A Plaidoyer for Boolean Algebra

Helmut Knaust

Department of Mathematical Sciences The University of Texas at El Paso

hknaust@utep.edu

San Diego CA January 11, 2013

A Plaidoyer for Boolean Algebra		
Introduction		
Plaidoyer		

I propose that the basics of Boolean Algebra become a part of the standard *Introduction to Proof* course.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Benefits

Benefits

• "Sets" and "Logic", the two classical examples in Boolean Algebra, are **main topics** in an *Introduction to Proof* course.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Benefits

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are **main topics** in an *Introduction to Proof* course.
- Boolean Algebra provides a manageable and complete example of an **axiomatic system**.

Introduction

Benefits

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are **main topics** in an *Introduction to Proof* course.
- Boolean Algebra provides a manageable and complete example of an **axiomatic system**.
- Boolean Algebra is **abstract**.

Introduction

Benefits

Benefits

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are **main topics** in an *Introduction to Proof* course.
- Boolean Algebra provides a manageable and complete example of an **axiomatic system**.
- Boolean Algebra is **abstract**.
- Boolean Algebra levels the playing field students usually have had **no prior exposure** to Boolean Algebra.

A Plaidoyer for Boolean Algebra		
Introduction		
How to?		

How to integrate Boolean Algebra into the course?

• I use a "Moore-style theorem sequence", leading to the finite version of *Marshall Stone*'s Representation Theorem for Boolean Algebras.

A Plaidoyer for Boolean Algebra		
Introduction		
How to?		

How to integrate Boolean Algebra into the course?

- I use a "**Moore-style theorem sequence**", leading to the finite version of *Marshall Stone*'s Representation Theorem for Boolean Algebras.
- I do not lecture on Boolean Algebra; instead the problems are part of the written homework assigned throughout the semester.

The axiomatic system

Introduction

George Boole (1815–1864)

Edward V. Huntington (1874–1952)

・ロト ・回ト ・ヨト ・ヨ

The Axiomatic System

A *Boolean Algebra* is a set \mathcal{B} together with two "connectives" \sqcap and \sqcup satisfying the following properties:

Closure Laws:

- If A and B are two elements in \mathcal{B} , then $A \sqcap B$ is also an element in \mathcal{B} .
- If A and B are two elements in \mathcal{B} , then $A \sqcup B$ is also an element in \mathcal{B} .

The axiomatic system

Axioms

The Axiomatic System

A *Boolean Algebra* is a set \mathcal{B} together with two "connectives" \sqcap and \sqcup satisfying the following properties:

Closure Laws:

- If A and B are two elements in \mathcal{B} , then $A \sqcap B$ is also an element in \mathcal{B} .
- 2 If A and B are two elements in \mathcal{B} , then $A \sqcup B$ is also an element in \mathcal{B} .

Commutative Laws:

- $A \sqcap B = B \sqcap A$ for all elements A and B in \mathcal{B} .
- 2 $A \sqcup B = B \sqcup A$ for all elements A and B in \mathcal{B} .

The Axiomatic System II

Distributive Laws:

- **()** $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements A, B and C in \mathcal{B} .
- 2 $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A, B and C in \mathcal{B} .

æ

The Axiomatic System II

• Distributive Laws:

- $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements *A*, *B* and *C* in *B*.
- 2 $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A, B and C in B.
- Associative Laws:

 - 2 $A \sqcup (B \sqcup C) = (A \sqcup B) \sqcup C$ for all elements A, B and C in B.

The Axiomatic System II

Distributive Laws:

- **1** $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements A, B and C in \mathcal{B} .
- 2 $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A. B and C in \mathcal{B} .
- Associative Laws:
 - 2 $A \sqcup (B \sqcup C) = (A \sqcup B) \sqcup C$ for all elements A, B and C in B.
- Note: The Associative Laws can be deduced from the other five Boolean Algebra Laws.

э

The axiomatic system

Axioms

The Axiomatic System III

Identity Laws:

There are elements $N \in \mathcal{B}$ (called the *null element*) and $O \in \mathcal{B}$ (the *one element*) such that

- **()** $A \sqcap N = N$ and $A \sqcap O = A$ for all elements A in \mathcal{B} .
- 2 $A \sqcup O = O$ and $A \sqcup N = A$ for all elements A in B.

The axiomatic system

Axioms

The Axiomatic System III

Identity Laws:

There are elements $N \in \mathcal{B}$ (called the *null element*) and $O \in \mathcal{B}$ (the *one element*) such that

- 2 $A \sqcup O = O$ and $A \sqcup N = A$ for all elements A in \mathcal{B} .

Complement Law:

For every element *A* in *B* there is an element *B* in *B* such that $A \sqcap B = N$ and $A \sqcup B = O$.

The two classical examples:

Observation: Let X be an arbitrary set. Then its power set P(X) with the connectives ∩ (in the role of □) and ∪ (in the role of □) forms a Boolean Algebra.

The two classical examples:

- Observation: Let X be an arbitrary set. Then its power set P(X) with the connectives ∩ (in the role of ⊓) and ∪ (in the role of ⊔) forms a Boolean Algebra.
- Problem: Show that

$$\mathcal{S}_1 = \{ \boldsymbol{P} \land \neg \boldsymbol{P}; \ \boldsymbol{P}, \ \neg \boldsymbol{P}; \ \boldsymbol{P} \lor \neg \boldsymbol{P} \}$$

forms a Boolean Algebra (with \land and \lor). S_1 is called the "Boolean Algebra generated by the free statement P".

The two classical examples:

Observation: Let X be an arbitrary set. Then its power set P(X) with the connectives ∩ (in the role of ⊓) and ∪ (in the role of ⊔) forms a Boolean Algebra.

Problem: Show that

$$\mathcal{S}_1 = \{ \boldsymbol{P} \land \neg \boldsymbol{P}; \ \boldsymbol{P}, \ \neg \boldsymbol{P}; \ \boldsymbol{P} \lor \neg \boldsymbol{P} \}$$

forms a Boolean Algebra (with \land and \lor). S_1 is called the "Boolean Algebra generated by the free statement P".

Problem: Find the Boolean Algebra S₂ generated by two free statements P and Q. How many elements does S₂ have?

A third example

A third elementary example:

For a natural number *n*, let \mathcal{D}_n denote the set of the divisors of *n*. For example, $\mathcal{D}_{42} = \{1, 2, 3, 6, 7, 14, 21, 42\}$ and $\mathcal{D}_{12} = \{1, 2, 3, 4, 6, 12\}$. For $m, n \in \mathbb{N}$ let $m \sqcap n$ denote the greatest common divisor of *n* and *m*, and $m \sqcup n$ their least common multiple. For instance $6 \sqcap 4 = 2$ and $6 \sqcup 4 = 12$. It turns out that \mathcal{D}_{42} with these two operations \sqcap and \sqcup forms a Boolean Algebra, while \mathcal{D}_{12} does **not**.

- **9 Problem:** Verify the Boolean Algebra Laws for \mathcal{D}_{42} .
- **9 Problem:** Show that \mathcal{D}_{12} does not form a Boolean Algebra.
- Solution **Problem:** Conjecture for which values of *n* the set \mathcal{D}_n forms a Boolean Algebra.

・ロット 雪マ キロマ

The topic of Boolean Algebra can be revisited when the course "covers" partial orders:

Problem: Consider the relation "∠" on a Boolean Algebra B defined by

$$A \preceq B \quad \Leftrightarrow \quad A \sqcup B = B$$

for $A, B \in \mathcal{B}$. Prove that \leq is reflexive, anti-symmetric and transitive.

Problem: Consider the Boolean Algebra S₁. Draw a Hasse diagram for S₁ endowed with the partial order ∠.

The crucial definition needed to lead to the representation theorem for finite Boolean Algebras is the following:

Let \mathcal{B} be a Boolean Algebra with null-element N, partially ordered by \leq . We say that $A \in \mathcal{B}$ is an ATOM of \mathcal{B} if N is an immediate predecessor of A.

- **Problem:** Find all atoms of $\mathcal{P}(\{1, 2, 3, 4\})$.
- **Problem:** Find all atoms of \mathcal{D}_{42} .
- Problem: Find a Boolean Algebra with 8 elements that is a subset of P({1,2,3,4}), but not the power set of a three-element subset of {1,2,3,4}, then find its atoms and draw its Hasse diagram.

Finite Boolean Algebras

A sequence of four more problems studying atoms in a Boolean Algebra is needed before students are ready for the "big theorem" at the end of the semester.

Marshall H. Stone (1903–1989)

 $\alpha(B) = \{ A \in \mathcal{B} \mid A \preceq B \text{ and } A \text{ is an atom of } \mathcal{B} \}.$

$$\alpha(B) = \{ A \in \mathcal{B} \mid A \leq B \text{ and } A \text{ is an atom of } \mathcal{B} \}.$$

Problem: Show that the function $\alpha : \mathcal{B} \to \mathcal{A}$ is a bijection.

$$\alpha(B) = \{ A \in \mathcal{B} \mid A \preceq B \text{ and } A \text{ is an atom of } \mathcal{B} \}.$$

Problem: Show that the function α : B → A is a bijection.
Problem: B has 2^k elements.

$$\alpha(B) = \{ A \in \mathcal{B} \mid A \preceq B \text{ and } A \text{ is an atom of } \mathcal{B} \}.$$

- **Problem:** Show that the function $\alpha : \mathcal{B} \to \mathcal{A}$ is a bijection.
- **Problem:** \mathcal{B} has 2^k elements.
- **Problem:** Show that the identities $\alpha(B \sqcup B') = \alpha(B) \cup \alpha(B')$ and $\alpha(B \sqcap B') = \alpha(B) \cap \alpha(B')$ hold for all $B, B' \in \mathcal{B}$.
- **Problem:** Additionally, $\alpha(N) = \emptyset$ and $\alpha(O)$ is the set of all atoms of \mathcal{B} .

References:

- R.L. Goodstein, *Boolean Algebra*. Dover Pub., 2007.
- Edward V. Huntington, *Sets of Independent Postulates for the Algebra of Logic*. Transactions of the American Mathematical Society 5 (1904), pp. 288-309.
- Projektgruppe Fernstudium an der Universität Bielefeld, *Mathematisches Vorsemester*. Springer-Verlag, 1974.
- Marshall H. Stone, *The Theory of Representation for Boolean Algebras*. Transactions of the American Mathematical Society 40 (1936), pp. 37-111.
- J.E. Whitesitt, Boolean Algebra and Its Applications. Dover Pub., 1995

The complete Boolean Algebra theorem sequence is available at helmut.knaust.info/presentations/BA.pdf