ratio test is easier to