
Introduction to Mizar

James Bilbe & Nichole Orozco

Mizar is a proof checking software program. The aim of computer proof checking software like

Mizar is not to find proofs, but to verify them. Currently, checking a proof by computer is done

by taking a known mathematical proof and entering it into the special language recognized by a

proof verifier program, and then running the verifier to hopefully obtain no errors. The two main

challenges in using a proof checker today are the time needed to learn the syntax and general

usage of the system and the time needed to formalize a proof in the system even when the user is

already proficient with it. We hope to provide you with a basic guide to getting started in Mizar.

(Our goal is to familiarize the reader with the system, not to become a proficient user).

I. Getting Started with Mizar

Step 1: Go to mizar.org

Step 2: Click on DOWNLOAD

Step 3: Click link

Step 4: Click link

Step 5: Create a folder called Temp in Local Disk(C:\)

Step 6: From Downloads window drag Mizar to Temp folder

Step 7: Double click mizar-8.1.02_5.22.1191-i386-win32.exe

Step 8: Click on install.bat in Temp folder then press ENTER

II. Creating and Running an Article

Step 1: Go to Control Panel\System\Environment Variable

Step 2: Add the C:\Mizar to the System PATH variable. Also add MIZFILES environment

variable with value C:\Mizar

Step 3: Create a folder in Local Disk(C:\) with any name

Step 4: Create 3 folders within this folder with the following names

 ·dict ·prel · text

Step 5: Create a Mizar article in NotePad and save it in the text folder with a .miz extention.

 (For example an article containing the basic subset proofs might be saved as subsets.miz)

Step 6: Start an MS-DOS prompt and make C:\Work the current directory.

Step 7: Execute command: C:\Work>mizf text\example.miz

III. Verifying a Proof
Basic Properties of Subsets Theorem: In normal notation

1. Inclusion of Intersection: For all sets A and B,

(a) A ∩ B ⊆ A and (b) A ∩ B ⊆ B.

2. Inclusion in Union: For all sets A and B,

(a) A ⊆ A ∪ B and (b) B ⊆ A ∪ B.

3. Transitive Property of Subsets: For all sets A, B, and C,

if A ⊆ B and B ⊆ C, then A ⊆ C.

Proof:

1(a). Suppose A and B are any sets and suppose x is any element of A ∩ B. Then x ∈ A

and x ∈ B by definition of intersection. So, x ∈ A.

1(b). Suppose A and B are any sets and suppose x is any element of A ∩ B. Then x ∈ A

and x ∈ B by definition of intersection. So, x ∈ B.

2(a). Suppose A and B are any sets and suppose x is any element of A U B. Then x ∈ A and x ∈

B

by definition of union. So, x ∈ A.

2(b). Suppose A and B are any sets and suppose x is any element of A U B. Then x ∈ A and x ∈

B

by definition of union. So, x ∈ B.

3. Suppose A, B, and C are any sets and suppose A ⊆ B and B ⊆ C. To show that A ⊆ C,

we must show that every element in A is in C. To this end we note that if x ∈ A, then

x ∈ B (because A ⊆ B) and therefore x ∈ C (because B ⊆ C). Hence A ⊆ C. 

Basic Properties of Subsets Theorem: In Mizar notation
environ

 vocabularies SUBSET_1, XBOOLE_0, TARSKI, ZFMISC_1;
 notations TARSKI, XBOOLE_0, SUBSET_1, ZFMISC_1;
 constructors TARSKI, SUBSET_1;
 registrations SUBSET_1;
 requirements BOOLE;
 theorems TARSKI, SUBSET_1, ZFMISC_1;

begin

:: This file contains statements which are obvious for Mizar checker if
:: "requirements SUBSET" is included in the environment description
:: of an article. They are published for testing purposes only.
:: Users should use appropriate requirements instead of referencing
:: to these theorems.
:: Some of these items need also "requirements BOOLE" for proper work.

theorem
 for a, b being set st a in b holds a is Element of b by SUBSET_1:def 1;

theorem
 for a, b being set st a is Element of b & b is non empty holds a in b
 by SUBSET_1:def 1;

theorem Th3:
 for a, b being set holds a is Subset of b iff a c= b
proof
 let a, b be set;
 hereby
 assume a is Subset of b;
 then a in bool b by SUBSET_1:def 1;
 hence a c= b by ZFMISC_1:def 1;
 end;
 assume a c= b;
 then a in bool b by ZFMISC_1:def 1;
 hence thesis by SUBSET_1:def 1;
end;

theorem
 for a, b, c being set st a in b & b is Subset of c holds a is Element of c
proof

 let a, b, c be set;
 assume that
A1: a in b and
A2: b is Subset of c;
 b c= c by A2,Th3;
 then a in c by A1,TARSKI:def 3;
 hence thesis by SUBSET_1:def 1;
end;

theorem
 for a, b, c being set st a in b & b is Subset of c holds c is non empty;

IV. Pros and Cons of Mizar?

Pros: One benefit of proof checking systems like Mizar is that, in some instances, it is required

to verify a proof as Kam (2007) cited:

The Flyspeck Project by Dr. Thomas Hales was one of the first required applications of

the proof checker idea. Hales’ proof of Kepler's conjecture in 1998, the statement that the

“grocery store” stacking of spheres is the optimal way to conserve volume, required

computer verification in parts of the proof. The referee committee checked much of it by

hand, but due to the nature of the proof, it was time-consuming. After five years (not of

actual checking, but overall time), the leader, G. Fejes Tóth, would only say that he was

“99% certain” that the proof was correct” (Hales, 2005, p. 1). In this instance, having a

computer verify the entire proof instead would have produced quicker, more satisfactory

results.

The syntax of Mizar is less ambiguous compared to the natural language. There are no variations

on the meaning of words. For example, when writing a proof in natural language, one writer

might write the word ‘therefore’ and another author might use ‘hence’. While in natural language

these words have the same meaning, in the Mizar syntax, these words can only be used in

specific situations.

Cons: Time required to simply learn the language, syntax, and formalization of a proof takes a

considerable amount of time. Kam (2007) logged his time spent at approximately 89 hours.

Mizar system does not tell you what the errors are when found, it simply provides a general error

code that may or may not be specific to your proof.

A user interface does not exist (not user friendly). Even though Mizar has been around since

1975.

References:

Kam,R.(2007). Master’s Projects. Case Studies in Proof Checking.

