Introduction to MATLAB

Kylee Greenwood and Ashley Manns

February 28, 2015

1 Introduction

MATLAB, which stands for "matrix laboratory," is a programming language and application for scientific computing. MATLAB is typically used for Linear Algebra, data analysis, and graphing. Matrices are used as the fundamental data type, which makes up a large part of MATLAB's usefulness. Octave is the free version of MATLAB and has a lot of the same capabilities.

2 Getting Started

Basic Commands:	Vectors:	Matrix Operations:
- Addition $2+2$	- Vector $\mathrm{x}=\left[\begin{array}{llllll} 1 & 2 & 3 & 4 & 5 \end{array}\right]$	- 2x2 Matrix $\mathrm{A}=[24 ; 68]$
- Multiplication $3 * 6$	- Squaring x. ${ }^{2}$	- Entry $\mathrm{A}(2,1)$
- Division 32/4		- Row A(1,:)

- Multiplication A * 4

3 Helpful Tips

- lowercase Unlike Mathematica, MATLAB uses only lowercase letters when typing commands. For example: If you're finding of the determinate of a matrix, you would type $\operatorname{det}(\mathrm{A})$, NOT $\operatorname{Det}(\mathrm{A})$.
- Error Message If you would happen to make a mistake, MATLAB will show an error message telling you the mistake you made. Also, if you click the error message, it will take you to a help menu.
- Semicolon Using a semicolon after a line of code will hide the output.

4 Linear Algebra

- Zero Matrix Creates a matrix containing all zeros of designated size. Command: zeros(3,2)
- Identity Matrix Creates Identity Matrix of designated size. Command: eye(4)
- Matrix Manipulation

Switching rows of a matrix. Command: $\mathrm{A}([1,2],:)=\mathrm{A}([2,1],:)$ Switching columns of a matrix. Command: $\mathrm{A}([1,2],[2,1])$

- Determinant Finds the determinant of a matrix. Command: $\operatorname{det}(\mathrm{A})$
- Rank Finds the rank of a matrix. Command: $\operatorname{rank}(\mathrm{A})$

5 Linear Systems of Equations

Given the system of linear equations:

$$
\left\{\begin{array}{c}
x-3 y+3 z=-4 \\
2 x+3 y-z=15 \\
4 x-3 y-z=19
\end{array} \Rightarrow\left[\begin{array}{rrr}
1 & -3 & 3 \\
2 & 3 & -1 \\
4 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-4 \\
15 \\
19
\end{array}\right]\right.
$$

To solve in MATLAB enter the code:
$\mathrm{B}=\left[\begin{array}{llllllll}1 & -3 & 3 ; & 2 & 3 & -1 ; & 4 & -3\end{array}\right]$
$\mathrm{v}=[-4 ; 15 ; 19]$
$u=B \backslash v$
To check solution: B*u

Row Reduced Echelon Form

$$
C=\left[\begin{array}{rrrr}
1 & -3 & 3 & -4 \\
2 & 3 & -1 & 15 \\
4 & -3 & -1 & 19
\end{array}\right]
$$

Code: C=[1 -3 3 -4; $23-115 ; 4$-3 -119$]$ rref (C)

6 Graphing

6.1 Plot Curves in 2D

Method 1
Set domain window, enter function, then plot.

```
Code: x=[ -2*Pi: 0.01 : 2*Pi];
    y=cos(x);
    plot (x,y)
```

Method 2
Include code for domain in the same line as function.

```
Code: x = [-2*Pi: 0.01: 2*Pi]; plot(x,cos(x))
```


6.2 Labels

After entering code from above, add the following to add a title and axis labels.

```
Code: title('Cosine Function')
    xlabel('x-axis')
    ylabel('y-axis')
```


6.3 Combining Plots

Plotting more than one function on the same plane.
Code: $x=[0: 1: 10] ;$
plot(x, x.^2, x, x.^3)

