A Plaidoyer for Boolean Algebra

Helmut Knaust

Department of Mathematical Sciences
The University of Texas at El Paso
hknaust@utep.edu

San Diego CA
January 11, 2013

I propose that the basics of Boolean Algebra become a part of the standard Introduction to Proof course.

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.
- Boolean Algebra provides a manageable and complete example of an axiomatic system.

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.
- Boolean Algebra provides a manageable and complete example of an axiomatic system.
- Boolean Algebra is abstract.

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.
- Boolean Algebra provides a manageable and complete example of an axiomatic system.
- Boolean Algebra is abstract.
- Boolean Algebra levels the playing field - students usually have had no prior exposure to Boolean Algebra.

How to integrate Boolean Algebra into the course?

- I use a "Moore-style theorem sequence", leading to the finite version of Marshall Stone's Representation Theorem for Boolean Algebras.

How to integrate Boolean Algebra into the course?

- I use a "Moore-style theorem sequence", leading to the finite version of Marshall Stone's Representation Theorem for Boolean Algebras.
- I do not lecture on Boolean Algebra; instead the problems are part of the written homework assigned throughout the semester.

George Boole (1815-1864)

Edward V. Huntington (1874-1952)

The Axiomatic System

A Boolean Algebra is a set \mathcal{B} together with two "connectives" \sqcap and \sqcup satisfying the following properties:

- Closure Laws:
(1) If A and B are two elements in \mathcal{B}, then $A \sqcap B$ is also an element in \mathcal{B}.
(2) If A and B are two elements in \mathcal{B}, then $A \sqcup B$ is also an element in \mathcal{B}.

The Axiomatic System

A Boolean Algebra is a set \mathcal{B} together with two "connectives" \sqcap and \sqcup satisfying the following properties:

- Closure Laws:
(1) If A and B are two elements in \mathcal{B}, then $A \sqcap B$ is also an element in \mathcal{B}.
(2) If A and B are two elements in \mathcal{B}, then $A \sqcup B$ is also an element in \mathcal{B}.
- Commutative Laws:
(1) $A \sqcap B=B \sqcap A$ for all elements A and B in \mathcal{B}.
(2) $A \sqcup B=B \sqcup A$ for all elements A and B in \mathcal{B}.

The Axiomatic System II

- Distributive Laws:
(1) $A \sqcap(B \sqcup C)=(A \sqcap B) \sqcup(A \sqcap C)$ for all elements A, B and C in \mathcal{B}.
(2) $A \sqcup(B \sqcap C)=(A \sqcup B) \sqcap(A \sqcup C)$ for all elements A, B and C in \mathcal{B}.

The Axiomatic System II

- Distributive Laws:
(1) $A \sqcap(B \sqcup C)=(A \sqcap B) \sqcup(A \sqcap C)$ for all elements A, B and C in \mathcal{B}.
(2) $A \sqcup(B \sqcap C)=(A \sqcup B) \sqcap(A \sqcup C)$ for all elements A, B and C in \mathcal{B}.
- Associative Laws:
(1) $A \sqcap(B \sqcap C)=(A \sqcap B) \sqcap C$ for all elements A, B and C in \mathcal{B}.
(2) $A \sqcup(B \sqcup C)=(A \sqcup B) \sqcup C \quad$ for all elements A, B and C in \mathcal{B}.

The Axiomatic System II

- Distributive Laws:
(1) $A \sqcap(B \sqcup C)=(A \sqcap B) \sqcup(A \sqcap C)$ for all elements A, B and C in \mathcal{B}.
(2) $A \sqcup(B \sqcap C)=(A \sqcup B) \sqcap(A \sqcup C)$ for all elements A, B and C in \mathcal{B}.
- Associative Laws:
(1) $A \sqcap(B \sqcap C)=(A \sqcap B) \sqcap C$ for all elements A, B and C in \mathcal{B}.
(2) $A \sqcup(B \sqcup C)=(A \sqcup B) \sqcup C \quad$ for all elements A, B and C in \mathcal{B}.
- Note: The Associative Laws can be deduced from the other five Boolean Algebra Laws.

The Axiomatic System III

- Identity Laws:

There are elements $N \in \mathcal{B}$ (called the null element) and $O \in \mathcal{B}$ (the one element) such that
(1) $A \sqcap N=N$ and $A \sqcap O=A$ for all elements A in \mathcal{B}.
(2) $A \sqcup O=O$ and $A \sqcup N=A$ for all elements A in \mathcal{B}.

The Axiomatic System III

- Identity Laws:

There are elements $N \in \mathcal{B}$ (called the null element) and
$O \in \mathcal{B}$ (the one element) such that
(1) $A \sqcap N=N$ and $A \sqcap O=A$ for all elements A in \mathcal{B}.
(2) $A \sqcup O=O$ and $A \sqcup N=A$ for all elements A in \mathcal{B}.

- Complement Law:

For every element A in \mathcal{B} there is an element B in \mathcal{B} such that $A \sqcap B=N$ and $A \sqcup B=O$.

The two classical examples:
(1) Observation: Let X be an arbitrary set. Then its power set $\mathcal{P}(X)$ with the connectives \cap (in the role of \sqcap) and \cup (in the role of \sqcup) forms a Boolean Algebra.

The two classical examples:
(1) Observation: Let X be an arbitrary set. Then its power set $\mathcal{P}(X)$ with the connectives \cap (in the role of \sqcap) and \cup (in the role of \sqcup) forms a Boolean Algebra.
(2) Problem: Show that

$$
\mathcal{S}_{1}=\{P \wedge \neg P ; P, \neg P ; P \vee \neg P\}
$$

forms a Boolean Algebra (with \wedge and \vee). \mathcal{S}_{1} is called the "Boolean Algebra generated by the free statement P ".

The two classical examples:

(1) Observation: Let X be an arbitrary set. Then its power set $\mathcal{P}(X)$ with the connectives \cap (in the role of Π) and \cup (in the role of \sqcup) forms a Boolean Algebra.
(2) Problem: Show that

$$
\mathcal{S}_{1}=\{P \wedge \neg P ; P, \neg P ; P \vee \neg P\}
$$

forms a Boolean Algebra (with \wedge and \vee). \mathcal{S}_{1} is called the "Boolean Algebra generated by the free statement P ".
(3) Problem: Find the Boolean Algebra \mathcal{S}_{2} generated by two free statements P and Q. How many elements does \mathcal{S}_{2} have?

A third elementary example:

For a natural number n, let \mathcal{D}_{n} denote the set of the divisors of
n. For example, $\mathcal{D}_{42}=\{1,2,3,6,7,14,21,42\}$ and
$\mathcal{D}_{12}=\{1,2,3,4,6,12\}$. For $m, n \in \mathbb{N}$ let $m \sqcap n$ denote the greatest common divisor of n and m, and $m \sqcup n$ their least common multiple. For instance $6 \sqcap 4=2$ and $6 \sqcup 4=12$. It turns out that \mathcal{D}_{42} with these two operations \sqcap and \sqcup forms a Boolean Algebra, while \mathcal{D}_{12} does not.
(9) Problem: Verify the Boolean Algebra Laws for \mathcal{D}_{42}.
(6) Problem: Show that \mathcal{D}_{12} does not form a Boolean Algebra.
(0) Problem: Conjecture for which values of n the set \mathcal{D}_{n} forms a Boolean Algebra.

The topic of Boolean Algebra can be revisited when the course "covers" partial orders:
(7) Problem: Consider the relation " \preceq " on a Boolean Algebra \mathcal{B} defined by

$$
A \preceq B \quad \Leftrightarrow \quad A \sqcup B=B
$$

for $A, B \in \mathcal{B}$. Prove that \preceq is reflexive, anti-symmetric and transitive.
(8) Problem: Consider the Boolean Algebra \mathcal{S}_{1}. Draw a Hasse diagram for \mathcal{S}_{1} endowed with the partial order \preceq.

The crucial definition needed to lead to the representation theorem for finite Boolean Algebras is the following:

Let \mathcal{B} be a Boolean Algebra with null-element N, partially ordered by \preceq. We say that $A \in \mathcal{B}$ is an ATOM of \mathcal{B} if N is an immediate predecessor of A.
(9) Problem: Find all atoms of $\mathcal{P}(\{1,2,3,4\})$.
(10) Problem: Find all atoms of \mathcal{D}_{42}.
(1) Problem: Find a Boolean Algebra with 8 elements that is a subset of $\mathcal{P}(\{1,2,3,4\})$, but not the power set of a three-element subset of $\{1,2,3,4\}$, then find its atoms and draw its Hasse diagram.

A sequence of four more problems studying atoms in a Boolean Algebra is needed before students are ready for the "big theorem" at the end of the semester.

Marshall H. Stone (1903-1989)

Let \mathcal{B} be a finite Boolean Algebra with k atoms for some $k \in \mathbb{N}$, and let \mathcal{A} denote the power set of the set of all atoms of \mathcal{B}. Let

$$
\alpha(B)=\{\boldsymbol{A} \in \mathcal{B} \mid \boldsymbol{A} \preceq B \text { and } A \text { is an atom of } \mathcal{B}\} .
$$

Let \mathcal{B} be a finite Boolean Algebra with k atoms for some $k \in \mathbb{N}$, and let \mathcal{A} denote the power set of the set of all atoms of \mathcal{B}. Let

$$
\alpha(B)=\{A \in \mathcal{B} \mid A \preceq B \text { and } A \text { is an atom of } \mathcal{B}\} .
$$

(1) Problem: Show that the function $\alpha: \mathcal{B} \rightarrow \mathcal{A}$ is a bijection.

Let \mathcal{B} be a finite Boolean Algebra with k atoms for some $k \in \mathbb{N}$, and let \mathcal{A} denote the power set of the set of all atoms of \mathcal{B}.
Let

$$
\alpha(B)=\{A \in \mathcal{B} \mid A \preceq B \text { and } A \text { is an atom of } \mathcal{B}\} .
$$

(12) Problem: Show that the function $\alpha: \mathcal{B} \rightarrow \mathcal{A}$ is a bijection.
(13) Problem: \mathcal{B} has 2^{k} elements.

Let \mathcal{B} be a finite Boolean Algebra with k atoms for some $k \in \mathbb{N}$, and let \mathcal{A} denote the power set of the set of all atoms of \mathcal{B}.
Let

$$
\alpha(B)=\{A \in \mathcal{B} \mid A \preceq B \text { and } A \text { is an atom of } \mathcal{B}\} .
$$

(12) Problem: Show that the function $\alpha: \mathcal{B} \rightarrow \mathcal{A}$ is a bijection.
(13) Problem: \mathcal{B} has 2^{k} elements.
(44) Problem: Show that the identities $\alpha\left(B \sqcup B^{\prime}\right)=\alpha(B) \cup \alpha\left(B^{\prime}\right)$ and $\alpha\left(B \sqcap B^{\prime}\right)=\alpha(B) \cap \alpha\left(B^{\prime}\right)$ hold for all $B, B^{\prime} \in \mathcal{B}$.
(15) Problem: Additionally, $\alpha(N)=\emptyset$ and $\alpha(O)$ is the set of all atoms of \mathcal{B}.

References:

- R.L. Goodstein, Boolean Algebra. Dover Pub., 2007.
- Edward V. Huntington, Sets of Independent Postulates for the Algebra of Logic. Transactions of the American Mathematical Society 5 (1904), pp. 288-309.
- Projektgruppe Fernstudium an der Universität Bielefeld, Mathematisches Vorsemester. Springer-Verlag, 1974.
- Marshall H. Stone, The Theory of Representation for Boolean Algebras. Transactions of the American Mathematical Society 40 (1936), pp. 37-111.
- J.E. Whitesitt, Boolean Algebra and Its Applications. Dover Pub., 1995

The complete Boolean Algebra theorem sequence is availabłe at helmut.knaust.info/presentations/BA.pdf

