
Maxima Manual
Version 5.35.1

Maxima is a computer algebra system, implemented in Lisp.

Maxima is derived from the Macsyma system, developed at MIT in the years 1968 through
1982 as part of Project MAC. MIT turned over a copy of the Macsyma source code to the
Department of Energy in 1982; that version is now known as DOE Macsyma. A copy of DOE
Macsyma was maintained by Professor William F. Schelter of the University of Texas from
1982 until his death in 2001. In 1998, Schelter obtained permission from the Department
of Energy to release the DOE Macsyma source code under the GNU Public License, and
in 2000 he initiated the Maxima project at SourceForge to maintain and develop DOE
Macsyma, now called Maxima.

i

Short Contents

1 Introduction to Maxima . 1

2 Bug Detection and Reporting . 7

3 Help . 9

4 Command Line . 13

5 Data Types and Structures . 35

6 Expressions . 73

7 Operators. 99

8 Evaluation . 119

9 Simplification . 131

10 Mathematical Functions . 145

11 Maximas Database. 173

12 Plotting . 195

13 File Input and Output . 225

14 Polynomials . 241

15 Special Functions . 269

16 Elliptic Functions . 293

17 Limits . 299

18 Differentiation . 301

19 Integration . 313

20 Equations . 335

21 Differential Equations. 353

22 Numerical. 357

23 Matrices and Linear Algebra . 373

24 Affine. 397

25 itensor . 401

26 ctensor . 435

27 atensor . 463

28 Sums, Products, and Series . 467

29 Number Theory . 487

30 Symmetries . 503

31 Groups . 521

32 Runtime Environment . 523

33 Miscellaneous Options . 527

34 Rules and Patterns . 531

35 Sets . 547

ii Maxima 5.35.1 Manual

36 Function Definition . 573

37 Program Flow . 601

38 Debugging . 615

39 alt-display . 623

40 asympa . 629

41 augmented lagrangian . 631

42 Bernstein . 633

43 bode . 635

44 clebsch gordan . 637

45 cobyla . 639

46 contrib ode . 643

47 descriptive . 651

48 diag . 681

49 distrib . 687

50 draw . 725

51 drawdf . 793

52 dynamics . 797

53 ezunits . 811

54 f90. 827

55 finance . 829

56 fractals. 835

57 ggf. 839

58 graphs . 841

59 grobner . 871

60 impdiff . 879

61 interpol . 881

62 lapack . 889

63 lbfgs . 897

64 lindstedt. 903

65 linearalgebra . 905

66 lsquares . 919

67 minpack . 929

68 makeOrders . 931

69 mnewton . 933

70 numericalio . 935

71 opsubst . 941

72 orthopoly . 943

73 romberg . 955

iii

74 simplex . 959

75 simplification . 963

76 solve rec . 973

77 stats . 977

78 stirling . 995

79 stringproc . 997

80 to poly solve . 1011

81 unit . 1029

82 zeilberger . 1039

A Function and Variable Index . 1043

iv Maxima 5.35.1 Manual

v

Table of Contents

1 Introduction to Maxima . 1

2 Bug Detection and Reporting 7
2.1 Functions and Variables for Bug Detection and Reporting . . 7

3 Help . 9
3.1 Documentation. 9
3.2 Functions and Variables for Help . 9

4 Command Line . 13
4.1 Introduction to Command Line . 13
4.2 Functions and Variables for Command Line 13
4.3 Functions and Variables for Display . 23

5 Data Types and Structures 35
5.1 Numbers . 35

5.1.1 Introduction to Numbers . 35
5.1.2 Functions and Variables for Numbers 35

5.2 Strings . 42
5.2.1 Introduction to Strings . 42
5.2.2 Functions and Variables for Strings 42

5.3 Constants . 45
5.3.1 Functions and Variables for Constants 45

5.4 Lists . 48
5.4.1 Introduction to Lists . 48
5.4.2 Functions and Variables for Lists 48

5.5 Arrays . 60
5.5.1 Functions and Variables for Arrays 60

5.6 Structures . 69
5.6.1 Introduction to Structures . 69
5.6.2 Functions and Variables for Structures 69

6 Expressions . 73
6.1 Introduction to Expressions . 73
6.2 Nouns and Verbs . 73
6.3 Identifiers . 74
6.4 Inequality . 75
6.5 Functions and Variables for Expressions 75

vi Maxima 5.35.1 Manual

7 Operators . 99
7.1 Introduction to operators . 99
7.2 Arithmetic operators . 101
7.3 Relational operators . 105
7.4 Logical operators . 106
7.5 Operators for Equations . 107
7.6 Assignment operators. 109
7.7 User defined operators . 114

8 Evaluation . 119
8.1 Functions and Variables for Evaluation 119

9 Simplification . 131
9.1 Functions and Variables for Simplification 131

10 Mathematical Functions. 145
10.1 Functions for Numbers . 145
10.2 Functions for Complex Numbers . 150
10.3 Combinatorial Functions . 153
10.4 Root, Exponential and Logarithmic Functions 156
10.5 Trigonometric Functions . 162

10.5.1 Introduction to Trigonometric 162
10.5.2 Functions and Variables for Trigonometric 162

10.6 Random Numbers . 170

11 Maximas Database . 173
11.1 Introduction to Maximas Database . 173
11.2 Functions and Variables for Properties 173
11.3 Functions and Variables for Facts . 183
11.4 Functions and Variables for Predicates 190

12 Plotting . 195
12.1 Introduction to Plotting . 195
12.2 Plotting Formats . 195
12.3 Functions and Variables for Plotting 196
12.4 Plotting Options . 213
12.5 Gnuplot Options . 220
12.6 Gnuplot pipes Format Functions . 223

13 File Input and Output 225
13.1 Comments . 225
13.2 Files . 225
13.3 Functions and Variables for File Input and Output 226
13.4 Functions and Variables for TeX Output 233
13.5 Functions and Variables for Fortran Output 238

vii

14 Polynomials . 241
14.1 Introduction to Polynomials . 241
14.2 Functions and Variables for Polynomials 241

15 Special Functions . 269
15.1 Introduction to Special Functions . 269
15.2 Bessel Functions . 269
15.3 Airy Functions . 272
15.4 Gamma and factorial Functions . 273
15.5 Exponential Integrals . 285
15.6 Error Function . 286
15.7 Struve Functions . 287
15.8 Hypergeometric Functions . 287
15.9 Parabolic Cylinder Functions. 288
15.10 Functions and Variables for Special Functions 288

16 Elliptic Functions . 293
16.1 Introduction to Elliptic Functions and Integrals 293
16.2 Functions and Variables for Elliptic Functions 294
16.3 Functions and Variables for Elliptic Integrals 296

17 Limits . 299
17.1 Functions and Variables for Limits . 299

18 Differentiation . 301
18.1 Functions and Variables for Differentiation 301

19 Integration . 313
19.1 Introduction to Integration . 313
19.2 Functions and Variables for Integration 313
19.3 Introduction to QUADPACK . 323

19.3.1 Overview . 323
19.4 Functions and Variables for QUADPACK 324

20 Equations . 335
20.1 Functions and Variables for Equations 335

21 Differential Equations 353
21.1 Introduction to Differential Equations 353
21.2 Functions and Variables for Differential Equations 353

viii Maxima 5.35.1 Manual

22 Numerical. 357
22.1 Introduction to fast Fourier transform 357
22.2 Functions and Variables for fast Fourier transform 357
22.3 Functions for numerical solution of equations 360
22.4 Introduction to numerical solution of differential equations

. 363
22.5 Functions for numerical solution of differential equations

. 363

23 Matrices and Linear Algebra 373
23.1 Introduction to Matrices and Linear Algebra 373

23.1.1 Dot . 373
23.1.2 Vectors . 373
23.1.3 eigen . 373

23.2 Functions and Variables for Matrices and Linear Algebra
. 374

24 Affine . 397
24.1 Introduction to Affine . 397
24.2 Functions and Variables for Affine . 397

25 itensor . 401
25.1 Introduction to itensor . 401

25.1.1 New tensor notation . 402
25.1.2 Indicial tensor manipulation 402

25.2 Functions and Variables for itensor . 405
25.2.1 Managing indexed objects . 405
25.2.2 Tensor symmetries . 414
25.2.3 Indicial tensor calculus . 416
25.2.4 Tensors in curved spaces . 420
25.2.5 Moving frames . 423
25.2.6 Torsion and nonmetricity. 426
25.2.7 Exterior algebra . 429
25.2.8 Exporting TeX expressions 432
25.2.9 Interfacing with ctensor . 433
25.2.10 Reserved words . 433

ix

26 ctensor. 435
26.1 Introduction to ctensor . 435
26.2 Functions and Variables for ctensor . 437

26.2.1 Initialization and setup . 437
26.2.2 The tensors of curved space 440
26.2.3 Taylor series expansion. 442
26.2.4 Frame fields . 445
26.2.5 Algebraic classification . 445
26.2.6 Torsion and nonmetricity. 448
26.2.7 Miscellaneous features . 449
26.2.8 Utility functions . 451
26.2.9 Variables used by ctensor 456
26.2.10 Reserved names . 460
26.2.11 Changes . 460

27 atensor . 463
27.1 Introduction to atensor . 463
27.2 Functions and Variables for atensor . 464

28 Sums, Products, and Series 467
28.1 Functions and Variables for Sums and Products 467
28.2 Introduction to Series . 471
28.3 Functions and Variables for Series . 471
28.4 Introduction to Fourier series . 483
28.5 Functions and Variables for Fourier series 483
28.6 Functions and Variables for Poisson series 485

29 Number Theory . 487
29.1 Functions and Variables for Number Theory 487

30 Symmetries . 503
30.1 Introduction to Symmetries . 503
30.2 Functions and Variables for Symmetries 503

30.2.1 Changing bases . 503
30.2.2 Changing representations . 507
30.2.3 Groups and orbits . 508
30.2.4 Partitions . 511
30.2.5 Polynomials and their roots 512
30.2.6 Resolvents . 513
30.2.7 Miscellaneous . 519

31 Groups . 521
31.1 Functions and Variables for Groups . 521

x Maxima 5.35.1 Manual

32 Runtime Environment 523
32.1 Introduction for Runtime Environment 523
32.2 Interrupts . 523
32.3 Functions and Variables for Runtime Environment 523

33 Miscellaneous Options 527
33.1 Introduction to Miscellaneous Options 527
33.2 Share . 527
33.3 Functions and Variables for Miscellaneous Options 527

34 Rules and Patterns . 531
34.1 Introduction to Rules and Patterns . 531
34.2 Functions and Variables for Rules and Patterns 531

35 Sets . 547
35.1 Introduction to Sets . 547

35.1.1 Usage . 547
35.1.2 Set Member Iteration . 549
35.1.3 Bugs . 550
35.1.4 Authors . 551

35.2 Functions and Variables for Sets . 551

36 Function Definition . 573
36.1 Introduction to Function Definition . 573
36.2 Function . 573

36.2.1 Ordinary functions . 573
36.2.2 Array functions . 574

36.3 Macros . 574
36.4 Functions and Variables for Function Definition 578

37 Program Flow . 601
37.1 Lisp and Maxima . 601
37.2 Garbage Collection . 602
37.3 Introduction to Program Flow . 602
37.4 Functions and Variables for Program Flow 603

38 Debugging . 615
38.1 Source Level Debugging . 615
38.2 Keyword Commands . 616
38.3 Functions and Variables for Debugging. 617

39 alt-display. 623
39.1 Introduction to alt-display . 623
39.2 Functions and Variables for alt-display 624

xi

40 asympa . 629
40.1 Introduction to asympa . 629
40.2 Functions and variables for asympa . 629

41 augmented lagrangian 631
41.1 Functions and Variables for augmented lagrangian 631

42 Bernstein . 633
42.1 Functions and Variables for Bernstein 633

43 bode . 635
43.1 Functions and Variables for bode . 635

44 clebsch gordan . 637
44.1 Functions and Variables for clebsch gordan 637

45 cobyla . 639
45.1 Introduction to cobyla . 639
45.2 Functions and Variables for cobyla . 639
45.3 Examples for cobyla . 640

46 contrib ode. 643
46.1 Introduction to contrib ode . 643
46.2 Functions and Variables for contrib ode 645
46.3 Possible improvements to contrib ode 648
46.4 Test cases for contrib ode . 648
46.5 References for contrib ode . 648

47 descriptive . 651
47.1 Introduction to descriptive . 651
47.2 Functions and Variables for data manipulation 653
47.3 Functions and Variables for descriptive statistics 658
47.4 Functions and Variables for statistical graphs 672

48 diag . 681
48.1 Functions and Variables for diag . 681

49 distrib . 687
49.1 Introduction to distrib . 687
49.2 Functions and Variables for continuous distributions 689
49.3 Functions and Variables for discrete distributions 713

xii Maxima 5.35.1 Manual

50 draw . 725
50.1 Introduction to draw . 725
50.2 Functions and Variables for draw . 725

50.2.1 Scenes . 725
50.2.2 Functions . 726
50.2.3 Graphics options . 728
50.2.4 Graphics objects . 770

50.3 Functions and Variables for pictures 785
50.4 Functions and Variables for worldmap 786

50.4.1 Variables and Functions . 787
50.4.2 Graphic objects . 789

51 drawdf . 793
51.1 Introduction to drawdf . 793
51.2 Functions and Variables for drawdf . 793

51.2.1 Functions . 793

52 dynamics. 797
52.1 The dynamics package . 797
52.2 Graphical analysis of discrete dynamical systems 797
52.3 Visualization with VTK . 802

52.3.1 Scene options . 804
52.3.2 Scene objects . 805
52.3.3 Scene object’s options . 806

53 ezunits . 811
53.1 Introduction to ezunits . 811
53.2 Introduction to physical constants . 812
53.3 Functions and Variables for ezunits . 814

54 f90 . 827
54.1 Functions and Variables for f90 . 827

55 finance . 829
55.1 Introduction to finance . 829
55.2 Functions and Variables for finance . 829

56 fractals . 835
56.1 Introduction to fractals . 835
56.2 Definitions for IFS fractals . 835
56.3 Definitions for complex fractals . 836
56.4 Definitions for Koch snowflakes. 837
56.5 Definitions for Peano maps. 837

xiii

57 ggf . 839
57.1 Functions and Variables for ggf . 839

58 graphs . 841
58.1 Introduction to graphs . 841
58.2 Functions and Variables for graphs . 841

58.2.1 Building graphs . 841
58.2.2 Graph properties . 847
58.2.3 Modifying graphs . 863
58.2.4 Reading and writing to files 865
58.2.5 Visualization . 866

59 grobner . 871
59.1 Introduction to grobner . 871

59.1.1 Notes on the grobner package. 871
59.1.2 Implementations of admissible monomial orders in

grobner . 871
59.2 Functions and Variables for grobner 872

59.2.1 Global switches for grobner. 872
59.2.2 Simple operators in grobner 873
59.2.3 Other functions in grobner 874
59.2.4 Standard postprocessing of Groebner Bases 875

60 impdiff . 879
60.1 Functions and Variables for impdiff . 879

61 interpol . 881
61.1 Introduction to interpol. 881
61.2 Functions and Variables for interpol 881

62 lapack . 889
62.1 Introduction to lapack . 889
62.2 Functions and Variables for lapack . 889

63 lbfgs . 897
63.1 Introduction to lbfgs . 897
63.2 Functions and Variables for lbfgs . 897

64 lindstedt . 903
64.1 Functions and Variables for lindstedt 903

65 linearalgebra . 905
65.1 Introduction to linearalgebra . 905
65.2 Functions and Variables for linearalgebra 907

xiv Maxima 5.35.1 Manual

66 lsquares . 919
66.1 Introduction to lsquares . 919
66.2 Functions and Variables for lsquares 919

67 minpack . 929
67.1 Introduction to minpack . 929
67.2 Functions and Variables for minpack 929

68 makeOrders . 931
68.1 Functions and Variables for makeOrders 931

69 mnewton . 933
69.1 Introduction to mnewton . 933
69.2 Functions and Variables for mnewton 933

70 numericalio . 935
70.1 Introduction to numericalio . 935

70.1.1 Plain-text input and output 935
70.1.2 Separator flag values for input 935
70.1.3 Separator flag values for output 935
70.1.4 Binary floating-point input and output 936

70.2 Functions and Variables for plain-text input and output
. 936

70.3 Functions and Variables for binary input and output 938

71 opsubst . 941
71.1 Functions and Variables for opsubst 941

72 orthopoly . 943
72.1 Introduction to orthogonal polynomials 943

72.1.1 Getting Started with orthopoly 943
72.1.2 Limitations . 945
72.1.3 Floating point Evaluation . 947
72.1.4 Graphics and orthopoly . 948
72.1.5 Miscellaneous Functions . 949
72.1.6 Algorithms . 950

72.2 Functions and Variables for orthogonal polynomials 950

73 romberg . 955
73.1 Functions and Variables for romberg 955

xv

74 simplex . 959
74.1 Introduction to simplex . 959

74.1.1 Tests for simplex . 959
74.1.1.1 klee minty . 959
74.1.1.2 NETLIB . 959

74.2 Functions and Variables for simplex 960

75 simplification . 963
75.1 Introduction to simplification . 963
75.2 Package absimp . 963
75.3 Package facexp . 963
75.4 Package functs . 965
75.5 Package ineq . 968
75.6 Package rducon . 970
75.7 Package scifac . 970
75.8 Package sqdnst. 971

76 solve rec . 973
76.1 Introduction to solve rec . 973
76.2 Functions and Variables for solve rec 973

77 stats . 977
77.1 Introduction to stats . 977
77.2 Functions and Variables for inference result 977
77.3 Functions and Variables for stats . 979
77.4 Functions and Variables for special distributions 994

78 stirling . 995
78.1 Functions and Variables for stirling . 995

79 stringproc . 997
79.1 Introduction to string processing . 997
79.2 Functions and Variables for input and output 998
79.3 Functions and Variables for characters 1003
79.4 Functions and Variables for strings 1004

80 to poly solve . 1011
80.1 Functions and Variables for to poly solve 1011

81 unit . 1029
81.1 Introduction to Units . 1029
81.2 Functions and Variables for Units . 1030

xvi Maxima 5.35.1 Manual

82 zeilberger . 1039
82.1 Introduction to zeilberger . 1039

82.1.1 The indefinite summation problem 1039
82.1.2 The definite summation problem 1039
82.1.3 Verbosity levels . 1039

82.2 Functions and Variables for zeilberger 1040
82.3 General global variables . 1041
82.4 Variables related to the modular test 1042

Appendix A Function and Variable Index . . 1043

Chapter 1: Introduction to Maxima 1

1 Introduction to Maxima

Start Maxima with the command "maxima". Maxima will display version information
and a prompt. End each Maxima command with a semicolon. End the session with the
command "quit();". Here’s a sample session:

[wfs@chromium]$ maxima
Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp CMU Common Lisp 19a
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) factor(10!);

8 4 2
(%o1) 2 3 5 7
(%i2) expand ((x + y)^6);

6 5 2 4 3 3 4 2 5 6
(%o2) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i3) factor (x^6 - 1);

2 2
(%o3) (x - 1) (x + 1) (x - x + 1) (x + x + 1)
(%i4) quit();
[wfs@chromium]$

Maxima can search the info pages. Use the describe command to show information
about the command or all the commands and variables containing a string. The question
mark ? (exact search) and double question mark ?? (inexact search) are abbreviations for
describe:

(%i1) ?? integ
0: Functions and Variables for Elliptic Integrals
1: Functions and Variables for Integration
2: Introduction to Elliptic Functions and Integrals
3: Introduction to Integration
4: askinteger (Functions and Variables for Simplification)
5: integerp (Functions and Variables for Miscellaneous Options)
6: integer_partitions (Functions and Variables for Sets)
7: integrate (Functions and Variables for Integration)
8: integrate_use_rootsof (Functions and Variables for Integration)
9: integration_constant_counter (Functions and Variables for

Integration)
10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, ‘all’ or ‘none’: 5 4

-- Function: integerp (<expr>)
Returns ‘true’ if <expr> is a literal numeric integer, otherwise
‘false’.

‘integerp’ returns false if its argument is a symbol, even if the
argument is declared integer.

2 Maxima 5.35.1 Manual

Examples:

(%i1) integerp (0);
(%o1) true
(%i2) integerp (1);
(%o2) true
(%i3) integerp (-17);
(%o3) true
(%i4) integerp (0.0);
(%o4) false
(%i5) integerp (1.0);
(%o5) false
(%i6) integerp (%pi);
(%o6) false
(%i7) integerp (n);
(%o7) false
(%i8) declare (n, integer);
(%o8) done
(%i9) integerp (n);
(%o9) false

-- Function: askinteger (<expr>, integer)
-- Function: askinteger (<expr>)
-- Function: askinteger (<expr>, even)
-- Function: askinteger (<expr>, odd)

‘askinteger (<expr>, integer)’ attempts to determine from the
‘assume’ database whether <expr> is an integer. ‘askinteger’
prompts the user if it cannot tell otherwise, and attempt to
install the information in the database if possible. ‘askinteger
(<expr>)’ is equivalent to ‘askinteger (<expr>, integer)’.

‘askinteger (<expr>, even)’ and ‘askinteger (<expr>, odd)’
likewise attempt to determine if <expr> is an even integer or odd
integer, respectively.

(%o1) true

To use a result in later calculations, you can assign it to a variable or refer to it by its
automatically supplied label. In addition, % refers to the most recent calculated result:

(%i1) u: expand ((x + y)^6);
6 5 2 4 3 3 4 2 5 6

(%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i2) diff (u, x);

5 4 2 3 3 2 4 5
(%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
(%i3) factor (%o2);

5
(%o3) 6 (y + x)

Chapter 1: Introduction to Maxima 3

Maxima knows about complex numbers and numerical constants:

(%i1) cos(%pi);
(%o1) - 1
(%i2) exp(%i*%pi);
(%o2) - 1

Maxima can do differential and integral calculus:

(%i1) u: expand ((x + y)^6);
6 5 2 4 3 3 4 2 5 6

(%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i2) diff (%, x);

5 4 2 3 3 2 4 5
(%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
(%i3) integrate (1/(1 + x^3), x);

2 x - 1
2 atan(-------)

log(x - x + 1) sqrt(3) log(x + 1)
(%o3) - --------------- + ------------- + ----------

6 sqrt(3) 3

Maxima can solve linear systems and cubic equations:

(%i1) linsolve ([3*x + 4*y = 7, 2*x + a*y = 13], [x, y]);
7 a - 52 25

(%o1) [x = --------, y = -------]
3 a - 8 3 a - 8

(%i2) solve (x^3 - 3*x^2 + 5*x = 15, x);
(%o2) [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]

Maxima can solve nonlinear sets of equations. Note that if you don’t want a result
printed, you can finish your command with $ instead of ;.

(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);

3 sqrt(5) + 7 sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------],

2 2

3 sqrt(5) - 7 sqrt(5) - 3
[y = -------------, x = - -----------]]

2 2

Maxima can generate plots of one or more functions:

4 Maxima 5.35.1 Manual

(%i1) plot2d (sin(x)/x, [x, -20, 20])$

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20

s
in

(x
)/

x

x

(%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5], [y, -1.5, 2])$

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -2 0 2 4

y

x

atan(x)
erf(x)

tanh(x)

Chapter 1: Introduction to Maxima 5

(%i3) plot3d (sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2),
[x, -12, 12], [y, -12, 12])$

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

z

sin(sqrt(y
2
+x

2
))/sqrt(y

2
+x

2
)

x

y

z

6 Maxima 5.35.1 Manual

Chapter 2: Bug Detection and Reporting 7

2 Bug Detection and Reporting

2.1 Functions and Variables for Bug Detection and
Reporting

Functionrun testsuite ([options])
Run the Maxima test suite. Tests producing the desired answer are considered
“passes,” as are tests that do not produce the desired answer, but are marked as
known bugs.

run_testsuite takes the following optional keyword arguments

display_all

Display all tests. Normally, the tests are not displayed, unless the test
fails. (Defaults to false).

display_known_bugs

Displays tests that are marked as known bugs. (Default is false).

tests This is a single test or a list of tests that should be run. Each test can
be specified by either a string or a symbol. By default, all tests are run.
The complete set of tests is specified by testsuite_files.

time Display time information. If true, the time taken for each test file is
displayed. If all, the time for each individual test is shown if display_
all is true. The default is false, so no timing information is shown.

For example run_testsuite(display_known_bugs = true, tests=[rtest5]) runs
just test rtest5 and displays the test that are marked as known bugs.

run_testsuite(display_all = true, tests=["rtest1", rtest1a]) will run tests
rtest1 and rtest2, and displays each test.

run_testsuite changes the Maxima environment. Typically a test script executes
kill to establish a known environment (namely one without user-defined functions
and variables) and then defines functions and variables appropriate to the test.

run_testsuite returns done.

Option variabletestsuite files
testsuite_files is the set of tests to be run by run_testsuite. It is a list of names
of the files containing the tests to run. If some of the tests in a file are known to fail,
then instead of listing the name of the file, a list containing the file name and the test
numbers that fail is used.

For example, this is a part of the default set of tests:

["rtest13s", ["rtest14", 57, 63]]

This specifies the testsuite consists of the files "rtest13s" and "rtest14", but "rtest14"
contains two tests that are known to fail: 57 and 63.

8 Maxima 5.35.1 Manual

Functionbug report ()
Prints out Maxima and Lisp version numbers, and gives a link to the Maxima project
bug report web page. The version information is the same as reported by build_info.

When a bug is reported, it is helpful to copy the Maxima and Lisp version information
into the bug report.

bug_report returns an empty string "".

Functionbuild info ()
Returns a summary of the parameters of the Maxima build, as a Maxima structure
(defined by defstruct). The fields of the structure are: version, timestamp, host,
lisp_name, and lisp_version. When the pretty-printer is enabled (via display2d),
the structure is displayed as a short table.

See also bug_report.

Examples:

(%i1) build_info ();
(%o1)
Maxima version: "5.26.0_16_gb72c64c_dirty"
Maxima build date: "2012-01-29 12:29:04"
Host type: "i686-pc-linux-gnu"
Lisp implementation type: "CMU Common Lisp"
Lisp implementation version: "CVS release-19a 19a-release-20040728 + minimal debian patches"
(%i2) x : build_info ()$
(%i3) x@version;
(%o3) 5.26.0_16_gb72c64c_dirty

(%i4) x@timestamp;
(%o4) 2012-01-29 12:29:04

(%i5) x@host;
(%o5) i686-pc-linux-gnu

(%i6) x@lisp_name;
(%o6) CMU Common Lisp

(%i7) x@lisp_version;
(%o7)

CVS release-19a 19a-release-20040728 + minimal debian patches

(%i8) x;
(%o8)
Maxima version: "5.26.0_16_gb72c64c_dirty"
Maxima build date: "2012-01-29 12:29:04"
Host type: "i686-pc-linux-gnu"
Lisp implementation type: "CMU Common Lisp"
Lisp implementation version: "CVS release-19a 19a-release-20040728 + minimal debian patches"

Chapter 3: Help 9

3 Help

3.1 Documentation

The Maxima on-line user’s manual can be viewed in different forms. From the Maxima
interactive prompt, the user’s manual is viewed as plain text by the ? command (i.e., the
describe function). The user’s manual is viewed as info hypertext by the info viewer
program and as a web page by any ordinary web browser.

example displays examples for many Maxima functions. For example,

(%i1) example (integrate);

yields

(%i2) test(f):=block([u],u:integrate(f,x),ratsimp(f-diff(u,x)))
(%o2) test(f) := block([u], u : integrate(f, x),

ratsimp(f - diff(u, x)))
(%i3) test(sin(x))
(%o3) 0
(%i4) test(1/(x+1))
(%o4) 0
(%i5) test(1/(x^2+1))
(%o5) 0

and additional output.

3.2 Functions and Variables for Help

Functionapropos (string)
Searches for Maxima names which have string appearing anywhere within them.
Thus, apropos (exp) returns a list of all the flags and functions which have exp as
part of their names, such as expand, exp, and exponentialize. Thus if you can only
remember part of the name of something you can use this command to find the rest
of the name. Similarly, you could say apropos (tr_) to find a list of many of the
switches relating to the translator, most of which begin with tr_.

apropos("") returns a list with all Maxima names.

apropos returns the empty list [], if no name is found.

Example:

Show all Maxima symbols which have "gamma" in the name:

(%i1) apropos("gamma");
(%o1) [%gamma, gamma, gammalim, gamma_expand, gamma_greek,
gamma_incomplete, gamma_incomplete_generalized,
gamma_incomplete_regularized, Gamma, log_gamma, makegamma,
prefer_gamma_incomplete,
gamma_incomplete_generalized_regularized]

10 Maxima 5.35.1 Manual

Functiondemo (filename)
Evaluates Maxima expressions in filename and displays the results. demo pauses after
evaluating each expression and continues after the user enters a carriage return. (If
running in Xmaxima, demo may need to see a semicolon ; followed by a carriage
return.)

demo searches the list of directories file_search_demo to find filename. If the file
has the suffix dem, the suffix may be omitted. See also file_search.

demo evaluates its argument. demo returns the name of the demonstration file.

Example:

(%i1) demo ("disol");

batching /home/wfs/maxima/share/simplification/disol.dem
At the _ prompt, type ’;’ followed by enter to get next demo
(%i2) load(disol)

_
(%i3) exp1 : a (e (g + f) + b (d + c))
(%o3) a (e (g + f) + b (d + c))

_
(%i4) disolate(exp1, a, b, e)
(%t4) d + c

(%t5) g + f

(%o5) a (%t5 e + %t4 b)

_

Functiondescribe
describe (string)
describe (string, exact)
describe (string, inexact)

describe(string) is equivalent to describe(string, exact).

describe(string, exact) finds an item with title equal (case-insensitive) to string, if
there is any such item.

describe(string, inexact) finds all documented items which contain string in their
titles. If there is more than one such item, Maxima asks the user to select an item or
items to display.

At the interactive prompt, ? foo (with a space between ? and foo) is equivalent to
describe("foo", exact), and ?? foo is equivalent to describe("foo", inexact).

describe("", inexact) yields a list of all topics documented in the on-line manual.

describe quotes its argument. describe returns true if some documentation is
found, otherwise false.

See also Section 3.1 [Documentation], page 9.

Example:

Chapter 3: Help 11

(%i1) ?? integ
0: Functions and Variables for Elliptic Integrals
1: Functions and Variables for Integration
2: Introduction to Elliptic Functions and Integrals
3: Introduction to Integration
4: askinteger (Functions and Variables for Simplification)
5: integerp (Functions and Variables for Miscellaneous Options)
6: integer_partitions (Functions and Variables for Sets)
7: integrate (Functions and Variables for Integration)
8: integrate_use_rootsof (Functions and Variables for

Integration)
9: integration_constant_counter (Functions and Variables for

Integration)
10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, ‘all’ or ‘none’: 7 8

-- Function: integrate (<expr>, <x>)
-- Function: integrate (<expr>, <x>, <a>,)

Attempts to symbolically compute the integral of <expr> with
respect to <x>. ‘integrate (<expr>, <x>)’ is an indefinite
integral, while ‘integrate (<expr>, <x>, <a>,)’ is a
definite integral, [...]

-- Option variable: integrate_use_rootsof
Default value: ‘false’

When ‘integrate_use_rootsof’ is ‘true’ and the denominator of
a rational function cannot be factored, ‘integrate’ returns
the integral in a form which is a sum over the roots (not yet
known) of the denominator.
[...]

In this example, items 7 and 8 were selected (output is shortened as indicated by
[...]). All or none of the items could have been selected by entering all or none,
which can be abbreviated a or n, respectively.

Functionexample
example (topic)
example ()

example (topic) displays some examples of topic, which is a symbol or a string. To
get examples for operators like if, do, or lambda the argument must be a string, e.g.
example ("do"). example is not case sensitive. Most topics are function names.

example () returns the list of all recognized topics.

The name of the file containing the examples is given by the global option variable
manual_demo, which defaults to "manual.demo".

example quotes its argument. example returns done unless no examples are found or
there is no argument, in which case example returns the list of all recognized topics.

Examples:

12 Maxima 5.35.1 Manual

(%i1) example(append);
(%i2) append([x+y,0,-3.2],[2.5e+20,x])
(%o2) [y + x, 0, - 3.2, 2.5e+20, x]
(%o2) done
(%i3) example("lambda");

(%i4) lambda([x,y,z],z^2+y^2+x^2)
2 2 2

(%o4) lambda([x, y, z], z + y + x)
(%i5) %(1,2,a)

2
(%o5) a + 5
(%i6) a+2+1
(%o6) a + 3
(%o6) done

Option variablemanual demo
Default value: "manual.demo"

manual_demo specifies the name of the file containing the examples for the function
example. See example.

Chapter 4: Command Line 13

4 Command Line

4.1 Introduction to Command Line

4.2 Functions and Variables for Command Line

System variable
__ is the input expression currently being evaluated. That is, while an input expres-
sion expr is being evaluated, __ is expr.

__ is assigned the input expression before the input is simplified or evaluated. How-
ever, the value of __ is simplified (but not evaluated) when it is displayed.

__ is recognized by batch and load. In a file processed by batch, __ has the same
meaning as at the interactive prompt. In a file processed by load, __ is bound to the
input expression most recently entered at the interactive prompt or in a batch file;
__ is not bound to the input expressions in the file being processed. In particular,
when load (filename) is called from the interactive prompt, __ is bound to load

(filename) while the file is being processed.

See also _ and %.

Examples:

(%i1) print ("I was called as", __);
I was called as print(I was called as, __)
(%o1) print(I was called as, __)
(%i2) foo (__);
(%o2) foo(foo(__))
(%i3) g (x) := (print ("Current input expression =", __), 0);
(%o3) g(x) := (print("Current input expression =", __), 0)
(%i4) [aa : 1, bb : 2, cc : 3];
(%o4) [1, 2, 3]
(%i5) (aa + bb + cc)/(dd + ee + g(x));

cc + bb + aa
Current input expression = --------------

g(x) + ee + dd
6

(%o5) -------
ee + dd

System variable
_ is the most recent input expression (e.g., %i1, %i2, %i3, . . .).

_ is assigned the input expression before the input is simplified or evaluated. However,
the value of _ is simplified (but not evaluated) when it is displayed.

_ is recognized by batch and load. In a file processed by batch, _ has the same
meaning as at the interactive prompt. In a file processed by load, _ is bound to the

14 Maxima 5.35.1 Manual

input expression most recently evaluated at the interactive prompt or in a batch file;
_ is not bound to the input expressions in the file being processed.

See also __ and %.

Examples:

(%i1) 13 + 29;
(%o1) 42
(%i2) :lisp $_
((MPLUS) 13 29)
(%i2) _;
(%o2) 42
(%i3) sin (%pi/2);
(%o3) 1
(%i4) :lisp $_
((%SIN) ((MQUOTIENT) $%PI 2))
(%i4) _;
(%o4) 1
(%i5) a: 13$
(%i6) b: 29$
(%i7) a + b;
(%o7) 42
(%i8) :lisp $_
((MPLUS) $A $B)
(%i8) _;
(%o8) b + a
(%i9) a + b;
(%o9) 42
(%i10) ev (_);
(%o10) 42

System variable%
% is the output expression (e.g., %o1, %o2, %o3, . . .) most recently computed by
Maxima, whether or not it was displayed.

% is recognized by batch and load. In a file processed by batch, % has the same
meaning as at the interactive prompt. In a file processed by load, % is bound to the
output expression most recently computed at the interactive prompt or in a batch
file; % is not bound to output expressions in the file being processed.

See also _, %%, and %th.

System variable%%
In compound statements, namely block, lambda, or (s 1, ..., s n), %% is the value
of the previous statement.

At the first statement in a compound statement, or outside of a compound statement,
%% is undefined.

%% is recognized by batch and load, and it has the same meaning as at the interactive
prompt.

Chapter 4: Command Line 15

See also %.

Examples:

The following two examples yield the same result.

(%i1) block (integrate (x^5, x), ev (%%, x=2) - ev (%%, x=1));
21

(%o1) --
2

(%i2) block ([prev], prev: integrate (x^5, x),
ev (prev, x=2) - ev (prev, x=1));

21
(%o2) --

2

A compound statement may comprise other compound statements. Whether a state-
ment be simple or compound, %% is the value of the previous statement.

(%i3) block (block (a^n, %%*42), %%/6);
n

(%o3) 7 a

Within a compound statement, the value of %% may be inspected at a break prompt,
which is opened by executing the break function. For example, entering %%; in the
following example yields 42.

(%i4) block (a: 42, break ())$

Entering a Maxima break point. Type ’exit;’ to resume.
_%%;
42
_

Function%th (i)
The value of the i’th previous output expression. That is, if the next expression to
be computed is the n’th output, %th (m) is the (n - m)’th output.

%th is recognized by batch and load. In a file processed by batch, %th has the same
meaning as at the interactive prompt. In a file processed by load, %th refers to output
expressions most recently computed at the interactive prompt or in a batch file; %th
does not refer to output expressions in the file being processed.

See also % and %%.

Example:

%th is useful in batch files or for referring to a group of output expressions. This
example sets s to the sum of the last five output expressions.

(%i1) 1;2;3;4;5;
(%o1) 1
(%o2) 2
(%o3) 3
(%o4) 4
(%o5) 5

16 Maxima 5.35.1 Manual

(%i6) block (s: 0, for i:1 thru 5 do s: s + %th(i), s);
(%o6) 15

Special symbol?
As prefix to a function or variable name, ? signifies that the name is a Lisp name,
not a Maxima name. For example, ?round signifies the Lisp function ROUND. See
Section 37.1 [Lisp and Maxima], page 601 for more on this point.

The notation ? word (a question mark followed a word, separated by whitespace) is
equivalent to describe("word"). The question mark must occur at the beginning of
an input line; otherwise it is not recognized as a request for documentation. See also
describe.

Special symbol??
The notation ?? word (?? followed a word, separated by whitespace) is equivalent to
describe("word", inexact). The question mark must occur at the beginning of an
input line; otherwise it is not recognized as a request for documentation. See also
describe.

Input terminator$
The dollar sign $ terminates an input expression, and the most recent output % and
an output label, e.g. %o1, are assigned the result, but the result is not displayed.

See also ;.

Example:

(%i1) 1 + 2 + 3 $
(%i2) %;
(%o2) 6
(%i3) %o1;
(%o3) 6

Input terminator;
The semicolon ; terminates an input expression, and the resulting output is displayed.

See also $.

Example:

(%i1) 1 + 2 + 3;
(%o1) 6

Option variableinchar
Default value: %i

inchar is the prefix of the labels of expressions entered by the user. Maxima auto-
matically constructs a label for each input expression by concatenating inchar and
linenum.

inchar may be assigned any string or symbol, not necessarily a single character.
Because Maxima internally takes into account only the first char of the prefix, the

Chapter 4: Command Line 17

prefixes inchar, outchar, and linechar should have a different first char. Otherwise
some commands like kill(inlables) do not work as expected.

See also labels.

Example:

(%i1) inchar: "input";
(%o1) input
(input2) expand((a+b)^3);

3 2 2 3
(%o2) b + 3 a b + 3 a b + a
(input3)

System variableinfolists
Default value: []

infolists is a list of the names of all of the information lists in Maxima. These are:

labels All bound %i, %o, and %t labels.

values All bound atoms which are user variables, not Maxima options or
switches, created by : or :: or functional binding.

functions

All user-defined functions, created by := or define.

arrays All declared and undeclared arrays, created by :, ::, or :=.

macros All user-defined macro functions, created by ::=.

myoptions

All options ever reset by the user (whether or not they are later reset to
their default values).

rules All user-defined pattern matching and simplification rules, created by
tellsimp, tellsimpafter, defmatch, or defrule.

aliases All atoms which have a user-defined alias, created by the alias,
ordergreat, orderless functions or by declaring the atom as a noun

with declare.

dependencies

All atoms which have functional dependencies, created by the depends,
dependencies, or gradef functions.

gradefs All functions which have user-defined derivatives, created by the gradef

function.

props All atoms which have any property other than those mentioned above,
such as properties established by atvalue or matchdeclare, etc., as well
as properties established in the declare function.

let_rule_packages

All user-defined let rule packages plus the special package default_

let_rule_package. (default_let_rule_package is the name of the
rule package used when one is not explicitly set by the user.)

18 Maxima 5.35.1 Manual

Functionkill
kill (a 1, . . . , a n)
kill (labels)
kill (inlabels, outlabels, linelabels)
kill (n)
kill ([m, n])
kill (values, functions, arrays, . . .)
kill (all)
kill (allbut (a 1, . . . , a n))

Removes all bindings (value, function, array, or rule) from the arguments a 1, . . . ,
a n. An argument a k may be a symbol or a single array element. When a k is a
single array element, kill unbinds that element without affecting any other elements
of the array.

Several special arguments are recognized. Different kinds of arguments may be com-
bined, e.g., kill (inlabels, functions, allbut (foo, bar)).

kill (labels) unbinds all input, output, and intermediate expression labels created
so far. kill (inlabels) unbinds only input labels which begin with the current value
of inchar. Likewise, kill (outlabels) unbinds only output labels which begin with
the current value of outchar, and kill (linelabels) unbinds only intermediate
expression labels which begin with the current value of linechar.

kill (n), where n is an integer, unbinds the n most recent input and output labels.

kill ([m, n]) unbinds input and output labels m through n.

kill (infolist), where infolist is any item in infolists (such as values, functions,
or arrays) unbinds all items in infolist. See also infolists.

kill (all) unbinds all items on all infolists. kill (all) does not reset global vari-
ables to their default values; see reset on this point.

kill (allbut (a 1, ..., a n)) unbinds all items on all infolists except for a 1, . . . ,
a n. kill (allbut (infolist)) unbinds all items except for the ones on infolist, where
infolist is values, functions, arrays, etc.

The memory taken up by a bound property is not released until all symbols are
unbound from it. In particular, to release the memory taken up by the value of
a symbol, one unbinds the output label which shows the bound value, as well as
unbinding the symbol itself.

kill quotes its arguments. The quote-quote operator ’’ defeats quotation.

kill (symbol) unbinds all properties of symbol. In contrast, the functions remvalue,
remfunction, remarray, and remrule unbind a specific property.

kill always returns done, even if an argument has no binding.

Functionlabels (symbol)
Returns the list of input, output, or intermediate expression labels which begin with
symbol. Typically symbol is the value of inchar, outchar, or linechar. If no labels
begin with symbol, labels returns an empty list.

By default, Maxima displays the result of each user input expression, giving the result
an output label. The output display is suppressed by terminating the input with $

Chapter 4: Command Line 19

(dollar sign) instead of ; (semicolon). An output label is constructed and bound to
the result, but not displayed, and the label may be referenced in the same way as
displayed output labels. See also %, %%, and %th.

Intermediate expression labels can be generated by some functions. The option vari-
able programmode controls whether solve and some other functions generate interme-
diate expression labels instead of returning a list of expressions. Some other functions,
such as ldisplay, always generate intermediate expression labels.

See also inchar, outchar, linechar, and infolists.

System variablelabels
The variable labels is the list of input, output, and intermediate expression labels,
including all previous labels if inchar, outchar, or linechar were redefined.

Option variablelinechar
Default value: %t

linechar is the prefix of the labels of intermediate expressions generated by Max-
ima. Maxima constructs a label for each intermediate expression (if displayed) by
concatenating linechar and linenum.

linechar may be assigned any string or symbol, not necessarily a single character.
Because Maxima internally takes into account only the first char of the prefix, the
prefixes inchar, outchar, and linechar should have a different first char. Otherwise
some commands like kill(inlables) do not work as expected.

Intermediate expressions might or might not be displayed. See programmode and
labels.

System variablelinenum
The line number of the current pair of input and output expressions.

System variablemyoptions
Default value: []

myoptions is the list of all options ever reset by the user, whether or not they get
reset to their default value.

Option variablenolabels
Default value: false

When nolabels is true, input and output result labels (%i and %o, respectively) are
displayed, but the labels are not bound to results, and the labels are not appended to
the labels list. Since labels are not bound to results, garbage collection can recover
the memory taken up by the results.

Otherwise input and output result labels are bound to results, and the labels are
appended to the labels list.

Intermediate expression labels (%t) are not affected by nolabels; whether nolabels
is true or false, intermediate expression labels are bound and appended to the
labels list.

See also batch, load, and labels.

20 Maxima 5.35.1 Manual

Option variableoptionset
Default value: false

When optionset is true, Maxima prints out a message whenever a Maxima option
is reset. This is useful if the user is doubtful of the spelling of some option and wants
to make sure that the variable he assigned a value to was truly an option variable.

Example:

(%i1) optionset:true;
assignment: assigning to option optionset
(%o1) true
(%i2) gamma_expand:true;
assignment: assigning to option gamma_expand
(%o2) true

Option variableoutchar
Default value: %o

outchar is the prefix of the labels of expressions computed by Maxima. Maxima auto-
matically constructs a label for each computed expression by concatenating outchar

and linenum.

outchar may be assigned any string or symbol, not necessarily a single character.
Because Maxima internally takes into account only the first char of the prefix, the
prefixes inchar, outchar and linechar should have a different first char. Otherwise
some commands like kill(inlables) do not work as expected.

See also labels.

Example:

(%i1) outchar: "output";
(output1) output
(%i2) expand((a+b)^3);

3 2 2 3
(output2) b + 3 a b + 3 a b + a
(%i3)

Functionplayback
playback ()
playback (n)
playback ([m, n])
playback ([m])
playback (input)
playback (slow)
playback (time)
playback (grind)

Displays input, output, and intermediate expressions, without recomputing them.
playback only displays the expressions bound to labels; any other output (such as
text printed by print or describe, or error messages) is not displayed. See also
labels.

Chapter 4: Command Line 21

playback quotes its arguments. The quote-quote operator ’’ defeats quotation.
playback always returns done.

playback () (with no arguments) displays all input, output, and intermediate expres-
sions generated so far. An output expression is displayed even if it was suppressed by
the $ terminator when it was originally computed.

playback (n) displays the most recent n expressions. Each input, output, and inter-
mediate expression counts as one.

playback ([m, n]) displays input, output, and intermediate expressions with num-
bers from m through n, inclusive.

playback ([m]) is equivalent to playback ([m, m]); this usually prints one pair
of input and output expressions.

playback (input) displays all input expressions generated so far.

playback (slow) pauses between expressions and waits for the user to press enter.
This behavior is similar to demo. playback (slow) is useful in conjunction with
save or stringout when creating a secondary-storage file in order to pick out useful
expressions.

playback (time) displays the computation time for each expression.

playback (grind) displays input expressions in the same format as the grind func-
tion. Output expressions are not affected by the grind option. See grind.

Arguments may be combined, e.g., playback ([5, 10], grind, time, slow).

Option variableprompt
Default value: _

prompt is the prompt symbol of the demo function, playback (slow) mode, and the
Maxima break loop (as invoked by break).

Functionquit ()
Terminates the Maxima session. Note that the function must be invoked as quit();
or quit()$, not quit by itself.

To stop a lengthy computation, type control-C. The default action is to return to the
Maxima prompt. If *debugger-hook* is nil, control-C opens the Lisp debugger.
See also Chapter 38 [Debugging], page 615.

Functionread (expr 1, . . . , expr n)
Prints expr 1, . . . , expr n, then reads one expression from the console and returns
the evaluated expression. The expression is terminated with a semicolon ; or dollar
sign $.

See also readonly

Example:

(%i1) foo: 42$
(%i2) foo: read ("foo is", foo, " -- enter new value.")$
foo is 42 -- enter new value.

22 Maxima 5.35.1 Manual

(a+b)^3;
(%i3) foo;

3
(%o3) (b + a)

Functionreadonly (expr 1, . . . , expr n)
Prints expr 1, . . . , expr n, then reads one expression from the console and returns the
expression (without evaluation). The expression is terminated with a ; (semicolon)
or $ (dollar sign).

See also read.

Examples:

(%i1) aa: 7$
(%i2) foo: readonly ("Enter an expression:");
Enter an expression:
2^aa;

aa
(%o2) 2
(%i3) foo: read ("Enter an expression:");
Enter an expression:
2^aa;
(%o3) 128

Functionreset ()
Resets many global variables and options, and some other variables, to their default
values.

reset processes the variables on the Lisp list *variable-initial-values*. The
Lisp macro defmvar puts variables on this list (among other actions). Many, but not
all, global variables and options are defined by defmvar, and some variables defined
by defmvar are not global variables or options.

Option variableshowtime
Default value: false

When showtime is true, the computation time and elapsed time is printed with each
output expression.

The computation time is always recorded, so time and playback can display the
computation time even when showtime is false.

See also timer.

Functionto lisp ()
Enters the Lisp system under Maxima. (to-maxima) returns to Maxima.

Example:

Define a function and enter the Lisp system under Maxima. The definition is inspected
on the property list, then the function definition is extracted, factored and stored in
the variable $result. The variable can be used in Maxima after returning to Maxima.

Chapter 4: Command Line 23

(%i1) f(x):=x^2+x;
2

(%o1) f(x) := x + x
(%i2) to_lisp();
Type (to-maxima) to restart, ($quit) to quit Maxima.
MAXIMA> (symbol-plist ’$f)
(MPROPS (NIL MEXPR ((LAMBDA) ((MLIST) $X)

((MPLUS) ((MEXPT) $X 2) $X))))
MAXIMA> (setq $result ($factor (caddr (mget ’$f ’mexpr))))
((MTIMES SIMP FACTORED) $X ((MPLUS SIMP IRREDUCIBLE) 1 $X))
MAXIMA> (to-maxima)
Returning to Maxima
(%o2) true
(%i3) result;
(%o3) x (x + 1)

System variablevalues
Initial value: []

values is a list of all bound user variables (not Maxima options or switches). The
list comprises symbols bound by :, or ::.

If the value of a variable is removed with the commands kill, remove, or remvalue

the variable is deleted from values.

See functions for a list of user defined functions.

Examples:

First, values shows the symbols a, b, and c, but not d, it is not bound to a value,
and not the user function f. The values are removed from the variables. values is
the empty list.

(%i1) [a:99, b::a-90, c:a-b, d, f(x):= x^2];
2

(%o1) [99, 9, 90, d, f(x) := x]
(%i2) values;
(%o2) [a, b, c]
(%i3) [kill(a), remove(b,value), remvalue(c)];
(%o3) [done, done, [c]]
(%i4) values;
(%o4) []

4.3 Functions and Variables for Display

Option variable%edispflag
Default value: false

When %edispflag is true, Maxima displays %e to a negative exponent as a quotient.
For example, %e^-x is displayed as 1/%e^x. See also exptdispflag.

Example:

24 Maxima 5.35.1 Manual

(%i1) %e^-10;
- 10

(%o1) %e
(%i2) %edispflag:true$
(%i3) %e^-10;

1
(%o3) ----

10
%e

Option variableabsboxchar
Default value: !

absboxchar is the character used to draw absolute value signs around expressions
which are more than one line tall.

Example:

(%i1) abs((x^3+1));
! 3 !

(%o1) !x + 1!

Functiondisp (expr 1, expr 2, . . .)
is like display but only the value of the arguments are displayed rather than equa-
tions. This is useful for complicated arguments which don’t have names or where only
the value of the argument is of interest and not the name.

See also ldisp and print.

Example:

(%i1) b[1,2]:x-x^2$
(%i2) x:123$
(%i3) disp(x, b[1,2], sin(1.0));

123

2
x - x

.8414709848078965

(%o3) done

Functiondisplay (expr 1, expr 2, . . .)
Displays equations whose left side is expr i unevaluated, and whose right side is the
value of the expression centered on the line. This function is useful in blocks and
for statements in order to have intermediate results displayed. The arguments to
display are usually atoms, subscripted variables, or function calls.

See also ldisplay, disp, and ldisp.

Example:

Chapter 4: Command Line 25

(%i1) b[1,2]:x-x^2$
(%i2) x:123$
(%i3) display(x, b[1,2], sin(1.0));

x = 123

2
b = x - x
1, 2

sin(1.0) = .8414709848078965

(%o3) done

Option variabledisplay2d
Default value: true

When display2d is false, the console display is a string (1-dimensional) form rather
than a display (2-dimensional) form.

See also leftjust to switch between a left justified and a centered display of equa-
tions.

Example:

(%i1) x/(x^2+1);
x

(%o1) ------
2
x + 1

(%i2) display2d:false$
(%i3) x/(x^2+1);
(%o3) x/(x^2+1)

Option variabledisplay format internal
Default value: false

When display_format_internal is true, expressions are displayed without being
transformed in ways that hide the internal mathematical representation. The display
then corresponds to what inpart returns rather than part.

Examples:

User part inpart
a-b; a - b a + (- 1) b

a - 1
a/b; - a b

b
1/2

sqrt(x); sqrt(x) x

4 X 4
X*4/3; --- - X

3 3

26 Maxima 5.35.1 Manual

Functiondispterms (expr)
Displays expr in parts one below the other. That is, first the operator of expr is
displayed, then each term in a sum, or factor in a product, or part of a more general
expression is displayed separately. This is useful if expr is too large to be otherwise
displayed. For example if P1, P2, . . . are very large expressions then the display
program may run out of storage space in trying to display P1 + P2 + ... all at once.
However, dispterms (P1 + P2 + ...) displays P1, then below it P2, etc. When not
using dispterms, if an exponential expression is too wide to be displayed as A^B it
appears as expt (A, B) (or as ncexpt (A, B) in the case of A^^B).

Example:

(%i1) dispterms(2*a*sin(x)+%e^x);

+

2 a sin(x)

x
%e

(%o1) done

Special symbolexpt (a, b)
Special symbolncexpt (a, b)

If an exponential expression is too wide to be displayed as a^b it appears as expt (a,
b) (or as ncexpt (a, b) in the case of a^^b).

expt and ncexpt are not recognized in input.

Option variableexptdispflag
Default value: true

When exptdispflag is true, Maxima displays expressions with negative exponents
using quotients. See also %edispflag.

Example:

(%i1) exptdispflag:true;
(%o1) true
(%i2) 10^-x;

1
(%o2) ---

x
10

(%i3) exptdispflag:false;
(%o3) false
(%i4) 10^-x;

- x
(%o4) 10

Chapter 4: Command Line 27

Functiongrind (expr)
The function grind prints expr to the console in a form suitable for input to Maxima.
grind always returns done.

When expr is the name of a function or macro, grind prints the function or macro
definition instead of just the name.

See also string, which returns a string instead of printing its output. grind attempts
to print the expression in a manner which makes it slightly easier to read than the
output of string.

grind evaluates its argument.

Examples:

(%i1) aa + 1729;
(%o1) aa + 1729
(%i2) grind (%);
aa+1729$
(%o2) done
(%i3) [aa, 1729, aa + 1729];
(%o3) [aa, 1729, aa + 1729]
(%i4) grind (%);
[aa,1729,aa+1729]$
(%o4) done
(%i5) matrix ([aa, 17], [29, bb]);

[aa 17]
(%o5) []

[29 bb]
(%i6) grind (%);
matrix([aa,17],[29,bb])$
(%o6) done
(%i7) set (aa, 17, 29, bb);
(%o7) {17, 29, aa, bb}
(%i8) grind (%);
{17,29,aa,bb}$
(%o8) done
(%i9) exp (aa / (bb + 17)^29);

aa

29
(bb + 17)

(%o9) %e
(%i10) grind (%);
%e^(aa/(bb+17)^29)$
(%o10) done
(%i11) expr: expand ((aa + bb)^10);

10 9 2 8 3 7 4 6
(%o11) bb + 10 aa bb + 45 aa bb + 120 aa bb + 210 aa bb

5 5 6 4 7 3 8 2
+ 252 aa bb + 210 aa bb + 120 aa bb + 45 aa bb

9 10
+ 10 aa bb + aa

28 Maxima 5.35.1 Manual

(%i12) grind (expr);
bb^10+10*aa*bb^9+45*aa^2*bb^8+120*aa^3*bb^7+210*aa^4*bb^6

+252*aa^5*bb^5+210*aa^6*bb^4+120*aa^7*bb^3+45*aa^8*bb^2
+10*aa^9*bb+aa^10$

(%o12) done
(%i13) string (expr);
(%o13) bb^10+10*aa*bb^9+45*aa^2*bb^8+120*aa^3*bb^7+210*aa^4*bb^6\
+252*aa^5*bb^5+210*aa^6*bb^4+120*aa^7*bb^3+45*aa^8*bb^2+10*aa^9*\
bb+aa^10
(%i14) cholesky (A):= block ([n : length (A), L : copymatrix (A),
p : makelist (0, i, 1, length (A))], for i thru n do
for j : i thru n do
(x : L[i, j], x : x - sum (L[j, k] * L[i, k], k, 1, i - 1),
if i = j then p[i] : 1 / sqrt(x) else L[j, i] : x * p[i]),
for i thru n do L[i, i] : 1 / p[i],
for i thru n do for j : i + 1 thru n do L[i, j] : 0, L)$

(%i15) grind (cholesky);
cholesky(A):=block(

[n:length(A),L:copymatrix(A),
p:makelist(0,i,1,length(A))],
for i thru n do

(for j from i thru n do
(x:L[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),
if i = j then p[i]:1/sqrt(x)

else L[j,i]:x*p[i])),
for i thru n do L[i,i]:1/p[i],
for i thru n do (for j from i+1 thru n do L[i,j]:0),L)$

(%o15) done
(%i16) string (fundef (cholesky));
(%o16) cholesky(A):=block([n:length(A),L:copymatrix(A),p:makelis\
t(0,i,1,length(A))],for i thru n do (for j from i thru n do (x:L\
[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),if i = j then p[i]:1/sqrt(x\
) else L[j,i]:x*p[i])),for i thru n do L[i,i]:1/p[i],for i thru \
n do (for j from i+1 thru n do L[i,j]:0),L)

Option variablegrind
When the variable grind is true, the output of string and stringout has the same
format as that of grind; otherwise no attempt is made to specially format the output
of those functions. The default value of the variable grind is false.

grind can also be specified as an argument of playback. When grind is present,
playback prints input expressions in the same format as the grind function. Other-
wise, no attempt is made to specially format input expressions.

Option variableibase
Default value: 10

ibase is the base for integers read by Maxima.

ibase may be assigned any integer between 2 and 36 (decimal), inclusive. When
ibase is greater than 10, the numerals comprise the decimal numerals 0 through 9

Chapter 4: Command Line 29

plus letters of the alphabet A, B, C, . . . , as needed to make ibase digits in all. Letters
are interpreted as digits only if the first digit is 0 through 9. Uppercase and lowercase
letters are not distinguished. The numerals for base 36, the largest acceptable base,
comprise 0 through 9 and A through Z.

Whatever the value of ibase, when an integer is terminated by a decimal point, it is
interpreted in base 10.

See also obase.

Examples:

ibase less than 10.

(%i1) ibase : 2 $
(%i2) obase;
(%o2) 10
(%i3) 1111111111111111;
(%o3) 65535

ibase greater than 10. Letters are interpreted as digits only if the first digit is 0
through 9.

(%i1) ibase : 16 $
(%i2) obase;
(%o2) 10
(%i3) 1000;
(%o3) 4096
(%i4) abcd;
(%o4) abcd
(%i5) symbolp (abcd);
(%o5) true
(%i6) 0abcd;
(%o6) 43981
(%i7) symbolp (0abcd);
(%o7) false

When an integer is terminated by a decimal point, it is interpreted in base 10.

(%i1) ibase : 36 $
(%i2) obase;
(%o2) 10
(%i3) 1234;
(%o3) 49360
(%i4) 1234.;
(%o4) 1234

Functionldisp (expr 1, . . . , expr n)
Displays expressions expr 1, . . . , expr n to the console as printed output. ldisp

assigns an intermediate expression label to each argument and returns the list of
labels.

See also disp, display, and ldisplay.

Examples:

30 Maxima 5.35.1 Manual

(%i1) e: (a+b)^3;
3

(%o1) (b + a)
(%i2) f: expand (e);

3 2 2 3
(%o2) b + 3 a b + 3 a b + a
(%i3) ldisp (e, f);

3
(%t3) (b + a)

3 2 2 3
(%t4) b + 3 a b + 3 a b + a

(%o4) [%t3, %t4]
(%i4) %t3;

3
(%o4) (b + a)
(%i5) %t4;

3 2 2 3
(%o5) b + 3 a b + 3 a b + a

Functionldisplay (expr 1, . . . , expr n)
Displays expressions expr 1, . . . , expr n to the console as printed output. Each
expression is printed as an equation of the form lhs = rhs in which lhs is one of the
arguments of ldisplay and rhs is its value. Typically each argument is a variable.
ldisp assigns an intermediate expression label to each equation and returns the list
of labels.

See also display, disp, and ldisp.

Examples:

(%i1) e: (a+b)^3;
3

(%o1) (b + a)
(%i2) f: expand (e);

3 2 2 3
(%o2) b + 3 a b + 3 a b + a
(%i3) ldisplay (e, f);

3
(%t3) e = (b + a)

3 2 2 3
(%t4) f = b + 3 a b + 3 a b + a

(%o4) [%t3, %t4]
(%i4) %t3;

3
(%o4) e = (b + a)
(%i5) %t4;

3 2 2 3

Chapter 4: Command Line 31

(%o5) f = b + 3 a b + 3 a b + a

Option variableleftjust
Default value: false

When leftjust is true, equations in 2D-display are drawn left justified rather than
centered.

See also display2d to switch between 1D- and 2D-display.

Example:

(%i1) expand((x+1)^3);
3 2

(%o1) x + 3 x + 3 x + 1
(%i2) leftjust:true$
(%i3) expand((x+1)^3);

3 2
(%o3) x + 3 x + 3 x + 1

Option variablelinel
Default value: 79

linel is the assumed width (in characters) of the console display for the purpose
of displaying expressions. linel may be assigned any value by the user, although
very small or very large values may be impractical. Text printed by built-in Maxima
functions, such as error messages and the output of describe, is not affected by
linel.

Option variablelispdisp
Default value: false

When lispdisp is true, Lisp symbols are displayed with a leading question mark
?. Otherwise, Lisp symbols are displayed with no leading mark. This has the same
effect for 1-d and 2-d display.

Examples:

(%i1) lispdisp: false$
(%i2) ?foo + ?bar;
(%o2) foo + bar
(%i3) lispdisp: true$
(%i4) ?foo + ?bar;
(%o4) ?foo + ?bar

Option variablenegsumdispflag
Default value: true

When negsumdispflag is true, x - y displays as x - y instead of as - y + x. Setting
it to false causes the special check in display for the difference of two expressions
to not be done. One application is that thus a + %i*b and a - %i*b may both be
displayed the same way.

32 Maxima 5.35.1 Manual

Option variableobase
Default value: 10

obase is the base for integers displayed by Maxima.

obase may be assigned any integer between 2 and 36 (decimal), inclusive. When
obase is greater than 10, the numerals comprise the decimal numerals 0 through 9
plus capital letters of the alphabet A, B, C, . . . , as needed. A leading 0 digit is
displayed if the leading digit is otherwise a letter. The numerals for base 36, the
largest acceptable base, comprise 0 through 9, and A through Z.

See also ibase.

Examples:

(%i1) obase : 2;
(%o1) 10
(%i2) 2^8 - 1;
(%o10) 11111111
(%i3) obase : 8;
(%o3) 10
(%i4) 8^8 - 1;
(%o4) 77777777
(%i5) obase : 16;
(%o5) 10
(%i6) 16^8 - 1;
(%o6) 0FFFFFFFF
(%i7) obase : 36;
(%o7) 10
(%i8) 36^8 - 1;
(%o8) 0ZZZZZZZZ

Option variablepfeformat
Default value: false

When pfeformat is true, a ratio of integers is displayed with the solidus (forward
slash) character, and an integer denominator n is displayed as a leading multiplicative
term 1/n.

Examples:

(%i1) pfeformat: false$
(%i2) 2^16/7^3;

65536
(%o2) -----

343
(%i3) (a+b)/8;

b + a
(%o3) -----

8
(%i4) pfeformat: true$
(%i5) 2^16/7^3;
(%o5) 65536/343
(%i6) (a+b)/8;
(%o6) 1/8 (b + a)

Chapter 4: Command Line 33

Option variablepowerdisp
Default value: false

When powerdisp is true, a sum is displayed with its terms in order of increasing
power. Thus a polynomial is displayed as a truncated power series, with the constant
term first and the highest power last.

By default, terms of a sum are displayed in order of decreasing power.

Example:

(%i1) powerdisp:true;
(%o1) true
(%i2) x^2+x^3+x^4;

2 3 4
(%o2) x + x + x
(%i3) powerdisp:false;
(%o3) false
(%i4) x^2+x^3+x^4;

4 3 2
(%o4) x + x + x

Functionprint (expr 1, . . . , expr n)
Evaluates and displays expr 1, . . . , expr n one after another, from left to right, start-
ing at the left edge of the console display.

The value returned by print is the value of its last argument. print does not generate
intermediate expression labels.

See also display, disp, ldisplay, and ldisp. Those functions display one expression
per line, while print attempts to display two or more expressions per line.

To display the contents of a file, see printfile.

Examples:

(%i1) r: print ("(a+b)^3 is", expand ((a+b)^3), "log (a^10/b) is",
radcan (log (a^10/b)))$

3 2 2 3
(a+b)^3 is b + 3 a b + 3 a b + a log (a^10/b) is

10 log(a) - log(b)
(%i2) r;
(%o2) 10 log(a) - log(b)
(%i3) disp ("(a+b)^3 is", expand ((a+b)^3), "log (a^10/b) is",

radcan (log (a^10/b)))$
(a+b)^3 is

3 2 2 3
b + 3 a b + 3 a b + a

log (a^10/b) is

10 log(a) - log(b)

34 Maxima 5.35.1 Manual

Option variablesqrtdispflag
Default value: true

When sqrtdispflag is false, causes sqrt to display with exponent 1/2.

Option variablestardisp
Default value: false

When stardisp is true, multiplication is displayed with an asterisk * between
operands.

Option variablettyoff
Default value: false

When ttyoff is true, output expressions are not displayed. Output expressions are
still computed and assigned labels. See labels.

Text printed by built-in Maxima functions, such as error messages and the output of
describe, is not affected by ttyoff.

Chapter 5: Data Types and Structures 35

5 Data Types and Structures

5.1 Numbers

5.1.1 Introduction to Numbers

Complex numbers

A complex expression is specified in Maxima by adding the real part of the expression
to %i times the imaginary part. Thus the roots of the equation x^2 - 4*x + 13 = 0 are 2

+ 3*%i and 2 - 3*%i. Note that simplification of products of complex expressions can be
effected by expanding the product. Simplification of quotients, roots, and other functions
of complex expressions can usually be accomplished by using the realpart, imagpart,
rectform, polarform, abs, carg functions.

Floating point numbers

Maxima has two types of floating point number. The first is just called a “float” (but
will be called a “machine float” for the rest of this section to avoid ambiguity). This is
stored in the underlying lisp’s DOUBLE-FLOAT type which will almost certainly be IEEE
754 double precision floating point. To type a literal floating point number, just type its
decimal expansion (for example, 0.01) or type it with an explicit exponent (such as 1e-2

or 0.1e-1).

The second type of floating point number in Maxima is called a “bigfloat”. Bigfloats are
stored as a mantissa and exponent in the same way as machine floats but the exponent is
an arbitrary precision integer, so they can represent arbitrarily large or small numbers. The
user can also customise the precision of bigfloat arithmetic (which corresponds to choosing
the range of the mantissa). See fpprec for more information. To type a literal bigfloat,
use the exponent notation as above but with the character b in place of e. The example of
0.01 from above could be entered as a bigfloat with 1b-2 or 0.001b0.

Calculations using machine floats can be significantly faster than using bigfloats since
modern computer processors have dedicated hardware for them. This is particularly no-
ticeable with compiled Maxima code. However, machine floats suffer from the problem of
overflow, where a number can become too large for its exponent to be represented in the
bits available. In interpreted code, the default behaviour is that a calculation that would
cause a floating point overflow instead generates a bigfloat number. To configure this, see
the promote_float_to_bigfloat variable.

5.1.2 Functions and Variables for Numbers

Functionbfloat (expr)
Converts all numbers and functions of numbers in expr to bigfloat numbers. The
number of significant digits in the resulting bigfloats is specified by the global variable
fpprec.

36 Maxima 5.35.1 Manual

When float2bf is false a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

Functionbfloatp (expr)
Returns true if expr is a bigfloat number, otherwise false.

Option variablebftorat
Default value: false

bftorat controls the conversion of bfloats to rational numbers. When bftorat is
false, ratepsilon will be used to control the conversion (this results in relatively
small rational numbers). When bftorat is true, the rational number generated will
accurately represent the bfloat.

Note: bftorat has no effect on the transformation to rational numbers with the
function rationalize.

Example:

(%i1) ratepsilon:1e-4;
(%o1) 1.e-4
(%i2) rat(bfloat(11111/111111)), bftorat:false;
‘rat’ replaced 9.99990999991B-2 by 1/10 = 1.0B-1

1
(%o2)/R/ --

10
(%i3) rat(bfloat(11111/111111)), bftorat:true;
‘rat’ replaced 9.99990999991B-2 by 11111/111111 = 9.99990999991B-2

11111
(%o3)/R/ ------

111111

Option variablebftrunc
Default value: true

bftrunc causes trailing zeroes in non-zero bigfloat numbers not to be displayed. Thus,
if bftrunc is false, bfloat (1) displays as 1.000000000000000B0. Otherwise, this
is displayed as 1.0B0.

Functionevenp (expr)
Returns true if expr is an even integer. false is returned in all other cases.

Functionfloat (expr)
Converts integers, rational numbers and bigfloats in expr to floating point numbers.
It is also an evflag, float causes non-integral rational numbers and bigfloat numbers
to be converted to floating point.

Chapter 5: Data Types and Structures 37

Option variablefloat2bf
Default value: true

When float2bf is false, a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

Functionfloatnump (expr)
Returns true if expr is a floating point number, otherwise false.

Option variablefpprec
Default value: 16

fpprec is the number of significant digits for arithmetic on bigfloat numbers. fpprec
does not affect computations on ordinary floating point numbers.

See also bfloat and fpprintprec.

Option variablefpprintprec
Default value: 0

fpprintprec is the number of digits to print when printing an ordinary float or
bigfloat number.

For ordinary floating point numbers, when fpprintprec has a value between 2 and
16 (inclusive), the number of digits printed is equal to fpprintprec. Otherwise,
fpprintprec is 0, or greater than 16, and the number of digits printed is 16.

For bigfloat numbers, when fpprintprec has a value between 2 and fpprec (inclu-
sive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec
is 0, or greater than fpprec, and the number of digits printed is equal to fpprec.

For both ordinary floats and bigfloats, trailing zero digits are suppressed. The actual
number of digits printed is less than fpprintprec if there are trailing zero digits.

fpprintprec cannot be 1.

Functionintegerp (expr)
Returns true if expr is a literal numeric integer, otherwise false.

integerp returns false if its argument is a symbol, even if the argument is declared
integer.

Examples:

(%i1) integerp (0);
(%o1) true
(%i2) integerp (1);
(%o2) true
(%i3) integerp (-17);
(%o3) true
(%i4) integerp (0.0);
(%o4) false
(%i5) integerp (1.0);
(%o5) false

38 Maxima 5.35.1 Manual

(%i6) integerp (%pi);
(%o6) false
(%i7) integerp (n);
(%o7) false
(%i8) declare (n, integer);
(%o8) done
(%i9) integerp (n);
(%o9) false

Option variablem1pbranch
Default value: false

m1pbranch is the principal branch for -1 to a power. Quantities such as (-1)^(1/3)
(that is, an "odd" rational exponent) and (-1)^(1/4) (that is, an "even" rational
exponent) are handled as follows:

domain:real

(-1)^(1/3): -1
(-1)^(1/4): (-1)^(1/4)

domain:complex
m1pbranch:false m1pbranch:true
(-1)^(1/3) 1/2+%i*sqrt(3)/2
(-1)^(1/4) sqrt(2)/2+%i*sqrt(2)/2

Functionnonnegintegerp (n)
Return true if and only if n >= 0 and n is an integer.

Functionnumberp (expr)
Returns true if expr is a literal integer, rational number, floating point number, or
bigfloat, otherwise false.

numberp returns false if its argument is a symbol, even if the argument is a sym-
bolic number such as %pi or %i, or declared to be even, odd, integer, rational,
irrational, real, imaginary, or complex.

Examples:

(%i1) numberp (42);
(%o1) true
(%i2) numberp (-13/19);
(%o2) true
(%i3) numberp (3.14159);
(%o3) true
(%i4) numberp (-1729b-4);
(%o4) true
(%i5) map (numberp, [%e, %pi, %i, %phi, inf, minf]);
(%o5) [false, false, false, false, false, false]
(%i6) declare (a, even, b, odd, c, integer, d, rational,

e, irrational, f, real, g, imaginary, h, complex);

Chapter 5: Data Types and Structures 39

(%o6) done
(%i7) map (numberp, [a, b, c, d, e, f, g, h]);
(%o7) [false, false, false, false, false, false, false, false]

Option variablenumer
numer causes some mathematical functions (including exponentiation) with numerical
arguments to be evaluated in floating point. It causes variables in expr which have
been given numerals to be replaced by their values. It also sets the float switch on.

See also %enumer.

Examples:

(%i1) [sqrt(2), sin(1), 1/(1+sqrt(3))];
1

(%o1) [sqrt(2), sin(1), -----------]
sqrt(3) + 1

(%i2) [sqrt(2), sin(1), 1/(1+sqrt(3))],numer;
(%o2) [1.414213562373095, .8414709848078965, .3660254037844387]

Option variablenumer pbranch
Default value: false

The option variable numer_pbranch controls the numerical evaluation of the power of
a negative integer, rational, or floating point number. When numer_pbranch is true
and the exponent is a floating point number or the option variable numer is true

too, Maxima evaluates the numerical result using the principal branch. Otherwise a
simplified, but not an evaluated result is returned.

Examples:

(%i1) (-2)^0.75;
(%o1) (-2)^0.75

(%i2) (-2)^0.75,numer_pbranch:true;
(%o2) 1.189207115002721*%i-1.189207115002721

(%i3) (-2)^(3/4);
(%o3) (-1)^(3/4)*2^(3/4)

(%i4) (-2)^(3/4),numer;
(%o4) 1.681792830507429*(-1)^0.75

(%i5) (-2)^(3/4),numer,numer_pbranch:true;
(%o5) 1.189207115002721*%i-1.189207115002721

Functionnumerval (x 1, expr 1, . . . , var n, expr n)
Declares the variables x_1, . . . , x n to have numeric values equal to expr_1, . . . ,
expr_n. The numeric value is evaluated and substituted for the variable in any
expressions in which the variable occurs if the numer flag is true. See also ev.

The expressions expr_1, . . . , expr_n can be any expressions, not necessarily numeric.

40 Maxima 5.35.1 Manual

Functionoddp (expr)
is true if expr is an odd integer. false is returned in all other cases.

Option variablepromote float to bigfloat
Default value: true

When promote_float_to_bigfloat is true, the result of any floating point calcu-
lation that would normally cause a floating point overflow is replaced by a bigfloat
number that represents the result. Note that this automatic promotion only happens
in interpreted code: compiled code is not affected.

This automatic conversion is often convenient, but can be unhelpful in some cases.
For example, it can actually cause a loss of precision if fpprec is currently smaller
than the precision in a floating point number. To disable this behaviour, set promote_
float_to_bigfloat to false.

Option variableratepsilon
Default value: 2.0e-15

ratepsilon is the tolerance used in the conversion of floating point numbers to ra-
tional numbers, when the option variable bftorat has the value false. See bftorat

for an example.

Functionrationalize (expr)
Convert all double floats and big floats in the Maxima expression expr to their exact
rational equivalents. If you are not familiar with the binary representation of floating
point numbers, you might be surprised that rationalize (0.1) does not equal 1/10.
This behavior isn’t special to Maxima – the number 1/10 has a repeating, not a
terminating, binary representation.

(%i1) rationalize (0.5);
1

(%o1) -
2

(%i2) rationalize (0.1);
1

(%o2) --
10

(%i3) fpprec : 5$
(%i4) rationalize (0.1b0);

209715
(%o4) -------

2097152
(%i5) fpprec : 20$
(%i6) rationalize (0.1b0);

236118324143482260685
(%o6) ----------------------

2361183241434822606848
(%i7) rationalize (sin (0.1*x + 5.6));

Chapter 5: Data Types and Structures 41

x 28
(%o7) sin(-- + --)

10 5

Functionratnump (expr)
Returns true if expr is a literal integer or ratio of literal integers, otherwise false.

42 Maxima 5.35.1 Manual

5.2 Strings

5.2.1 Introduction to Strings

Strings (quoted character sequences) are enclosed in double quote marks " for input, and
displayed with or without the quote marks, depending on the global variable stringdisp.

Strings may contain any characters, including embedded tab, newline, and carriage re-
turn characters. The sequence \" is recognized as a literal double quote, and \\ as a literal
backslash. When backslash appears at the end of a line, the backslash and the line termina-
tion (either newline or carriage return and newline) are ignored, so that the string continues
with the next line. No other special combinations of backslash with another character are
recognized; when backslash appears before any character other than ", \, or a line termi-
nation, the backslash is ignored. There is no way to represent a special character (such as
tab, newline, or carriage return) except by embedding the literal character in the string.

There is no character type in Maxima; a single character is represented as a one-character
string.

The stringproc add-on package contains many functions for working with strings.

Examples:

(%i1) s_1 : "This is a string.";
(%o1) This is a string.
(%i2) s_2 : "Embedded \"double quotes\" and backslash \\ characters.";
(%o2) Embedded "double quotes" and backslash \ characters.
(%i3) s_3 : "Embedded line termination
in this string.";
(%o3) Embedded line termination
in this string.
(%i4) s_4 : "Ignore the \
line termination \
characters in \
this string.";
(%o4) Ignore the line termination characters in this string.
(%i5) stringdisp : false;
(%o5) false
(%i6) s_1;
(%o6) This is a string.
(%i7) stringdisp : true;
(%o7) true
(%i8) s_1;
(%o8) "This is a string."

5.2.2 Functions and Variables for Strings

Functionconcat (arg 1, arg 2, . . .)
Concatenates its arguments. The arguments must evaluate to atoms. The return
value is a symbol if the first argument is a symbol and a string otherwise.

concat evaluates its arguments. The single quote ’ prevents evaluation.

Chapter 5: Data Types and Structures 43

(%i1) y: 7$
(%i2) z: 88$
(%i3) concat (y, z/2);
(%o3) 744
(%i4) concat (’y, z/2);
(%o4) y44

A symbol constructed by concat may be assigned a value and appear in expressions.
The :: (double colon) assignment operator evaluates its left-hand side.

(%i5) a: concat (’y, z/2);
(%o5) y44
(%i6) a:: 123;
(%o6) 123
(%i7) y44;
(%o7) 123
(%i8) b^a;

y44
(%o8) b
(%i9) %, numer;

123
(%o9) b

Note that although concat (1, 2) looks like a number, it is a string.

(%i10) concat (1, 2) + 3;
(%o10) 12 + 3

Functionsconcat (arg 1, arg 2, . . .)
Concatenates its arguments into a string. Unlike concat, the arguments do not need
to be atoms.

(%i1) sconcat ("xx[", 3, "]:", expand ((x+y)^3));
(%o1) xx[3]:y^3+3*x*y^2+3*x^2*y+x^3

Functionstring (expr)
Converts expr to Maxima’s linear notation just as if it had been typed in.

The return value of string is a string, and thus it cannot be used in a computation.

Option variablestringdisp
Default value: false

When stringdisp is true, strings are displayed enclosed in double quote marks.
Otherwise, quote marks are not displayed.

stringdisp is always true when displaying a function definition.

Examples:

(%i1) stringdisp: false$
(%i2) "This is an example string.";
(%o2) This is an example string.
(%i3) foo () :=

print ("This is a string in a function definition.");

44 Maxima 5.35.1 Manual

(%o3) foo() :=
print("This is a string in a function definition.")

(%i4) stringdisp: true$
(%i5) "This is an example string.";
(%o5) "This is an example string."

Chapter 5: Data Types and Structures 45

5.3 Constants

5.3.1 Functions and Variables for Constants

Constant%e
%e represents the base of the natural logarithm, also known as Euler’s number. The
numeric value of %e is the double-precision floating-point value 2.718281828459045d0.

Constant%i
%i represents the imaginary unit, sqrt(−1).

Constantfalse
false represents the Boolean constant of the same name. Maxima implements false
by the value NIL in Lisp.

Constant%gamma
The Euler-Mascheroni constant, 0.5772156649015329

Constantind
ind represents a bounded, indefinite result.

See also limit.

Example:

(%i1) limit (sin(1/x), x, 0);
(%o1) ind

Constantinf
inf represents real positive infinity.

Constantinfinity
infinity represents complex infinity.

Constantminf
minf represents real minus (i.e., negative) infinity.

Constant%phi
%phi represents the so-called golden mean, (1+sqrt(5))/2. The numeric value of %phi
is the double-precision floating-point value 1.618033988749895d0.

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

By default, Maxima does not know the algebraic properties of %phi. After evaluat-
ing tellrat(%phi^2 - %phi - 1) and algebraic: true, ratsimp can simplify some
expressions containing %phi.

Examples:

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

46 Maxima 5.35.1 Manual

(%i1) fibtophi (fib (n));
n n

%phi - (1 - %phi)
(%o1) -------------------

2 %phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%o2) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) fibtophi (%);

n + 1 n + 1 n n
%phi - (1 - %phi) %phi - (1 - %phi)

(%o3) - --------------------------- + -------------------
2 %phi - 1 2 %phi - 1

n - 1 n - 1
%phi - (1 - %phi)

+ ---------------------------
2 %phi - 1

(%i4) ratsimp (%);
(%o4) 0

By default, Maxima does not know the algebraic properties of %phi. After evaluat-
ing tellrat (%phi^2 - %phi - 1) and algebraic: true, ratsimp can simplify some
expressions containing %phi.

(%i1) e : expand ((%phi^2 - %phi - 1) * (A + 1));
2 2

(%o1) %phi A - %phi A - A + %phi - %phi - 1
(%i2) ratsimp (e);

2 2
(%o2) (%phi - %phi - 1) A + %phi - %phi - 1
(%i3) tellrat (%phi^2 - %phi - 1);

2
(%o3) [%phi - %phi - 1]
(%i4) algebraic : true;
(%o4) true
(%i5) ratsimp (e);
(%o5) 0

Constant%pi
%pi represents the ratio of the perimeter of a circle to its diameter. The numeric
value of %pi is the double-precision floating-point value 3.141592653589793d0.

Constanttrue
true represents the Boolean constant of the same name. Maxima implements true

by the value T in Lisp.

Constantund
und represents an undefined result.

See also limit.

Example:

Chapter 5: Data Types and Structures 47

(%i1) limit (x*sin(x), x, inf);
(%o1) und

Constantzeroa
zeroa represents an infinitesimal above zero. zeroa can be used in expressions. limit
simplifies expressions which contain infinitesimals.

See also zerob and limit.

Example:

limit simplifies expressions which contain infinitesimals:

(%i1) limit(zeroa);
(%o1) 0
(%i2) limit(x+zeroa);
(%o2) x

Constantzerob
zerob represents an infinitesimal below zero. zerob can be used in expressions. limit
simplifies expressions which contain infinitesimals.

See also zeroa and limit.

48 Maxima 5.35.1 Manual

5.4 Lists

5.4.1 Introduction to Lists

Lists are the basic building block for Maxima and Lisp. All data types other than arrays,
hash tables, numbers are represented as Lisp lists, These Lisp lists have the form

((MPLUS) $A 2)

to indicate an expression a+2. At Maxima level one would see the infix notation a+2.
Maxima also has lists which are printed as

[1, 2, 7, x+y]

for a list with 4 elements. Internally this corresponds to a Lisp list of the form

((MLIST) 1 2 7 ((MPLUS) $X $Y))

The flag which denotes the type field of the Maxima expression is a list itself, since after it
has been through the simplifier the list would become

((MLIST SIMP) 1 2 7 ((MPLUS SIMP) $X $Y))

5.4.2 Functions and Variables for Lists

Operator[
Operator]

[and] mark the beginning and end, respectively, of a list.

[and] also enclose the subscripts of a list, array, hash array, or array function.

Examples:

(%i1) x: [a, b, c];
(%o1) [a, b, c]

(%i2) x[3];
(%o2) c

(%i3) array (y, fixnum, 3);
(%o3) y

(%i4) y[2]: %pi;
(%o4) %pi

(%i5) y[2];
(%o5) %pi

(%i6) z[’foo]: ’bar;
(%o6) bar

(%i7) z[’foo];
(%o7) bar

(%i8) g[k] := 1/(k^2+1);
1

(%o8) g := ------
k 2

k + 1

(%i9) g[10];
1

(%o9) ---
101

Chapter 5: Data Types and Structures 49

Functionappend (list 1, . . . , list n)
Returns a single list of the elements of list 1 followed by the elements of list 2, . . .
append also works on general expressions, e.g. append (f(a,b), f(c,d,e)); yields
f(a,b,c,d,e).

Do example(append); for an example.

Functionassoc
assoc (key, list, default)
assoc (key, list)

This function searches for key in the left hand side of the input list. The list argument
should be a list, each of whose elements is an expression with exactly two parts. Most
usually, the elements of list are themselves lists, each with two elements.

The assoc function iterates along list, checking the first part of each element for
equality with key. If an element is found where the comparison is true, assoc returns
the second part of that element. If there is no such element in the list, assoc returns
either false or default, if given.

For example, in the expression assoc (y, [[x,1], [y,2], [z,3]]), the assoc func-
tion searches for x in the left hand side of the list [[y,1],[x,2]] and finds it at the
second term, returning 2. In assoc (z, [[x,1], [z,2], [z,3]]), the search stops
at the first term starting with z and returns 2. In assoc(x, [[y,1]]), there is no
matching element, so assoc returns false.

(%i1) assoc(y, [[x, 1], [y, 2], [z, 3]])
(%o1) 2

(%i2) assoc(z, [[x, 1], [z, 2], [z, 3]])
(%o2) 2

(%i3) assoc(x, [[y, 1]])
(%o3) false

Functioncons
cons (expr, list)
cons (expr 1, expr 2)

cons (expr, list) returns a new list constructed of the element expr as its first ele-
ment, followed by the elements of list. This is analogous to the Lisp language con-
struction operation "cons".

The Maxima function cons can also be used where the second argument is other than
a list and this might be useful. In this case, cons (expr 1, expr 2) returns an expres-
sion with same operator as expr 2 but with argument cons(expr_1, args(expr_2)).
Examples:

(%i1) cons(a,[b,c,d]);
(%o1) [a, b, c, d]
(%i2) cons(a,f(b,c,d));
(%o2) f(a, b, c, d)

In general, cons applied to a nonlist doesn’t make sense. For instance, cons(a,b^c)
results in an illegal expression, since ’^’ cannot take three arguments.

50 Maxima 5.35.1 Manual

When inflag is true, cons operates on the internal structure of an expression, oth-
erwise cons operates on the displayed form. Especially when inflag is true, cons
applied to a nonlist sometimes gives a surprising result; for example

(%i1) cons(a,-a), inflag : true;
2

(%o1) - a
(%i2) cons(a,-a), inflag : false;
(%o2) 0

Functioncopylist (list)
Returns a copy of the list list.

Functioncreate list (form, x 1, list 1, . . . , x n, list n)
Create a list by evaluating form with x 1 bound to each element of list 1, and for
each such binding bind x 2 to each element of list 2, . . . The number of elements in
the result will be the product of the number of elements in each list. Each variable
x i must actually be a symbol – it will not be evaluated. The list arguments will be
evaluated once at the beginning of the iteration.

(%i1) create_list (x^i, i, [1, 3, 7]);
3 7

(%o1) [x, x , x]

With a double iteration:

(%i1) create_list ([i, j], i, [a, b], j, [e, f, h]);
(%o1) [[a, e], [a, f], [a, h], [b, e], [b, f], [b, h]]

Instead of list i two args may be supplied each of which should evaluate to a number.
These will be the inclusive lower and upper bounds for the iteration.

(%i1) create_list ([i, j], i, [1, 2, 3], j, 1, i);
(%o1) [[1, 1], [2, 1], [2, 2], [3, 1], [3, 2], [3, 3]]

Note that the limits or list for the j variable can depend on the current value of i.

Functiondelete
delete (expr 1, expr 2)
delete (expr 1, expr 2, n)

delete(expr 1, expr 2) removes from expr 2 any arguments of its top-level operator
which are the same (as determined by "=") as expr 1. Note that "=" tests for formal
equality, not equivalence. Note also that arguments of subexpressions are not affected.

expr 1 may be an atom or a non-atomic expression. expr 2 may be any non-atomic
expression. delete returns a new expression; it does not modify expr 2.

delete(expr 1, expr 2, n) removes from expr 2 the first n arguments of the top-level
operator which are the same as expr 1. If there are fewer than n such arguments,
then all such arguments are removed.

Examples:

Removing elements from a list.

Chapter 5: Data Types and Structures 51

(%i1) delete (y, [w, x, y, z, z, y, x, w]);
(%o1) [w, x, z, z, x, w]

Removing terms from a sum.

(%i1) delete (sin(x), x + sin(x) + y);
(%o1) y + x

Removing factors from a product.

(%i1) delete (u - x, (u - w)*(u - x)*(u - y)*(u - z));
(%o1) (u - w) (u - y) (u - z)

Removing arguments from an arbitrary expression.

(%i1) delete (a, foo (a, b, c, d, a));
(%o1) foo(b, c, d)

Limit the number of removed arguments.

(%i1) delete (a, foo (a, b, a, c, d, a), 2);
(%o1) foo(b, c, d, a)

Whether arguments are the same as expr 1 is determined by "=". Arguments which
are equal but not "=" are not removed.

(%i1) [is (equal (0, 0)), is (equal (0, 0.0)), is (equal (0, 0b0))];
rat: replaced 0.0 by 0/1 = 0.0
‘rat’ replaced 0.0B0 by 0/1 = 0.0B0
(%o1) [true, true, true]

(%i2) [is (0 = 0), is (0 = 0.0), is (0 = 0b0)];
(%o2) [true, false, false]

(%i3) delete (0, [0, 0.0, 0b0]);
(%o3) [0.0, 0.0b0]

(%i4) is (equal ((x + y)*(x - y), x^2 - y^2));
(%o4) true

(%i5) is ((x + y)*(x - y) = x^2 - y^2);
(%o5) false

(%i6) delete ((x + y)*(x - y), [(x + y)*(x - y), x^2 - y^2]);
2 2

(%o6) [x - y]

Functioneighth (expr)
Returns the 8’th item of expression or list expr. See first for more details.

Functionendcons
endcons (expr, list)
endcons (expr 1, expr 2)

endcons (expr, list) returns a new list constructed of the elements of list followed by
expr. The Maxima function endcons can also be used where the second argument is
other than a list and this might be useful. In this case, endcons (expr 1, expr 2) re-
turns an expression with same operator as expr 2 but with argument endcons(expr_
1, args(expr_2)). Examples:

52 Maxima 5.35.1 Manual

(%i1) endcons(a,[b,c,d]);
(%o1) [b, c, d, a]
(%i2) endcons(a,f(b,c,d));
(%o2) f(b, c, d, a)

In general, endcons applied to a nonlist doesn’t make sense. For instance,
endcons(a,b^c) results in an illegal expression, since ’^’ cannot take three
arguments.

When inflag is true, endcons operates on the internal structure of an expression,
otherwise endcons operates on the displayed form. Especially when inflag is true,
endcons applied to a nonlist sometimes gives a surprising result; for example

(%i1) endcons(a,-a),inflag : true;
2

(%o1) - a
(%i2) endcons(a,-a),inflag : false;
(%o2) 0

Functionfifth (expr)
Returns the 5’th item of expression or list expr. See first for more details.

Functionfirst (expr)
Returns the first part of expr which may result in the first element of a list, the
first row of a matrix, the first term of a sum, etc. Note that first and its related
functions, rest and last, work on the form of expr which is displayed not the form
which is typed on input. If the variable inflag is set to true however, these functions
will look at the internal form of expr. Note that the simplifier re-orders expressions.
Thus first(x+y) will be x if inflag is true and y if inflag is false (first(y+x)
gives the same results). The functions second . . . tenth yield the second through
the tenth part of their input argument.

Functionfourth (expr)
Returns the 4’th item of expression or list expr. See first for more details.

Functionjoin (l, m)
Creates a new list containing the elements of lists l and m, interspersed. The result
has elements [l[1], m[1], l[2], m[2], ...]. The lists l and m may contain any
type of elements.

If the lists are different lengths, join ignores elements of the longer list.

Maxima complains if l or m is not a list.

Examples:

(%i1) L1: [a, sin(b), c!, d - 1];
(%o1) [a, sin(b), c!, d - 1]

(%i2) join (L1, [1, 2, 3, 4]);
(%o2) [a, 1, sin(b), 2, c!, 3, d - 1, 4]

(%i3) join (L1, [aa, bb, cc, dd, ee, ff]);
(%o3) [a, aa, sin(b), bb, c!, cc, d - 1, dd]

Chapter 5: Data Types and Structures 53

Functionlast (expr)
Returns the last part (term, row, element, etc.) of the expr.

Functionlength (expr)
Returns (by default) the number of parts in the external (displayed) form of expr.
For lists this is the number of elements, for matrices it is the number of rows, and for
sums it is the number of terms (see dispform).

The length command is affected by the inflag switch. So, e.g. length(a/(b*c));

gives 2 if inflag is false (Assuming exptdispflag is true), but 3 if inflag is true
(the internal representation is essentially a*b^-1*c^-1).

Option variablelistarith
Default value: true

If false causes any arithmetic operations with lists to be suppressed; when true, list-
matrix operations are contagious causing lists to be converted to matrices yielding a
result which is always a matrix. However, list-list operations should return lists.

Functionlistp (expr)
Returns true if expr is a list else false.

Functionmakelist
makelist ()
makelist (expr, n)
makelist (expr, i, i max)
makelist (expr, i, i 0, i max)
makelist (expr, i, i 0, i max, step)
makelist (expr, x, list)

The first form, makelist (), creates an empty list. The second form, makelist

(expr), creates a list with expr as its single element. makelist (expr, n) creates a
list of n elements generated from expr.

The most general form, makelist (expr, i, i 0, i max, step), returns the list of ele-
ments obtained when ev (expr, i=j) is applied to the elements j of the sequence: i 0,
i 0 + step, i 0 + 2*step, ..., with |j| less than or equal to |i max|.

The increment step can be a number (positive or negative) or an expression. If it is
omitted, the default value 1 will be used. If both i 0 and step are omitted, they will
both have a default value of 1.

makelist (expr, x, list) returns a list, the j’th element of which is equal to ev

(expr, x=list[j]) for j equal to 1 through length (list).

Examples:

(%i1) makelist (concat (x,i), i, 6);
(%o1) [x1, x2, x3, x4, x5, x6]

(%i2) makelist (x=y, y, [a, b, c]);
(%o2) [x = a, x = b, x = c]

54 Maxima 5.35.1 Manual

(%i3) makelist (x^2, x, 3, 2*%pi, 2);
(%o3) [9, 25]

(%i4) makelist (random(6), 4);
(%o4) [2, 0, 2, 5]

(%i5) flatten (makelist (makelist (i^2, 3), i, 4));
(%o5) [1, 1, 1, 4, 4, 4, 9, 9, 9, 16, 16, 16]

(%i6) flatten (makelist (makelist (i^2, i, 3), 4));
(%o6) [1, 4, 9, 1, 4, 9, 1, 4, 9, 1, 4, 9]

Functionmember (expr 1, expr 2)
Returns true if is(expr 1 = a) for some element a in args(expr 2), otherwise returns
false.

expr_2 is typically a list, in which case args(expr 2) = expr 2 and is(expr 1 = a)
for some element a in expr_2 is the test.

member does not inspect parts of the arguments of expr_2, so it may return false

even if expr_1 is a part of some argument of expr_2.

See also elementp.

Examples:

(%i1) member (8, [8, 8.0, 8b0]);
(%o1) true

(%i2) member (8, [8.0, 8b0]);
(%o2) false

(%i3) member (b, [a, b, c]);
(%o3) true

(%i4) member (b, [[a, b], [b, c]]);
(%o4) false

(%i5) member ([b, c], [[a, b], [b, c]]);
(%o5) true

(%i6) F (1, 1/2, 1/4, 1/8);
1 1 1

(%o6) F(1, -, -, -)
2 4 8

(%i7) member (1/8, %);
(%o7) true

(%i8) member ("ab", ["aa", "ab", sin(1), a + b]);
(%o8) true

Functionninth (expr)
Returns the 9’th item of expression or list expr. See first for more details.

Functionpop (list)
pop removes and returns the first element from the list list. The second argument
list must be a mapatom that is bound to a nonempty list. If the argument list is not
bound to a nonempty list, Maxima signals an error. For examples, see push.

Chapter 5: Data Types and Structures 55

Functionpush (item, list)
push prepends the item item to the list list and returns a copy of the new list. The
second argument list must be a mapatom that is bound to a list. The first argument
item can be any Maxima symbol or expression. If the argument list is not bound to
a list, Maxima signals an error.

To remove the first item from a list, see pop.

Examples:

(%i1) ll : [];
(%o1) []
(%i2) push(x,ll);
(%o2) [x]
(%i3) push(x^2+y,ll);

2
(%o3) [y + x , x]
(%i4) push("string",ll);

2
(%o4) [string, y + x , x]
(%i5) pop(ll);
(%o5) string
(%i6) pop(ll);

2
(%o6) y + x
(%i7) pop(ll);
(%o7) x
(%i8) ll;
(%o8) []
(%i9)

Functionrest
rest (expr, n)
rest (expr)

Returns expr with its first n elements removed if n is positive and its last - n elements
removed if n is negative. If n is 1 it may be omitted. The first argument expr may be
a list, matrix, or other expression. When expr is a mapatom, rest signals an error;
when expr is an empty list and partswitch is false, rest signals an error. When
expr is an empty list and partswitch is true, rest returns end.

Applying rest to expression such as f(a,b,c) returns f(b,c). In general, applying
rest to an nonlist doesn’t make sense. For example, because ’^’ requires two argu-
ments, rest(a^b) results in an error message. The functions args and op may be
useful as well, since args(a^b) returns [a,b] and op(a^b) returns ^.

(%i1) rest(a+b+c);
(%o1) b+a
(%i2) rest(a+b+c,2);
(%o2) a
(%i3) rest(a+b+c,-2);
(%o3) c

56 Maxima 5.35.1 Manual

Functionreverse (list)
Reverses the order of the members of the list (not the members themselves). reverse
also works on general expressions, e.g. reverse(a=b); gives b=a.

Functionsecond (expr)
Returns the 2’nd item of expression or list expr. See first for more details.

Functionseventh (expr)
Returns the 7’th item of expression or list expr. See first for more details.

Functionsixth (expr)
Returns the 6’th item of expression or list expr. See first for more details.

Functionsort
sort (L, P)
sort (L)

sort(L, P) sorts a list L according to a predicate P of two arguments which defines
a strict weak order on the elements of L. If P(a, b) is true, then a appears before b

in the result. If neither P(a, b) nor P(b, a) are true, then a and b are equivalent,
and appear in the result in the same order as in the input. That is, sort is a stable
sort.

If P(a, b) and P(b, a) are both true for some elements of L, then P is not a valid
sort predicate, and the result is undefined. If P(a, b) is something other than true

or false, sort signals an error.

The predicate may be specified as the name of a function or binary infix operator, or
as a lambda expression. If specified as the name of an operator, the name must be
enclosed in double quotes.

The sorted list is returned as a new object; the argument L is not modified.

sort(L) is equivalent to sort(L, orderlessp).

The default sorting order is ascending, as determined by orderlessp. The predicate
ordergreatp sorts a list in descending order.

All Maxima atoms and expressions are comparable under orderlessp and
ordergreatp.

Operators < and > order numbers, constants, and constant expressions by magni-
tude. Note that orderlessp and ordergreatp do not order numbers, constants, and
constant expressions by magnitude.

ordermagnitudep orders numbers, constants, and constant expressions the same as
<, and all other elements the same as orderlessp.

Examples:

sort sorts a list according to a predicate of two arguments which defines a strict weak
order on the elements of the list.

Chapter 5: Data Types and Structures 57

(%i1) sort ([1, a, b, 2, 3, c], ’orderlessp);
(%o1) [1, 2, 3, a, b, c]
(%i2) sort ([1, a, b, 2, 3, c], ’ordergreatp);
(%o2) [c, b, a, 3, 2, 1]

The predicate may be specified as the name of a function or binary infix operator, or
as a lambda expression. If specified as the name of an operator, the name must be
enclosed in double quotes.

(%i1) L : [[1, x], [3, y], [4, w], [2, z]];
(%o1) [[1, x], [3, y], [4, w], [2, z]]
(%i2) foo (a, b) := a[1] > b[1];
(%o2) foo(a, b) := a > b

1 1
(%i3) sort (L, ’foo);
(%o3) [[4, w], [3, y], [2, z], [1, x]]
(%i4) infix (">>");
(%o4) >>
(%i5) a >> b := a[1] > b[1];
(%o5) a >> b := a > b

1 1
(%i6) sort (L, ">>");
(%o6) [[4, w], [3, y], [2, z], [1, x]]
(%i7) sort (L, lambda ([a, b], a[1] > b[1]));
(%o7) [[4, w], [3, y], [2, z], [1, x]]

sort(L) is equivalent to sort(L, orderlessp).

(%i1) L : [a, 2*b, -5, 7, 1 + %e, %pi];
(%o1) [a, 2 b, - 5, 7, %e + 1, %pi]
(%i2) sort (L);
(%o2) [- 5, 7, %e + 1, %pi, a, 2 b]
(%i3) sort (L, ’orderlessp);
(%o3) [- 5, 7, %e + 1, %pi, a, 2 b]

The default sorting order is ascending, as determined by orderlessp. The predicate
ordergreatp sorts a list in descending order.

(%i1) L : [a, 2*b, -5, 7, 1 + %e, %pi];
(%o1) [a, 2 b, - 5, 7, %e + 1, %pi]
(%i2) sort (L);
(%o2) [- 5, 7, %e + 1, %pi, a, 2 b]
(%i3) sort (L, ’ordergreatp);
(%o3) [2 b, a, %pi, %e + 1, 7, - 5]

All Maxima atoms and expressions are comparable under orderlessp and
ordergreatp.

58 Maxima 5.35.1 Manual

(%i1) L : [11, -17, 29b0, 9*c, 7.55, foo(x, y), -5/2, b + a];
5

(%o1) [11, - 17, 2.9b1, 9 c, 7.55, foo(x, y), - -, b + a]
2

(%i2) sort (L, orderlessp);
5

(%o2) [- 17, - -, 7.55, 11, 2.9b1, b + a, 9 c, foo(x, y)]
2

(%i3) sort (L, ordergreatp);
5

(%o3) [foo(x, y), 9 c, b + a, 2.9b1, 11, 7.55, - -, - 17]
2

Operators < and > order numbers, constants, and constant expressions by magni-
tude. Note that orderlessp and ordergreatp do not order numbers, constants, and
constant expressions by magnitude.

(%i1) L : [%pi, 3, 4, %e, %gamma];
(%o1) [%pi, 3, 4, %e, %gamma]
(%i2) sort (L, ">");
(%o2) [4, %pi, 3, %e, %gamma]
(%i3) sort (L, ordergreatp);
(%o3) [%pi, %gamma, %e, 4, 3]

ordermagnitudep orders numbers, constants, and constant expressions the same as
<, and all other elements the same as orderlessp.

(%i1) L : [%i, 1+%i, 2*x, minf, inf, %e, sin(1), 0, 1, 2, 3, 1.0, 1.0b0];
(%o1) [%i, %i + 1, 2 x, minf, inf, %e, sin(1), 0, 1, 2, 3, 1.0,

1.0b0]
(%i2) sort (L, ordermagnitudep);
(%o2) [minf, 0, sin(1), 1, 1.0, 1.0b0, 2, %e, 3, inf, %i,

%i + 1, 2 x]
(%i3) sort (L, orderlessp);
(%o3) [0, 1, 1.0, 2, 3, %e, %i, %i + 1, inf, minf, sin(1),

1.0b0, 2 x]

Functionsublist (list, p)
Returns the list of elements of list for which the predicate p returns true.

Example:

(%i1) L: [1, 2, 3, 4, 5, 6];
(%o1) [1, 2, 3, 4, 5, 6]

(%i2) sublist (L, evenp);
(%o2) [2, 4, 6]

Functionsublist indices (L, P)
Returns the indices of the elements x of the list L for which the predicate maybe(P(x))

returns true; this excludes unknown as well as false. P may be the name of a function
or a lambda expression. L must be a literal list.

Examples:

Chapter 5: Data Types and Structures 59

(%i1) sublist_indices (’[a, b, b, c, 1, 2, b, 3, b],
lambda ([x], x=’b));

(%o1) [2, 3, 7, 9]

(%i2) sublist_indices (’[a, b, b, c, 1, 2, b, 3, b], symbolp);
(%o2) [1, 2, 3, 4, 7, 9]

(%i3) sublist_indices ([1 > 0, 1 < 0, 2 < 1, 2 > 1, 2 > 0],
identity);

(%o3) [1, 4, 5]

(%i4) assume (x < -1);
(%o4) [x < - 1]

(%i5) map (maybe, [x > 0, x < 0, x < -2]);
(%o5) [false, true, unknown]

(%i6) sublist_indices ([x > 0, x < 0, x < -2], identity);
(%o6) [2]

Functionunique (L)
Returns the unique elements of the list L.

When all the elements of L are unique, unique returns a shallow copy of L, not L
itself.

If L is not a list, unique returns L.

Example:

(%i1) unique ([1, %pi, a + b, 2, 1, %e, %pi, a + b, [1]]);
(%o1) [1, 2, %e, %pi, [1], b + a]

Functiontenth (expr)
Returns the 10’th item of expression or list expr. See first for more details.

Functionthird (expr)
Returns the 3’rd item of expression or list expr. See first for more details.

60 Maxima 5.35.1 Manual

5.5 Arrays

5.5.1 Functions and Variables for Arrays

Functionarray
array (name, dim 1, . . . , dim n)
array (name, type, dim 1, . . . , dim n)
array ([name 1, . . . , name m], dim 1, . . . , dim n)

Creates an n-dimensional array. n may be less than or equal to 5. The subscripts for
the i’th dimension are the integers running from 0 to dim i.

array (name, dim 1, ..., dim n) creates a general array.

array (name, type, dim 1, ..., dim n) creates an array, with elements of a speci-
fied type. type can be fixnum for integers of limited size or flonum for floating-point
numbers.

array ([name 1, ..., name m], dim 1, ..., dim n) creates m arrays, all of the
same dimensions.

If the user assigns to a subscripted variable before declaring the corresponding array,
an undeclared array is created. Undeclared arrays, otherwise known as hashed arrays
(because hash coding is done on the subscripts), are more general than declared
arrays. The user does not declare their maximum size, and they grow dynamically
by hashing as more elements are assigned values. The subscripts of undeclared arrays
need not even be numbers. However, unless an array is rather sparse, it is probably
more efficient to declare it when possible than to leave it undeclared. The array

function can be used to transform an undeclared array into a declared array.

Functionarrayapply (A, [i 1, . . . , i n])
Evaluates A [i 1, ..., i n], where A is an array and i 1, . . . , i n are integers.

This is reminiscent of apply, except the first argument is an array instead of a func-
tion.

Functionarrayinfo (A)
Returns information about the array A. The argument A may be a declared array,
an undeclared (hashed) array, an array function, or a subscripted function.

For declared arrays, arrayinfo returns a list comprising the atom declared, the
number of dimensions, and the size of each dimension. The elements of the array,
both bound and unbound, are returned by listarray.

For undeclared arrays (hashed arrays), arrayinfo returns a list comprising the atom
hashed, the number of subscripts, and the subscripts of every element which has a
value. The values are returned by listarray.

For array functions, arrayinfo returns a list comprising the atom hashed, the number
of subscripts, and any subscript values for which there are stored function values. The
stored function values are returned by listarray.

Chapter 5: Data Types and Structures 61

For subscripted functions, arrayinfo returns a list comprising the atom hashed, the
number of subscripts, and any subscript values for which there are lambda expressions.
The lambda expressions are returned by listarray.

See also listarray.

Examples:

arrayinfo and listarray applied to a declared array.

(%i1) array (aa, 2, 3);
(%o1) aa

(%i2) aa [2, 3] : %pi;
(%o2) %pi

(%i3) aa [1, 2] : %e;
(%o3) %e

(%i4) arrayinfo (aa);
(%o4) [declared, 2, [2, 3]]

(%i5) listarray (aa);
(%o5) [#####, #####, #####, #####, #####, #####, %e, #####,

#####, #####, #####, %pi]

arrayinfo and listarray applied to an undeclared (hashed) array.

(%i1) bb [FOO] : (a + b)^2;
2

(%o1) (b + a)

(%i2) bb [BAR] : (c - d)^3;
3

(%o2) (c - d)

(%i3) arrayinfo (bb);
(%o3) [hashed, 1, [BAR], [FOO]]

(%i4) listarray (bb);
3 2

(%o4) [(c - d) , (b + a)]

arrayinfo and listarray applied to an array function.

(%i1) cc [x, y] := y / x;
y

(%o1) cc := -
x, y x

(%i2) cc [u, v];
v

(%o2) -
u

(%i3) cc [4, z];
z

(%o3) -
4

(%i4) arrayinfo (cc);
(%o4) [hashed, 2, [4, z], [u, v]]

62 Maxima 5.35.1 Manual

(%i5) listarray (cc);
z v

(%o5) [-, -]
4 u

arrayinfo and listarray applied to a subscripted function.

(%i1) dd [x] (y) := y ^ x;
x

(%o1) dd (y) := y
x

(%i2) dd [a + b];
b + a

(%o2) lambda([y], y)

(%i3) dd [v - u];
v - u

(%o3) lambda([y], y)

(%i4) arrayinfo (dd);
(%o4) [hashed, 1, [b + a], [v - u]]

(%i5) listarray (dd);
b + a v - u

(%o5) [lambda([y], y), lambda([y], y)]

Functionarraymake (A, [i 1, . . . , i n])
Returns the expression A[i 1, ..., i n]. The result is an unevaluated array refer-
ence.

arraymake is reminiscent of funmake, except the return value is an unevaluated array
reference instead of an unevaluated function call.

Examples:

(%i1) arraymake (A, [1]);
(%o1) A

1

(%i2) arraymake (A, [k]);
(%o2) A

k

(%i3) arraymake (A, [i, j, 3]);
(%o3) A

i, j, 3

(%i4) array (A, fixnum, 10);
(%o4) A

(%i5) fillarray (A, makelist (i^2, i, 1, 11));
(%o5) A

(%i6) arraymake (A, [5]);
(%o6) A

5

(%i7) ’’%;
(%o7) 36

(%i8) L : [a, b, c, d, e];
(%o8) [a, b, c, d, e]

Chapter 5: Data Types and Structures 63

(%i9) arraymake (’L, [n]);
(%o9) L

n

(%i10) ’’%, n = 3;
(%o10) c

(%i11) A2 : make_array (fixnum, 10);
(%o11) {Array: #(0 0 0 0 0 0 0 0 0 0)}

(%i12) fillarray (A2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o12) {Array: #(1 2 3 4 5 6 7 8 9 10)}

(%i13) arraymake (’A2, [8]);
(%o13) A2

8

(%i14) ’’%;
(%o14) 9

System variablearrays
Default value: []

arrays is a list of arrays that have been allocated. These comprise arrays declared
by array, hashed arrays constructed by implicit definition (assigning something to
an array element), and array functions defined by := and define. Arrays defined by
make_array are not included.

See also array, arrayapply, arrayinfo, arraymake, fillarray, listarray, and
rearray.

Examples:

(%i1) array (aa, 5, 7);
(%o1) aa

(%i2) bb [FOO] : (a + b)^2;
2

(%o2) (b + a)

(%i3) cc [x] := x/100;
x

(%o3) cc := ---
x 100

(%i4) dd : make_array (’any, 7);
(%o4) {Array: #(NIL NIL NIL NIL NIL NIL NIL)}

(%i5) arrays;
(%o5) [aa, bb, cc]

Functionarraysetapply (A, [i 1, . . . , i n], x)
Assigns x to A[i 1, ..., i n], where A is an array and i 1, . . . , i n are integers.

arraysetapply evaluates its arguments.

Functionfillarray (A, B)
Fills array A from B, which is a list or an array.

64 Maxima 5.35.1 Manual

If a specific type was declared for A when it was created, it can only be filled with
elements of that same type; it is an error if an attempt is made to copy an element
of a different type.

If the dimensions of the arrays A and B are different, A is filled in row-major order.
If there are not enough elements in B the last element is used to fill out the rest of
A. If there are too many, the remaining ones are ignored.

fillarray returns its first argument.

Examples:

Create an array of 9 elements and fill it from a list.

(%i1) array (a1, fixnum, 8);
(%o1) a1

(%i2) listarray (a1);
(%o2) [0, 0, 0, 0, 0, 0, 0, 0, 0]

(%i3) fillarray (a1, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
(%o3) a1

(%i4) listarray (a1);
(%o4) [1, 2, 3, 4, 5, 6, 7, 8, 9]

When there are too few elements to fill the array, the last element is repeated. When
there are too many elements, the extra elements are ignored.

(%i1) a2 : make_array (fixnum, 8);
(%o1) {Array: #(0 0 0 0 0 0 0 0)}

(%i2) fillarray (a2, [1, 2, 3, 4, 5]);
(%o2) {Array: #(1 2 3 4 5 5 5 5)}

(%i3) fillarray (a2, [4]);
(%o3) {Array: #(4 4 4 4 4 4 4 4)}

(%i4) fillarray (a2, makelist (i, i, 1, 100));
(%o4) {Array: #(1 2 3 4 5 6 7 8)}

Multple-dimension arrays are filled in row-major order.

(%i1) a3 : make_array (fixnum, 2, 5);
(%o1) {Array: #2A((0 0 0 0 0) (0 0 0 0 0))}

(%i2) fillarray (a3, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o2) {Array: #2A((1 2 3 4 5) (6 7 8 9 10))}

(%i3) a4 : make_array (fixnum, 5, 2);
(%o3) {Array: #2A((0 0) (0 0) (0 0) (0 0) (0 0))}

(%i4) fillarray (a4, a3);
(%o4) {Array: #2A((1 2) (3 4) (5 6) (7 8) (9 10))}

Functionlistarray (A)
Returns a list of the elements of the array A. The argument A may be a declared
array, an undeclared (hashed) array, an array function, or a subscripted function.

Elements are listed in row-major order. That is, elements are sorted according to the
first index, then according to the second index, and so on. The sorting order of index
values is the same as the order established by orderless.

For undeclared arrays, array functions, and subscripted functions, the elements cor-
respond to the index values returned by arrayinfo.

Chapter 5: Data Types and Structures 65

Unbound elements of declared general arrays (that is, not fixnum and not flonum)
are returned as #####. Unbound elements of declared fixnum or flonum arrays are
returned as 0 or 0.0, respectively. Unbound elements of undeclared arrays, array
functions, and subscripted functions are not returned.

Examples:

listarray and arrayinfo applied to a declared array.

(%i1) array (aa, 2, 3);
(%o1) aa

(%i2) aa [2, 3] : %pi;
(%o2) %pi

(%i3) aa [1, 2] : %e;
(%o3) %e

(%i4) listarray (aa);
(%o4) [#####, #####, #####, #####, #####, #####, %e, #####,

#####, #####, #####, %pi]

(%i5) arrayinfo (aa);
(%o5) [declared, 2, [2, 3]]

listarray and arrayinfo applied to an undeclared (hashed) array.

(%i1) bb [FOO] : (a + b)^2;
2

(%o1) (b + a)

(%i2) bb [BAR] : (c - d)^3;
3

(%o2) (c - d)

(%i3) listarray (bb);
3 2

(%o3) [(c - d) , (b + a)]

(%i4) arrayinfo (bb);
(%o4) [hashed, 1, [BAR], [FOO]]

listarray and arrayinfo applied to an array function.

(%i1) cc [x, y] := y / x;
y

(%o1) cc := -
x, y x

(%i2) cc [u, v];
v

(%o2) -
u

(%i3) cc [4, z];
z

(%o3) -
4

(%i4) listarray (cc);
z v

(%o4) [-, -]
4 u

66 Maxima 5.35.1 Manual

(%i5) arrayinfo (cc);
(%o5) [hashed, 2, [4, z], [u, v]]

listarray and arrayinfo applied to a subscripted function.

(%i1) dd [x] (y) := y ^ x;
x

(%o1) dd (y) := y
x

(%i2) dd [a + b];
b + a

(%o2) lambda([y], y)

(%i3) dd [v - u];
v - u

(%o3) lambda([y], y)

(%i4) listarray (dd);
b + a v - u

(%o4) [lambda([y], y), lambda([y], y)]

(%i5) arrayinfo (dd);
(%o5) [hashed, 1, [b + a], [v - u]]

Functionmake array (type, dim 1, . . . , dim n)
Creates and returns a Lisp array. type may be any, flonum, fixnum, hashed or
functional. There are n indices, and the i’th index runs from 0 to dim i − 1.

The advantage of make_array over array is that the return value doesn’t have a
name, and once a pointer to it goes away, it will also go away. For example, if y:
make_array (...) then y points to an object which takes up space, but after y:

false, y no longer points to that object, so the object can be garbage collected.

Examples:

(%i1) A1 : make_array (fixnum, 10);
(%o1) {Array: #(0 0 0 0 0 0 0 0 0 0)}

(%i2) A1 [8] : 1729;
(%o2) 1729

(%i3) A1;
(%o3) {Array: #(0 0 0 0 0 0 0 0 1729 0)}

(%i4) A2 : make_array (flonum, 10);
(%o4) {Array: #(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)}

(%i5) A2 [2] : 2.718281828;
(%o5) 2.718281828

(%i6) A2;
(%o6)

{Array: #(0.0 0.0 2.718281828 0.0 0.0 0.0 0.0 0.0 0.0 0.0)}

(%i7) A3 : make_array (any, 10);
(%o7) {Array: #(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)}

(%i8) A3 [4] : x - y - z;
(%o8) - z - y + x

Chapter 5: Data Types and Structures 67

(%i9) A3;
(%o9) {Array: #(NIL NIL NIL NIL ((MPLUS SIMP) $X ((MTIMES SIMP)\
-1 $Y) ((MTIMES SIMP) -1 $Z))
NIL NIL NIL NIL NIL)}

(%i10) A4 : make_array (fixnum, 2, 3, 5);
(%o10) {Array: #3A(((0 0 0 0 0) (0 0 0 0 0) (0 0 0 0 0)) ((0 0 \
0 0 0) (0 0 0 0 0) (0 0 0 0 0)))}

(%i11) fillarray (A4, makelist (i, i, 1, 2*3*5));
(%o11) {Array: #3A(((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15))

((16 17 18 19 20) (21 22 23 24 25) (26 27 28 29 30)))}

(%i12) A4 [0, 2, 1];
(%o12) 12

Functionrearray (A, dim 1, . . . , dim n)
Changes the dimensions of an array. The new array will be filled with the elements of
the old one in row-major order. If the old array was too small, the remaining elements
are filled with false, 0.0 or 0, depending on the type of the array. The type of the
array cannot be changed.

Functionremarray
remarray (A 1, . . . , A n)
remarray (all)

Removes arrays and array associated functions and frees the storage occupied. The
arguments may be declared arrays, undeclared (hashed) arrays, array functions, and
subscripted functions.

remarray (all) removes all items in the global list arrays.

It may be necessary to use this function if it is desired to redefine the values in a
hashed array.

remarray returns the list of arrays removed.

remarray quotes its arguments.

Functionsubvar (x, i)
Evaluates the subscripted expression x[i].

subvar evaluates its arguments.

arraymake (x, [i]) constructs the expression x[i], but does not evaluate it.

Examples:

(%i1) x : foo $
(%i2) i : 3 $
(%i3) subvar (x, i);
(%o3) foo

3
(%i4) foo : [aa, bb, cc, dd, ee]$
(%i5) subvar (x, i);
(%o5) cc

68 Maxima 5.35.1 Manual

(%i6) arraymake (x, [i]);
(%o6) foo

3

(%i7) ’’%;
(%o7) cc

Functionsubvarp (expr)
Returns true if expr is a subscripted variable, for example a[i].

Option variableuse fast arrays
If true then only two types of arrays are recognized:

1. The art-q array (t in Common Lisp) which may have several dimensions indexed
by integers, and may hold any Lisp or Maxima object as an entry. To construct
such an array, enter a:make_array(any,3,4); then a will have as value, an array
with twelve slots, and the indexing is zero based.

2. The Hash table array which is the default type of array created if one does
b[x+1]:y^2 (and b is not already an array, a list, or a matrix – if it were one
of these an error would be caused since x+1 would not be a valid subscript for
an art-q array, a list or a matrix). Its indices (also known as keys) may be
any object. It only takes one key at a time (b[x+1,u]:y would ignore the u).
Referencing is done by b[x+1] ==> y^2. Of course the key may be a list, e.g.
b[[x+1,u]]:y would be valid. This is incompatible with the old Maxima hash
arrays, but saves consing.

An advantage of storing the arrays as values of the symbol is that the usual conven-
tions about local variables of a function apply to arrays as well. The Hash table type
also uses less consing and is more efficient than the old type of Maxima hashar. To
obtain consistent behaviour in translated and compiled code set translate_fast_

arrays to be true.

Chapter 5: Data Types and Structures 69

5.6 Structures

5.6.1 Introduction to Structures

Maxima provides a simple data aggregate called a structure. A structure is an expression
in which arguments are identified by name (the field name) and the expression as a whole
is identified by its operator (the structure name). A field value can be any expression.

A structure is defined by the defstruct function; the global variable structures is
the list of user-defined structures. The function new creates instances of structures. The
@ operator refers to fields. kill(S) removes the structure definition S, and kill(x@ a)
unbinds the field a of the structure instance x.

In the pretty-printing console display (with display2d equal to true), structure in-
stances are displayed with the value of each field represented as an equation, with the field
name on the left-hand side and the value on the right-hand side. (The equation is only a
display construct; only the value is actually stored.) In 1-dimensional display (via grind or
with display2d equal to false), structure instances are displayed without the field names.

There is no way to use a field name as a function name, although a field value can be
a lambda expression. Nor can the values of fields be restricted to certain types; any field
can be assigned any kind of expression. There is no way to make some fields accessible or
inaccessible in different contexts; all fields are always visible.

5.6.2 Functions and Variables for Structures

Global variablestructures
structures is the list of user-defined structures defined by defstruct.

Functiondefstruct
defstruct (S(a 1, . . . , a n))
defstruct (S(a 1 = v 1, . . . , a n = v n))

Define a structure, which is a list of named fields a 1, . . . , a n associated with a
symbol S. An instance of a structure is just an expression which has operator S and
exactly n arguments. new(S) creates a new instance of structure S.

An argument which is just a symbol a specifies the name of a field. An argument
which is an equation a = v specifies the field name a and its default value v. The
default value can be any expression.

defstruct puts S on the list of user-defined structures, structures.

kill(S) removes S from the list of user-defined structures, and removes the structure
definition.

Examples:

(%i1) defstruct (foo (a, b, c));
(%o1) [foo(a, b, c)]
(%i2) structures;
(%o2) [foo(a, b, c)]
(%i3) new (foo);

70 Maxima 5.35.1 Manual

(%o3) foo(a, b, c)
(%i4) defstruct (bar (v, w, x = 123, y = %pi));
(%o4) [bar(v, w, x = 123, y = %pi)]
(%i5) structures;
(%o5) [foo(a, b, c), bar(v, w, x = 123, y = %pi)]
(%i6) new (bar);
(%o6) bar(v, w, x = 123, y = %pi)
(%i7) kill (foo);
(%o7) done
(%i8) structures;
(%o8) [bar(v, w, x = 123, y = %pi)]

Functionnew
new (S)
new (S (v 1, . . . , v n))

new creates new instances of structures.

new(S) creates a new instance of structure S in which each field is assigned its default
value, if any, or no value at all if no default was specified in the structure definition.

new(S(v 1, ..., v n)) creates a new instance of S in which fields are assigned the
values v 1, . . . , v n.

Examples:

(%i1) defstruct (foo (w, x = %e, y = 42, z));
(%o1) [foo(w, x = %e, y = 42, z)]
(%i2) new (foo);
(%o2) foo(w, x = %e, y = 42, z)
(%i3) new (foo (1, 2, 4, 8));
(%o3) foo(w = 1, x = 2, y = 4, z = 8)

Operator@
@ is the structure field access operator. The expression x@ a refers to the value of
field a of the structure instance x. The field name is not evaluated.

If the field a in x has not been assigned a value, x@ a evaluates to itself.

kill(x@ a) removes the value of field a in x.

Examples:

(%i1) defstruct (foo (x, y, z));
(%o1) [foo(x, y, z)]
(%i2) u : new (foo (123, a - b, %pi));
(%o2) foo(x = 123, y = a - b, z = %pi)
(%i3) u@z;
(%o3) %pi
(%i4) u@z : %e;
(%o4) %e
(%i5) u;
(%o5) foo(x = 123, y = a - b, z = %e)
(%i6) kill (u@z);
(%o6) done

Chapter 5: Data Types and Structures 71

(%i7) u;
(%o7) foo(x = 123, y = a - b, z)
(%i8) u@z;
(%o8) u@z

The field name is not evaluated.

(%i1) defstruct (bar (g, h));
(%o1) [bar(g, h)]
(%i2) x : new (bar);
(%o2) bar(g, h)
(%i3) x@h : 42;
(%o3) 42
(%i4) h : 123;
(%o4) 123
(%i5) x@h;
(%o5) 42
(%i6) x@h : 19;
(%o6) 19
(%i7) x;
(%o7) bar(g, h = 19)
(%i8) h;
(%o8) 123

72 Maxima 5.35.1 Manual

Chapter 6: Expressions 73

6 Expressions

6.1 Introduction to Expressions

There are a number of reserved words which should not be used as variable names. Their
use would cause a possibly cryptic syntax error.

integrate next from diff
in at limit sum
for and elseif then
else do or if
unless product while thru
step

Most things in Maxima are expressions. A sequence of expressions can be made into an
expression by separating them by commas and putting parentheses around them. This is
similar to the C comma expression.

(%i1) x: 3$
(%i2) (x: x+1, x: x^2);
(%o2) 16
(%i3) (if (x > 17) then 2 else 4);
(%o3) 4
(%i4) (if (x > 17) then x: 2 else y: 4, y+x);
(%o4) 20

Even loops in Maxima are expressions, although the value they return is the not too
useful done.

(%i1) y: (x: 1, for i from 1 thru 10 do (x: x*i))$
(%i2) y;
(%o2) done

Whereas what you really want is probably to include a third term in the comma expres-
sion which actually gives back the value.

(%i3) y: (x: 1, for i from 1 thru 10 do (x: x*i), x)$
(%i4) y;
(%o4) 3628800

6.2 Nouns and Verbs

Maxima distinguishes between operators which are "nouns" and operators which are
"verbs". A verb is an operator which can be executed. A noun is an operator which
appears as a symbol in an expression, without being executed. By default, function names
are verbs. A verb can be changed into a noun by quoting the function name or applying the
nounify function. A noun can be changed into a verb by applying the verbify function.
The evaluation flag nouns causes ev to evaluate nouns in an expression.

The verb form is distinguished by a leading dollar sign $ on the corresponding Lisp
symbol. In contrast, the noun form is distinguished by a leading percent sign % on the
corresponding Lisp symbol. Some nouns have special display properties, such as ’integrate
and ’derivative (returned by diff), but most do not. By default, the noun and verb

74 Maxima 5.35.1 Manual

forms of a function are identical when displayed. The global flag noundisp causes Maxima
to display nouns with a leading quote mark ’.

See also noun, nouns, nounify, and verbify.

Examples:

(%i1) foo (x) := x^2;
2

(%o1) foo(x) := x
(%i2) foo (42);
(%o2) 1764
(%i3) ’foo (42);
(%o3) foo(42)
(%i4) ’foo (42), nouns;
(%o4) 1764
(%i5) declare (bar, noun);
(%o5) done
(%i6) bar (x) := x/17;

x
(%o6) ’’bar(x) := --

17
(%i7) bar (52);
(%o7) bar(52)
(%i8) bar (52), nouns;

52
(%o8) --

17
(%i9) integrate (1/x, x, 1, 42);
(%o9) log(42)
(%i10) ’integrate (1/x, x, 1, 42);

42
/
[1

(%o10) I - dx
] x
/
1

(%i11) ev (%, nouns);
(%o11) log(42)

6.3 Identifiers

Maxima identifiers may comprise alphabetic characters, plus the numerals 0 through 9,
plus any special character preceded by the backslash \ character.

A numeral may be the first character of an identifier if it is preceded by a backslash.
Numerals which are the second or later characters need not be preceded by a backslash.

Characters may be declared alphabetic by the declare function. If so declared, they
need not be preceded by a backslash in an identifier. The alphabetic characters are initially
A through Z, a through z, %, and _.

Chapter 6: Expressions 75

Maxima is case-sensitive. The identifiers foo, FOO, and Foo are distinct. See Section 37.1
[Lisp and Maxima], page 601 for more on this point.

A Maxima identifier is a Lisp symbol which begins with a dollar sign $. Any other Lisp
symbol is preceded by a question mark ? when it appears in Maxima. See Section 37.1 [Lisp
and Maxima], page 601 for more on this point.

Examples:

(%i1) %an_ordinary_identifier42;
(%o1) %an_ordinary_identifier42
(%i2) embedded\ spaces\ in\ an\ identifier;
(%o2) embedded spaces in an identifier
(%i3) symbolp (%);
(%o3) true
(%i4) [foo+bar, foo\+bar];
(%o4) [foo + bar, foo+bar]
(%i5) [1729, \1729];
(%o5) [1729, 1729]
(%i6) [symbolp (foo\+bar), symbolp (\1729)];
(%o6) [true, true]
(%i7) [is (foo\+bar = foo+bar), is (\1729 = 1729)];
(%o7) [false, false]
(%i8) baz\~quux;
(%o8) baz~quux
(%i9) declare ("~", alphabetic);
(%o9) done
(%i10) baz~quux;
(%o10) baz~quux
(%i11) [is (foo = FOO), is (FOO = Foo), is (Foo = foo)];
(%o11) [false, false, false]
(%i12) :lisp (defvar *my-lisp-variable* ’$foo)
MY-LISP-VARIABLE
(%i12) ?*my\-lisp\-variable*;
(%o12) foo

6.4 Inequality

Maxima has the inequality operators <, <=, >=, >, #, and notequal. See if for a
description of conditional expressions.

6.5 Functions and Variables for Expressions

Functionalias (new name 1, old name 1, . . . , new name n, old name n)
provides an alternate name for a (user or system) function, variable, array, etc. Any
even number of arguments may be used.

System variablealiases
Default value: []

76 Maxima 5.35.1 Manual

aliases is the list of atoms which have a user defined alias (set up by the alias,
ordergreat, orderless functions or by declaring the atom a noun with declare.)

Keywordallbut
works with the part commands (i.e. part, inpart, substpart, substinpart, dpart,
and lpart). For example,

(%i1) expr : e + d + c + b + a;
(%o1) e + d + c + b + a
(%i2) part (expr, [2, 5]);
(%o2) d + a

while

(%i1) expr : e + d + c + b + a;
(%o1) e + d + c + b + a
(%i2) part (expr, allbut (2, 5));
(%o2) e + c + b

allbut is also recognized by kill.

(%i1) [aa : 11, bb : 22, cc : 33, dd : 44, ee : 55];
(%o1) [11, 22, 33, 44, 55]
(%i2) kill (allbut (cc, dd));
(%o0) done
(%i1) [aa, bb, cc, dd];
(%o1) [aa, bb, 33, 44]

kill(allbut(a 1, a 2, ...)) has the effect of kill(all) except that it does not
kill the symbols a 1, a 2, . . .

Functionargs (expr)
Returns the list of arguments of expr, which may be any kind of expression other than
an atom. Only the arguments of the top-level operator are extracted; subexpressions
of expr appear as elements or subexpressions of elements of the list of arguments.

The order of the items in the list may depend on the global flag inflag.

args (expr) is equivalent to substpart ("[", expr, 0). See also substpart, and
op.

Functionatom (expr)
Returns true if expr is atomic (i.e. a number, name or string) else false. Thus
atom(5) is true while atom(a[1]) and atom(sin(x)) are false (assuming a[1]

and x are unbound).

Functionbox
box (expr)
box (expr, a)

Returns expr enclosed in a box. The return value is an expression with box as the
operator and expr as the argument. A box is drawn on the display when display2d

is true.

Chapter 6: Expressions 77

box (expr, a) encloses expr in a box labelled by the symbol a. The label is truncated
if it is longer than the width of the box.

box evaluates its argument. However, a boxed expression does not evaluate to its
content, so boxed expressions are effectively excluded from computations.

boxchar is the character used to draw the box in box and in the dpart and lpart

functions.

Examples:

(%i1) box (a^2 + b^2);
"""""""""
" 2 2"

(%o1) "b + a "
"""""""""

(%i2) a : 1234;
(%o2) 1234
(%i3) b : c - d;
(%o3) c - d
(%i4) box (a^2 + b^2);

""""""""""""""""""""
" 2 "

(%o4) "(c - d) + 1522756"
""""""""""""""""""""

(%i5) box (a^2 + b^2, term_1);
term_1""""""""""""""
" 2 "

(%o5) "(c - d) + 1522756"
""""""""""""""""""""

(%i6) 1729 - box (1729);
""""""

(%o6) 1729 - "1729"
""""""

(%i7) boxchar: "-";
(%o7) -
(%i8) box (sin(x) + cos(y));

(%o8) -cos(y) + sin(x)-

Option variableboxchar
Default value: "

boxchar is the character used to draw the box in the box and in the dpart and lpart

functions.

All boxes in an expression are drawn with the current value of boxchar; the drawing
character is not stored with the box expression.

Functioncollapse (expr)
Collapses expr by causing all of its common (i.e., equal) subexpressions to share (i.e.,
use the same cells), thereby saving space. (collapse is a subroutine used by the

78 Maxima 5.35.1 Manual

optimize command.) Thus, calling collapse may be useful after loading in a save

file. You can collapse several expressions together by using collapse ([expr 1, ...,

expr n]). Similarly, you can collapse the elements of the array A by doing collapse

(listarray (’A)).

Functiondisolate (expr, x 1, . . . , x n)
is similar to isolate (expr, x) except that it enables the user to isolate more than
one variable simultaneously. This might be useful, for example, if one were at-
tempting to change variables in a multiple integration, and that variable change
involved two or more of the integration variables. This function is autoloaded from
‘simplification/disol.mac’. A demo is available by demo("disol")$.

Functiondispform
dispform (expr)
dispform (expr, all)

Returns the external representation of expr.

dispform(expr) returns the external representation with respect to the main (top-
level) operator. dispform(expr, all) returns the external representation with re-
spect to all operators in expr.

See also part, inpart, and inflag.

Examples:

The internal representation of - x is "negative one times x" while the external repre-
sentation is "minus x".

(%i1) - x;
(%o1) - x
(%i2) ?format (true, "~S~%", %);
((MTIMES SIMP) -1 $X)
(%o2) false
(%i3) dispform (- x);
(%o3) - x
(%i4) ?format (true, "~S~%", %);
((MMINUS SIMP) $X)
(%o4) false

The internal representation of sqrt(x) is "x to the power 1/2" while the external
representation is "square root of x".

(%i1) sqrt (x);
(%o1) sqrt(x)
(%i2) ?format (true, "~S~%", %);
((MEXPT SIMP) $X ((RAT SIMP) 1 2))
(%o2) false
(%i3) dispform (sqrt (x));
(%o3) sqrt(x)
(%i4) ?format (true, "~S~%", %);
((%SQRT SIMP) $X)
(%o4) false

Use of the optional argument all.

Chapter 6: Expressions 79

(%i1) expr : sin (sqrt (x));
(%o1) sin(sqrt(x))
(%i2) freeof (sqrt, expr);
(%o2) true
(%i3) freeof (sqrt, dispform (expr));
(%o3) true
(%i4) freeof (sqrt, dispform (expr, all));
(%o4) false

Functiondpart (expr, n 1, . . . , n k)
Selects the same subexpression as part, but instead of just returning that subex-
pression as its value, it returns the whole expression with the selected subexpression
displayed inside a box. The box is actually part of the expression.

(%i1) dpart (x+y/z^2, 1, 2, 1);
y

(%o1) ---- + x
2

"""
"z"
"""

Option variableexptisolate
Default value: false

exptisolate, when true, causes isolate (expr, var) to examine exponents of
atoms (such as %e) which contain var.

Option variableexptsubst
Default value: false

exptsubst, when true, permits substitutions such as y for %e^x in %e^(a x).

(%i1) %e^(a*x);
a x

(%o1) %e

(%i2) exptsubst;
(%o2) false

(%i3) subst(y, %e^x, %e^(a*x));
a x

(%o3) %e

(%i4) exptsubst: not exptsubst;
(%o4) true

(%i5) subst(y, %e^x, %e^(a*x));
a

(%o5) y

80 Maxima 5.35.1 Manual

Functionfreeof (x 1, . . . , x n, expr)
freeof (x 1, expr) returns true if no subexpression of expr is equal to x 1 or if x 1
occurs only as a dummy variable in expr, or if x 1 is neither the noun nor verb form
of any operator in expr, and returns false otherwise.

freeof (x 1, ..., x n, expr) is equivalent to freeof (x 1, expr) and ... and

freeof (x n, expr).

The arguments x 1, . . . , x n may be names of functions and variables, subscripted
names, operators (enclosed in double quotes), or general expressions. freeof evalu-
ates its arguments.

freeof operates only on expr as it stands (after simplification and evaluation) and
does not attempt to determine if some equivalent expression would give a different
result. In particular, simplification may yield an equivalent but different expression
which comprises some different elements than the original form of expr.

A variable is a dummy variable in an expression if it has no binding outside of the
expression. Dummy variables recognized by freeof are the index of a sum or product,
the limit variable in limit, the integration variable in the definite integral form of
integrate, the original variable in laplace, formal variables in at expressions, and
arguments in lambda expressions.

The indefinite form of integrate is not free of its variable of integration.

Examples:

Arguments are names of functions, variables, subscripted names, operators, and ex-
pressions. freeof (a, b, expr) is equivalent to freeof (a, expr) and freeof (b,

expr).

(%i1) expr: z^3 * cos (a[1]) * b^(c+d);
d + c 3

(%o1) cos(a) b z
1

(%i2) freeof (z, expr);
(%o2) false
(%i3) freeof (cos, expr);
(%o3) false
(%i4) freeof (a[1], expr);
(%o4) false
(%i5) freeof (cos (a[1]), expr);
(%o5) false
(%i6) freeof (b^(c+d), expr);
(%o6) false
(%i7) freeof ("^", expr);
(%o7) false
(%i8) freeof (w, sin, a[2], sin (a[2]), b*(c+d), expr);
(%o8) true

freeof evaluates its arguments.

(%i1) expr: (a+b)^5$
(%i2) c: a$
(%i3) freeof (c, expr);
(%o3) false

Chapter 6: Expressions 81

freeof does not consider equivalent expressions. Simplification may yield an equiv-
alent but different expression.

(%i1) expr: (a+b)^5$
(%i2) expand (expr);

5 4 2 3 3 2 4 5
(%o2) b + 5 a b + 10 a b + 10 a b + 5 a b + a
(%i3) freeof (a+b, %);
(%o3) true
(%i4) freeof (a+b, expr);
(%o4) false
(%i5) exp (x);

x
(%o5) %e
(%i6) freeof (exp, exp (x));
(%o6) true

A summation or definite integral is free of its dummy variable. An indefinite integral
is not free of its variable of integration.

(%i1) freeof (i, ’sum (f(i), i, 0, n));
(%o1) true
(%i2) freeof (x, ’integrate (x^2, x, 0, 1));
(%o2) true
(%i3) freeof (x, ’integrate (x^2, x));
(%o3) false

Option variableinflag
Default value: false

When inflag is true, functions for part extraction inspect the internal form of expr.

Note that the simplifier re-orders expressions. Thus first (x + y) returns x if inflag
is true and y if inflag is false. (first (y + x) gives the same results.)

Also, setting inflag to true and calling part or substpart is the same as calling
inpart or substinpart.

Functions affected by the setting of inflag are: part, substpart, first, rest, last,
length, the for . . . in construct, map, fullmap, maplist, reveal and pickapart.

Functioninpart (expr, n 1, . . . , n k)
is similar to part but works on the internal representation of the expression rather
than the displayed form and thus may be faster since no formatting is done. Care
should be taken with respect to the order of subexpressions in sums and products
(since the order of variables in the internal form is often different from that in the
displayed form) and in dealing with unary minus, subtraction, and division (since
these operators are removed from the expression). part (x+y, 0) or inpart (x+y,

0) yield +, though in order to refer to the operator it must be enclosed in "s. For
example ... if inpart (%o9,0) = "+" then

Examples:

82 Maxima 5.35.1 Manual

(%i1) x + y + w*z;
(%o1) w z + y + x
(%i2) inpart (%, 3, 2);
(%o2) z
(%i3) part (%th (2), 1, 2);
(%o3) z
(%i4) ’limit (f(x)^g(x+1), x, 0, minus);

g(x + 1)
(%o4) limit f(x)

x -> 0-
(%i5) inpart (%, 1, 2);
(%o5) g(x + 1)

Functionisolate (expr, x)
Returns expr with subexpressions which are sums and which do not contain var
replaced by intermediate expression labels (these being atomic symbols like %t1, %t2,
. . .). This is often useful to avoid unnecessary expansion of subexpressions which
don’t contain the variable of interest. Since the intermediate labels are bound to the
subexpressions they can all be substituted back by evaluating the expression in which
they occur.

exptisolate (default value: false) if true will cause isolate to examine exponents
of atoms (like %e) which contain var.

isolate_wrt_times if true, then isolate will also isolate with respect to products.
See isolate_wrt_times.

Do example (isolate) for examples.

Option variableisolate wrt times
Default value: false

When isolate_wrt_times is true, isolate will also isolate with respect to products.
E.g. compare both settings of the switch on

(%i1) isolate_wrt_times: true$
(%i2) isolate (expand ((a+b+c)^2), c);

(%t2) 2 a

(%t3) 2 b

2 2
(%t4) b + 2 a b + a

2
(%o4) c + %t3 c + %t2 c + %t4
(%i4) isolate_wrt_times: false$
(%i5) isolate (expand ((a+b+c)^2), c);

Chapter 6: Expressions 83

2
(%o5) c + 2 b c + 2 a c + %t4

Option variablelistconstvars
Default value: false

When listconstvars is true the list returned by listofvars contains constant
variables, such as %e, %pi, %i or any variables declared as constant that occur in
expr. A variable is declared as constant type via declare, and constantp returns
true for all variables declared as constant. The default is to omit constant variables
from listofvars return value.

Example:

(%i1) lfreeof ([a, x], x^2+b);
(%o1) false

lfreeof ([b, x], x^2+b);
(%o2) false

lfreeof ([a, y], x^2+b);
(%o3) true

Option variablelistdummyvars
Default value: true

When listdummyvars is false, "dummy variables" in the expression will not be
included in the list returned by listofvars. (The meaning of "dummy variables" is
as given in freeof. "Dummy variables" are mathematical things like the index of a
sum or product, the limit variable, and the definite integration variable.)

Example:

(%i1) listdummyvars: true$
(%i2) listofvars (’sum(f(i), i, 0, n));
(%o2) [i, n]
(%i3) listdummyvars: false$
(%i4) listofvars (’sum(f(i), i, 0, n));
(%o4) [n]

Functionlistofvars (expr)
Returns a list of the variables in expr.

listconstvars if true causes listofvars to include %e, %pi, %i, and any variables
declared constant in the list it returns if they appear in expr. The default is to omit
these.

See also the option variable listdummyvars to exclude or include "dummy variables"
in the list of variables.

(%i1) listofvars (f (x[1]+y) / g^(2+a));
(%o1) [g, a, x , y]

1

84 Maxima 5.35.1 Manual

Functionlfreeof (list, expr)
For each member m of list, calls freeof (m, expr). It returns false if any call to
freeof does and true otherwise.

Functionlpart (label, expr, n 1, . . . , n k)
is similar to dpart but uses a labelled box. A labelled box is similar to the one
produced by dpart but it has a name in the top line.

Propertymainvar
You may declare variables to be mainvar. The ordering scale for atoms is essentially:
numbers < constants (e.g., %e, %pi) < scalars < other variables < mainvars. E.g., com-
pare expand ((X+Y)^4) with (declare (x, mainvar), expand ((x+y)^4)). (Note:
Care should be taken if you elect to use the above feature. E.g., if you subtract an
expression in which x is a mainvar from one in which x isn’t a mainvar, resimplifica-
tion e.g. with ev (expr, simp) may be necessary if cancellation is to occur. Also, if
you save an expression in which x is a mainvar, you probably should also save x.)

Propertynoun
noun is one of the options of the declare command. It makes a function so declared
a "noun", meaning that it won’t be evaluated automatically.

Example:

(%i1) factor (12345678);
2

(%o1) 2 3 47 14593
(%i2) declare (factor, noun);
(%o2) done
(%i3) factor (12345678);
(%o3) factor(12345678)
(%i4) ’’%, nouns;

2
(%o4) 2 3 47 14593

Option variablenoundisp
Default value: false

When noundisp is true, nouns display with a single quote. This switch is always
true when displaying function definitions.

Functionnounify (f)
Returns the noun form of the function name f. This is needed if one wishes to refer
to the name of a verb function as if it were a noun. Note that some verb functions
will return their noun forms if they can’t be evaluated for certain arguments. This is
also the form returned if a function call is preceded by a quote.

See also verbify.

Chapter 6: Expressions 85

Functionnterms (expr)
Returns the number of terms that expr would have if it were fully expanded out
and no cancellations or combination of terms occurred. Note that expressions like
sin (expr), sqrt (expr), exp (expr), etc. count as just one term regardless of how
many terms expr has (if it is a sum).

Functionop (expr)
Returns the main operator of the expression expr. op (expr) is equivalent to part

(expr, 0).

op returns a string if the main operator is a built-in or user-defined prefix, binary or
n-ary infix, postfix, matchfix, or nofix operator. Otherwise, if expr is a subscripted
function expression, op returns the subscripted function; in this case the return value
is not an atom. Otherwise, expr is an array function or ordinary function expression,
and op returns a symbol.

op observes the value of the global flag inflag.

op evaluates it argument.

See also args.

Examples:

(%i1) stringdisp: true$
(%i2) op (a * b * c);
(%o2) "*"
(%i3) op (a * b + c);
(%o3) "+"
(%i4) op (’sin (a + b));
(%o4) sin
(%i5) op (a!);
(%o5) "!"
(%i6) op (-a);
(%o6) "-"
(%i7) op ([a, b, c]);
(%o7) "["
(%i8) op (’(if a > b then c else d));
(%o8) "if"
(%i9) op (’foo (a));
(%o9) foo
(%i10) prefix (foo);
(%o10) "foo"
(%i11) op (foo a);
(%o11) "foo"
(%i12) op (F [x, y] (a, b, c));
(%o12) F

x, y
(%i13) op (G [u, v, w]);
(%o13) G

86 Maxima 5.35.1 Manual

Functionoperatorp
operatorp (expr, op)
operatorp (expr, [op 1, . . . , op n])

operatorp (expr, op) returns true if op is equal to the operator of expr.

operatorp (expr, [op 1, ..., op n]) returns true if some element op 1, . . . , op n
is equal to the operator of expr.

Option variableopsubst
Default value: true

When opsubst is false, subst does not attempt to substitute into the operator of
an expression. E.g., (opsubst: false, subst (x^2, r, r+r[0])) will work.

(%i1) r+r[0];
(%o1) r + r

0

(%i2) opsubst;
(%o2) true

(%i3) subst (x^2, r, r+r[0]);
2 2

(%o3) x + (x)
0

(%i4) opsubst: not opsubst;
(%o4) false

(%i5) subst (x^2, r, r+r[0]);
2

(%o5) x + r
0

Functionoptimize (expr)
Returns an expression that produces the same value and side effects as expr but
does so more efficiently by avoiding the recomputation of common subexpressions.
optimize also has the side effect of "collapsing" its argument so that all common
subexpressions are shared. Do example (optimize) for examples.

Option variableoptimprefix
Default value: %

optimprefix is the prefix used for generated symbols by the optimize command.

Functionordergreat (v 1, . . . , v n)
Functionorderless (v 1, . . . , v n)

ordergreat changes the canonical ordering of Maxima expressions such that v 1 suc-
ceeds v 2 succeeds . . . succeeds v n, and v n succeeds any other symbol not mentioned
as an argument.

orderless changes the canonical ordering of Maxima expressions such that v 1 pre-
cedes v 2 precedes . . . precedes v n, and v n precedes any other variable not men-
tioned as an argument.

Chapter 6: Expressions 87

The order established by ordergreat and orderless is dissolved by unorder.
ordergreat and orderless can be called only once each, unless unorder is called;
only the last call to ordergreat and orderless has any effect.

See also ordergreatp.

Functionordergreatp (expr 1, expr 2)
Functionorderlessp (expr 1, expr 2)

ordergreatp returns true if expr 1 succeeds expr 2 in the canonical ordering of
Maxima expressions, and false otherwise.

orderlessp returns true if expr 1 precedes expr 2 in the canonical ordering of Max-
ima expressions, and false otherwise.

All Maxima atoms and expressions are comparable under ordergreatp and
orderlessp, although there are isolated examples of expressions for which these
predicates are not transitive; that is a bug.

The canonical ordering of atoms (symbols, literal numbers, and strings) is the follow-
ing.

(integers and floats) precede (bigfloats) precede (declared constants) precede (strings)
precede (declared scalars) precede (first argument to orderless) precedes . . . pre-
cedes (last argument to orderless) precedes (other symbols) precede (last argument
to ordergreat) precedes . . . precedes (first argument to ordergreat) precedes (de-
clared main variables)

For non-atomic expressions, the canonical ordering is derived from the ordering for
atoms. For the built-in + * and ^ operators, the ordering is not easily summarized.
For other built-in operators and all other functions and operators, expressions are
ordered by their arguments (beginning with the first argument), then by the name
of the operator or function. In the case of subscripted expressions, the subscripted
symbol is considered the operator and the subscript is considered an argument.

The canonical ordering of expressions is modified by the functions ordergreat and
orderless, and the mainvar, constant, and scalar declarations.

See also sort.

Examples:

Ordering ordinary symbols and constants. Note that %pi is not ordered according to
its numerical value.

(%i1) stringdisp : true;
(%o1) true
(%i2) sort([%pi, 3b0, 3.0, x, X, "foo", 3, a, 4, "bar", 4.0, 4b0]);
(%o2) [3, 3.0, 4, 4.0, 3.0b0, 4.0b0, %pi, "bar", "foo", a, x, X]

Effect of ordergreat and orderless functions.

(%i1) sort ([M, H, K, T, E, W, G, A, P, J, S]);
(%o1) [A, E, G, H, J, K, M, P, S, T, W]
(%i2) ordergreat (S, J);
(%o2) done
(%i3) orderless (M, H);
(%o3) done

88 Maxima 5.35.1 Manual

(%i4) sort ([M, H, K, T, E, W, G, A, P, J, S]);
(%o4) [M, H, A, E, G, K, P, T, W, J, S]

Effect of mainvar, constant, and scalar declarations.

(%i1) sort ([aa, foo, bar, bb, baz, quux, cc, dd, A1, B1, C1]);
(%o1) [aa, bar, baz, bb, cc, dd, foo, quux, A1, B1, C1]
(%i2) declare (aa, mainvar);
(%o2) done
(%i3) declare ([baz, quux], constant);
(%o3) done
(%i4) declare ([A1, B1], scalar);
(%o4) done
(%i5) sort ([aa, foo, bar, bb, baz, quux, cc, dd, A1, B1, C1]);
(%o5) [baz, quux, A1, B1, bar, bb, cc, dd, foo, C1, aa]

Ordering non-atomic expressions.

(%i1) sort([1, 2, n, f(1), f(2), f(2, 1), g(1), g(1, 2), g(n),
f(n, 1)]);

(%o1) [1, 2, f(1), g(1), g(1, 2), f(2), f(2, 1), n, g(n),
f(n, 1)]

(%i2) sort ([foo(1), X[1], X[k], foo(k), 1, k]);
(%o2) [1, foo(1), X , k, foo(k), X]

1 k

Functionpart (expr, n 1, . . . , n k)
Returns parts of the displayed form of expr. It obtains the part of expr as specified
by the indices n 1, . . . , n k. First part n 1 of expr is obtained, then part n 2 of
that, etc. The result is part n k of . . . part n 2 of part n 1 of expr. If no indices are
specified expr is returned.

part can be used to obtain an element of a list, a row of a matrix, etc.

If the last argument to a part function is a list of indices then several subexpressions
are picked out, each one corresponding to an index of the list. Thus part (x + y +

z, [1, 3]) is z+x.

piece holds the last expression selected when using the part functions. It is set
during the execution of the function and thus may be referred to in the function itself
as shown below.

If partswitch is set to true then end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.

See also inpart, substpart, substinpart, dpart, and lpart.

Examples:

(%i1) part(z+2*y+a,2);
(%o1) 2 y
(%i2) part(z+2*y+a,[1,3]);
(%o2) z + a
(%i3) part(z+2*y+a,2,1);
(%o3) 2

example (part) displays additional examples.

Chapter 6: Expressions 89

Functionpartition (expr, x)
Returns a list of two expressions. They are (1) the factors of expr (if it is a product),
the terms of expr (if it is a sum), or the list (if it is a list) which don’t contain x and,
(2) the factors, terms, or list which do.

Examples:

(%i1) partition (2*a*x*f(x), x);
(%o1) [2 a, x f(x)]
(%i2) partition (a+b, x);
(%o2) [b + a, 0]
(%i3) partition ([a, b, f(a), c], a);
(%o3) [[b, c], [a, f(a)]]

Option variablepartswitch
Default value: false

When partswitch is true, end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.

Functionpickapart (expr, n)
Assigns intermediate expression labels to subexpressions of expr at depth n, an in-
teger. Subexpressions at greater or lesser depths are not assigned labels. pickapart

returns an expression in terms of intermediate expressions equivalent to the original
expression expr.

See also part, dpart, lpart, inpart, and reveal.

Examples:

(%i1) expr: (a+b)/2 + sin (x^2)/3 - log (1 + sqrt(x+1));
2

sin(x) b + a
(%o1) - log(sqrt(x + 1) + 1) + ------- + -----

3 2
(%i2) pickapart (expr, 0);

2
sin(x) b + a

(%t2) - log(sqrt(x + 1) + 1) + ------- + -----
3 2

(%o2) %t2
(%i3) pickapart (expr, 1);

(%t3) - log(sqrt(x + 1) + 1)

2
sin(x)

(%t4) -------
3

90 Maxima 5.35.1 Manual

b + a
(%t5) -----

2

(%o5) %t5 + %t4 + %t3
(%i5) pickapart (expr, 2);

(%t6) log(sqrt(x + 1) + 1)

2
(%t7) sin(x)

(%t8) b + a

%t8 %t7
(%o8) --- + --- - %t6

2 3
(%i8) pickapart (expr, 3);

(%t9) sqrt(x + 1) + 1

2
(%t10) x

b + a sin(%t10)
(%o10) ----- - log(%t9) + ---------

2 3
(%i10) pickapart (expr, 4);

(%t11) sqrt(x + 1)
2

sin(x) b + a
(%o11) ------- + ----- - log(%t11 + 1)

3 2
(%i11) pickapart (expr, 5);

(%t12) x + 1

2
sin(x) b + a

(%o12) ------- + ----- - log(sqrt(%t12) + 1)
3 2

(%i12) pickapart (expr, 6);
2

sin(x) b + a
(%o12) ------- + ----- - log(sqrt(x + 1) + 1)

Chapter 6: Expressions 91

3 2

System variablepiece
Holds the last expression selected when using the part functions. It is set during the
execution of the function and thus may be referred to in the function itself.

Functionpsubst
psubst (list, expr)
psubst (a, b, expr)

psubst(a, b, expr) is simliar to subst. See subst.

In distinction from subst the function psubst makes parallel substitutions, if the
first argument list is a list of equations.

See also sublis for making parallel substitutions.

Example:

The first example shows parallel substitution with psubst. The second example shows
the result for the function subst, which does a serial substitution.

(%i4) psubst ([a^2=b, b=a], sin(a^2) + sin(b));
(%o4) sin(b) + sin(a)
(%i5) subst ([a^2=b, b=a], sin(a^2) + sin(b));
(%o5) 2 sin(a)

Functionrembox
rembox (expr, unlabelled)
rembox (expr, label)
rembox (expr)

Removes boxes from expr.

rembox (expr, unlabelled) removes all unlabelled boxes from expr.

rembox (expr, label) removes only boxes bearing label.

rembox (expr) removes all boxes, labelled and unlabelled.

Boxes are drawn by the box, dpart, and lpart functions.

Examples:

(%i1) expr: (a*d - b*c)/h^2 + sin(%pi*x);
a d - b c

(%o1) sin(%pi x) + ---------
2
h

(%i2) dpart (dpart (expr, 1, 1), 2, 2);
""""""" a d - b c

(%o2) sin("%pi x") + ---------
""""""" """"

" 2"
"h "
""""

(%i3) expr2: lpart (BAR, lpart (FOO, %, 1), 2);

92 Maxima 5.35.1 Manual

FOO""""""""""" BAR""""""""
" """"""" " "a d - b c"

(%o3) "sin("%pi x")" + "---------"
" """"""" " " """" "
"""""""""""""" " " 2" "

" "h " "
" """" "
"""""""""""

(%i4) rembox (expr2, unlabelled);
BAR""""""""

FOO""""""""" "a d - b c"
(%o4) "sin(%pi x)" + "---------"

"""""""""""" " 2 "
" h "
"""""""""""

(%i5) rembox (expr2, FOO);
BAR""""""""

""""""" "a d - b c"
(%o5) sin("%pi x") + "---------"

""""""" " """" "
" " 2" "
" "h " "
" """" "
"""""""""""

(%i6) rembox (expr2, BAR);
FOO"""""""""""
" """"""" " a d - b c

(%o6) "sin("%pi x")" + ---------
" """"""" " """"
"""""""""""""" " 2"

"h "
""""

(%i7) rembox (expr2);
a d - b c

(%o7) sin(%pi x) + ---------
2
h

Functionreveal (expr, depth)
Replaces parts of expr at the specified integer depth with descriptive summaries.

• Sums and differences are replaced by Sum(n) where n is the number of operands
of the sum.

• Products are replaced by Product(n) where n is the number of operands of the
product.

• Exponentials are replaced by Expt.

• Quotients are replaced by Quotient.

• Unary negation is replaced by Negterm.

Chapter 6: Expressions 93

• Lists are replaced by List(n) where n ist the number of elements of the list.

When depth is greater than or equal to the maximum depth of expr, reveal (expr,
depth) returns expr unmodified.

reveal evaluates its arguments. reveal returns the summarized expression.

Example:

(%i1) e: expand ((a - b)^2)/expand ((exp(a) + exp(b))^2);
2 2

b - 2 a b + a
(%o1) -------------------------

b + a 2 b 2 a
2 %e + %e + %e

(%i2) reveal (e, 1);
(%o2) Quotient
(%i3) reveal (e, 2);

Sum(3)
(%o3) ------

Sum(3)
(%i4) reveal (e, 3);

Expt + Negterm + Expt
(%o4) ------------------------

Product(2) + Expt + Expt
(%i5) reveal (e, 4);

2 2
b - Product(3) + a

(%o5) ------------------------------------
Product(2) Product(2)

2 Expt + %e + %e
(%i6) reveal (e, 5);

2 2
b - 2 a b + a

(%o6) --------------------------
Sum(2) 2 b 2 a

2 %e + %e + %e
(%i7) reveal (e, 6);

2 2
b - 2 a b + a

(%o7) -------------------------
b + a 2 b 2 a

2 %e + %e + %e

Functionsublis (list, expr)
Makes multiple parallel substitutions into an expression. list is a list of equations.
The left hand side of the equations must be an atom.

The variable sublis_apply_lambda controls simplification after sublis.

See also psubst for making parallel substitutions.

Example:

94 Maxima 5.35.1 Manual

(%i1) sublis ([a=b, b=a], sin(a) + cos(b));
(%o1) sin(b) + cos(a)

Option variablesublis apply lambda
Default value: true

Controls whether lambda’s substituted are applied in simplification after sublis is
used or whether you have to do an ev to get things to apply. true means do the
application.

Option variablesubnumsimp
Default value: false

If true then the functions subst and psubst can substitute a subscripted variable
f[x] with a number, when only the symbol f is given.

See also subst.

(%i1) subst(100,g,g[x]+2);

subst: cannot substitute 100 for operator g in expression g
x

-- an error. To debug this try: debugmode(true);

(%i2) subst(100,g,g[x]+2),subnumsimp:true;
(%o2) 102

Functionsubst (a, b, c)
Substitutes a for b in c. b must be an atom or a complete subexpression of c.
For example, x+y+z is a complete subexpression of 2*(x+y+z)/w while x+y is not.
When b does not have these characteristics, one may sometimes use substpart or
ratsubst (see below). Alternatively, if b is of the form e/f then one could use subst

(a*f, e, c) while if b is of the form e^(1/f) then one could use subst (a^f, e,

c). The subst command also discerns the x^y in x^-y so that subst (a, sqrt(x),

1/sqrt(x)) yields 1/a. a and b may also be operators of an expression enclosed in
double-quotes " or they may be function names. If one wishes to substitute for the
independent variable in derivative forms then the at function (see below) should be
used.

subst is an alias for substitute.

The commands subst (eq 1, expr) or subst ([eq 1, ..., eq k], expr) are other
permissible forms. The eq i are equations indicating substitutions to be made. For
each equation, the right side will be substituted for the left in the expression expr.
The equations are substituted in serial from left to right in expr. See the functions
sublis and psubst for making parallel substitutions.

exptsubst if true permits substitutions like y for %e^x in %e^(a*x) to take place.

When opsubst is false, subst will not attempt to substitute into the operator of an
expression. E.g. (opsubst: false, subst (x^2, r, r+r[0])) will work.

Examples:

Chapter 6: Expressions 95

(%i1) subst (a, x+y, x + (x+y)^2 + y);
2

(%o1) y + x + a
(%i2) subst (-%i, %i, a + b*%i);
(%o2) a - %i b

The substitution is done in serial for a list of equations. Compare this with a parallel
substitution:

(%i3) subst([a=b, b=c], a+b);
(%o3) 2 c
(%i4) sublis([a=b, b=c], a+b);
(%o4) c + b

For further examples, do example (subst).

Functionsubstinpart (x, expr, n 1, . . . , n k)
Similar to substpart, but substinpart works on the internal representation of expr.

Examples:

(%i1) x . ’diff (f(x), x, 2);
2
d

(%o1) x . (--- (f(x)))
2

dx
(%i2) substinpart (d^2, %, 2);

2
(%o2) x . d
(%i3) substinpart (f1, f[1](x + 1), 0);
(%o3) f1(x + 1)

If the last argument to a part function is a list of indices then several subexpressions
are picked out, each one corresponding to an index of the list. Thus

(%i1) part (x + y + z, [1, 3]);
(%o1) z + x

piece holds the value of the last expression selected when using the part functions. It
is set during the execution of the function and thus may be referred to in the function
itself as shown below. If partswitch is set to true then end is returned when a
selected part of an expression doesn’t exist, otherwise an error message is given.

(%i1) expr: 27*y^3 + 54*x*y^2 + 36*x^2*y + y + 8*x^3 + x + 1;
3 2 2 3

(%o1) 27 y + 54 x y + 36 x y + y + 8 x + x + 1
(%i2) part (expr, 2, [1, 3]);

2
(%o2) 54 y
(%i3) sqrt (piece/54);
(%o3) abs(y)
(%i4) substpart (factor (piece), expr, [1, 2, 3, 5]);

3
(%o4) (3 y + 2 x) + y + x + 1

96 Maxima 5.35.1 Manual

(%i5) expr: 1/x + y/x - 1/z;
1 y 1

(%o5) - - + - + -
z x x

(%i6) substpart (xthru (piece), expr, [2, 3]);
y + 1 1

(%o6) ----- - -
x z

Also, setting the option inflag to true and calling part or substpart is the same
as calling inpart or substinpart.

Functionsubstpart (x, expr, n 1, . . . , n k)
Substitutes x for the subexpression picked out by the rest of the arguments as in
part. It returns the new value of expr. x may be some operator to be substituted
for an operator of expr. In some cases x needs to be enclosed in double-quotes " (e.g.
substpart ("+", a*b, 0) yields b + a).

Example:

(%i1) 1/(x^2 + 2);
1

(%o1) ------
2
x + 2

(%i2) substpart (3/2, %, 2, 1, 2);
1

(%o2) --------
3/2
x + 2

(%i3) a*x + f(b, y);
(%o3) a x + f(b, y)
(%i4) substpart ("+", %, 1, 0);
(%o4) x + f(b, y) + a

Also, setting the option inflag to true and calling part or substpart is the same
as calling inpart or substinpart.

Functionsymbolp (expr)
Returns true if expr is a symbol, else false. In effect, symbolp(x) is equivalent to
the predicate atom(x) and not numberp(x).

See also Section 6.3 [Identifiers], page 74.

Functionunorder ()
Disables the aliasing created by the last use of the ordering commands ordergreat

and orderless. ordergreat and orderless may not be used more than one time
each without calling unorder. unorder does not substitute back in expressions the
original symbols for the aliases introduced by ordergreat and orderless. Therefore,
after execution of unorder the aliases appear in previous expressions.

Chapter 6: Expressions 97

See also ordergreat and orderless.

Examples:

ordergreat(a) introduces an alias for the symbol a. Therefore, the difference of %o2
and %o4 does not vanish. unorder does not substitute back the symbol a and the
alias appears in the output %o7.

(%i1) unorder();
(%o1) []
(%i2) b*x+a^2;

2
(%o2) b x + a
(%i3) ordergreat(a);
(%o3) done
(%i4) b*x+a^2;

2
(%o4) a + b x
(%i5) %th(1)-%th(3);

2 2
(%o5) a - a
(%i6) unorder();
(%o6) [a]
(%i7) %th(2);

2 2
(%o7) _101a - a

Functionverbify (f)
Returns the verb form of the function name f. See also verb, noun, and nounify.

Examples:

(%i1) verbify (’foo);
(%o1) foo
(%i2) :lisp $%
$FOO
(%i2) nounify (foo);
(%o2) foo
(%i3) :lisp $%
%FOO

98 Maxima 5.35.1 Manual

Chapter 7: Operators 99

7 Operators

7.1 Introduction to operators

It is possible to define new operators with specified precedence, to undefine existing
operators, or to redefine the precedence of existing operators. An operator may be unary
prefix or unary postfix, binary infix, n-ary infix, matchfix, or nofix. "Matchfix" means a
pair of symbols which enclose their argument or arguments, and "nofix" means an operator
which takes no arguments. As examples of the different types of operators, there are the
following.

unary prefix
negation - a

unary postfix
factorial a!

binary infix
exponentiation a^b

n-ary infix addition a + b

matchfix list construction [a, b]

(There are no built-in nofix operators; for an example of such an operator, see nofix.)

The mechanism to define a new operator is straightforward. It is only necessary to
declare a function as an operator; the operator function might or might not be defined.

An example of user-defined operators is the following. Note that the explicit function
call "dd" (a) is equivalent to dd a, likewise "<-" (a, b) is equivalent to a <- b. Note also
that the functions "dd" and "<-" are undefined in this example.

(%i1) prefix ("dd");
(%o1) dd
(%i2) dd a;
(%o2) dd a
(%i3) "dd" (a);
(%o3) dd a
(%i4) infix ("<-");
(%o4) <-
(%i5) a <- dd b;
(%o5) a <- dd b
(%i6) "<-" (a, "dd" (b));
(%o6) a <- dd b

The Maxima functions which define new operators are summarized in this table, stating
the default left and right binding powers (lbp and rbp, respectively). (Binding power
determines operator precedence. However, since left and right binding powers can differ,
binding power is somewhat more complicated than precedence.) Some of the operation
definition functions take additional arguments; see the function descriptions for details.

prefix rbp=180

100 Maxima 5.35.1 Manual

postfix lbp=180

infix lbp=180, rbp=180

nary lbp=180, rbp=180

matchfix (binding power not applicable)

nofix (binding power not applicable)

For comparison, here are some built-in operators and their left and right binding powers.

Operator lbp rbp

: 180 20
:: 180 20
:= 180 20
::= 180 20
! 160
!! 160
^ 140 139
. 130 129
* 120
/ 120 120
+ 100 100
- 100 134
= 80 80
80 80
> 80 80
>= 80 80
< 80 80
<= 80 80
not 70
and 65
or 60
, 10
$ -1
; -1

remove and kill remove operator properties from an atom. remove ("a", op) removes
only the operator properties of a. kill ("a") removes all properties of a, including the
operator properties. Note that the name of the operator must be enclosed in quotation
marks.

(%i1) infix ("##");
(%o1) ##
(%i2) "##" (a, b) := a^b;

b
(%o2) a ## b := a
(%i3) 5 ## 3;
(%o3) 125
(%i4) remove ("##", op);
(%o4) done
(%i5) 5 ## 3;

Chapter 7: Operators 101

Incorrect syntax: # is not a prefix operator
5 ##
^

(%i5) "##" (5, 3);
(%o5) 125
(%i6) infix ("##");
(%o6) ##
(%i7) 5 ## 3;
(%o7) 125
(%i8) kill ("##");
(%o8) done
(%i9) 5 ## 3;
Incorrect syntax: # is not a prefix operator
5 ##
^

(%i9) "##" (5, 3);
(%o9) ##(5, 3)

7.2 Arithmetic operators

Operator+
Operator-
Operator*
Operator/
Operator^

The symbols + * / and ^ represent addition, multiplication, division, and exponen-
tiation, respectively. The names of these operators are "+" "*" "/" and "^", which
may appear where the name of a function or operator is required.

The symbols + and - represent unary addition and negation, respectively, and the
names of these operators are "+" and "-", respectively.

Subtraction a - b is represented within Maxima as addition, a + (- b). Expressions
such as a + (- b) are displayed as subtraction. Maxima recognizes "-" only as the
name of the unary negation operator, and not as the name of the binary subtraction
operator.

Division a / b is represented within Maxima as multiplication, a * b^(- 1). Expres-
sions such as a * b^(- 1) are displayed as division. Maxima recognizes "/" as the
name of the division operator.

Addition and multiplication are n-ary, commutative operators. Division and expo-
nentiation are binary, noncommutative operators.

Maxima sorts the operands of commutative operators to construct a canonical rep-
resentation. For internal storage, the ordering is determined by orderlessp. For
display, the ordering for addition is determined by ordergreatp, and for multiplica-
tion, it is the same as the internal ordering.

Arithmetic computations are carried out on literal numbers (integers, rationals, or-
dinary floats, and bigfloats). Except for exponentiation, all arithmetic operations on

102 Maxima 5.35.1 Manual

numbers are simplified to numbers. Exponentiation is simplified to a number if either
operand is an ordinary float or bigfloat or if the result is an exact integer or rational;
otherwise an exponentiation may be simplified to sqrt or another exponentiation or
left unchanged.

Floating-point contagion applies to arithmetic computations: if any operand is a
bigfloat, the result is a bigfloat; otherwise, if any operand is an ordinary float, the
result is an ordinary float; otherwise, the operands are rationals or integers and the
result is a rational or integer.

Arithmetic computations are a simplification, not an evaluation. Thus arithmetic is
carried out in quoted (but simplified) expressions.

Arithmetic operations are applied element-by-element to lists when the global flag
listarith is true, and always applied element-by-element to matrices. When one
operand is a list or matrix and another is an operand of some other type, the other
operand is combined with each of the elements of the list or matrix.

Examples:

Addition and multiplication are n-ary, commutative operators. Maxima sorts the
operands to construct a canonical representation. The names of these operators are
"+" and "*".

(%i1) c + g + d + a + b + e + f;
(%o1) g + f + e + d + c + b + a
(%i2) [op (%), args (%)];
(%o2) [+, [g, f, e, d, c, b, a]]
(%i3) c * g * d * a * b * e * f;
(%o3) a b c d e f g
(%i4) [op (%), args (%)];
(%o4) [*, [a, b, c, d, e, f, g]]
(%i5) apply ("+", [a, 8, x, 2, 9, x, x, a]);
(%o5) 3 x + 2 a + 19
(%i6) apply ("*", [a, 8, x, 2, 9, x, x, a]);

2 3
(%o6) 144 a x

Division and exponentiation are binary, noncommutative operators. The names of
these operators are "/" and "^".

(%i1) [a / b, a ^ b];
a b

(%o1) [-, a]
b

(%i2) [map (op, %), map (args, %)];
(%o2) [[/, ^], [[a, b], [a, b]]]
(%i3) [apply ("/", [a, b]), apply ("^", [a, b])];

a b
(%o3) [-, a]

b

Subtraction and division are represented internally in terms of addition and multipli-
cation, respectively.

(%i1) [inpart (a - b, 0), inpart (a - b, 1), inpart (a - b, 2)];

Chapter 7: Operators 103

(%o1) [+, a, - b]
(%i2) [inpart (a / b, 0), inpart (a / b, 1), inpart (a / b, 2)];

1
(%o2) [*, a, -]

b

Computations are carried out on literal numbers. Floating-point contagion applies.

(%i1) 17 + b - (1/2)*29 + 11^(2/4);
5

(%o1) b + sqrt(11) + -
2

(%i2) [17 + 29, 17 + 29.0, 17 + 29b0];
(%o2) [46, 46.0, 4.6b1]

Arithmetic computations are a simplification, not an evaluation.

(%i1) simp : false;
(%o1) false
(%i2) ’(17 + 29*11/7 - 5^3);

29 11 3
(%o2) 17 + ----- - 5

7
(%i3) simp : true;
(%o3) true
(%i4) ’(17 + 29*11/7 - 5^3);

437
(%o4) - ---

7

Arithmetic is carried out element-by-element for lists (depending on listarith) and
matrices.

(%i1) matrix ([a, x], [h, u]) - matrix ([1, 2], [3, 4]);
[a - 1 x - 2]

(%o1) []
[h - 3 u - 4]

(%i2) 5 * matrix ([a, x], [h, u]);
[5 a 5 x]

(%o2) []
[5 h 5 u]

(%i3) listarith : false;
(%o3) false
(%i4) [a, c, m, t] / [1, 7, 2, 9];

[a, c, m, t]
(%o4) ------------

[1, 7, 2, 9]
(%i5) [a, c, m, t] ^ x;

x
(%o5) [a, c, m, t]
(%i6) listarith : true;
(%o6) true
(%i7) [a, c, m, t] / [1, 7, 2, 9];

c m t

104 Maxima 5.35.1 Manual

(%o7) [a, -, -, -]
7 2 9

(%i8) [a, c, m, t] ^ x;
x x x x

(%o8) [a , c , m , t]

Operator**
Exponentiation operator. Maxima recognizes ** as the same operator as ^ in input,
and it is displayed as ^ in 1-dimensional output, or by placing the exponent as a
superscript in 2-dimensional output.

The fortran function displays the exponentiation operator as **, whether it was
input as ** or ^.

Examples:

(%i1) is (a**b = a^b);
(%o1) true
(%i2) x**y + x^z;

z y
(%o2) x + x
(%i3) string (x**y + x^z);
(%o3) x^z+x^y
(%i4) fortran (x**y + x^z);

x**z+x**y
(%o4) done

Operator^^
Noncommutative exponentiation operator. ^^ is the exponentiation operator corre-
sponding to noncommutative multiplication ., just as the ordinary exponentiation
operator ^ corresponds to commutative multiplication *.

Noncommutative exponentiation is displayed by ^^ in 1-dimensional output, and by
placing the exponent as a superscript within angle brackets < > in 2-dimensional
output.

Examples:

(%i1) a . a . b . b . b + a * a * a * b * b;
3 2 <2> <3>

(%o1) a b + a . b
(%i2) string (a . a . b . b . b + a * a * a * b * b);
(%o2) a^3*b^2+a^^2 . b^^3

Operator.
The dot operator, for matrix (non-commutative) multiplication. When "." is used
in this way, spaces should be left on both sides of it, e.g. A . B. This distinguishes it
plainly from a decimal point in a floating point number.

See also dot, dot0nscsimp, dot0simp, dot1simp, dotassoc, dotconstrules,
dotdistrib, dotexptsimp, dotident, and dotscrules.

Chapter 7: Operators 105

7.3 Relational operators

Operator<
Operator<=
Operator>=
Operator>

The symbols < <= >= and > represent less than, less than or equal, greater than or
equal, and greater than, respectively. The names of these operators are "<" "<=" ">="
and ">", which may appear where the name of a function or operator is required.

These relational operators are all binary operators; constructs such as a < b < c are
not recognized by Maxima.

Relational expressions are evaluated to Boolean values by the functions is and maybe,
and the programming constructs if, while, and unless. Relational expressions are
not otherwise evaluated or simplified to Boolean values, although the arguments of
relational expressions are evaluated (when evaluation is not otherwise prevented by
quotation).

When a relational expression cannot be evaluated to true or false, the behavior
of is and if are governed by the global flag prederror. When prederror is true,
is and if trigger an error. When prederror is false, is returns unknown, and if

returns a partially-evaluated conditional expression.

maybe always behaves as if prederror were false, and while and unless always
behave as if prederror were true.

Relational operators do not distribute over lists or other aggregates.

See also =, #, equal, and notequal.

Examples:

Relational expressions are evaluated to Boolean values by some functions and pro-
gramming constructs.

(%i1) [x, y, z] : [123, 456, 789];
(%o1) [123, 456, 789]
(%i2) is (x < y);
(%o2) true
(%i3) maybe (y > z);
(%o3) false
(%i4) if x >= z then 1 else 0;
(%o4) 0
(%i5) block ([S], S : 0, for i:1 while i <= 100 do S : S + i,

return (S));
(%o5) 5050

Relational expressions are not otherwise evaluated or simplified to Boolean values,
although the arguments of relational expressions are evaluated.

(%o1) [123, 456, 789]
(%i2) [x < y, y <= z, z >= y, y > z];
(%o2) [123 < 456, 456 <= 789, 789 >= 456, 456 > 789]
(%i3) map (is, %);
(%o3) [true, true, true, false]

106 Maxima 5.35.1 Manual

7.4 Logical operators

Operatorand
The logical conjunction operator. and is an n-ary infix operator; its operands are
Boolean expressions, and its result is a Boolean value.

and forces evaluation (like is) of one or more operands, and may force evaluation of
all operands.

Operands are evaluated in the order in which they appear. and evaluates only as
many of its operands as necessary to determine the result. If any operand is false,
the result is false and no further operands are evaluated.

The global flag prederror governs the behavior of and when an evaluated operand
cannot be determined to be true or false. and prints an error message when
prederror is true. Otherwise, operands which do not evaluate to true or false

are accepted, and the result is a Boolean expression.

and is not commutative: a and b might not be equal to b and a due to the treatment
of indeterminate operands.

Operatornot
The logical negation operator. not is a prefix operator; its operand is a Boolean
expression, and its result is a Boolean value.

not forces evaluation (like is) of its operand.

The global flag prederror governs the behavior of not when its operand cannot be
determined to be true or false. not prints an error message when prederror is
true. Otherwise, operands which do not evaluate to true or false are accepted, and
the result is a Boolean expression.

Operatoror
The logical disjunction operator. or is an n-ary infix operator; its operands are
Boolean expressions, and its result is a Boolean value.

or forces evaluation (like is) of one or more operands, and may force evaluation of
all operands.

Operands are evaluated in the order in which they appear. or evaluates only as many
of its operands as necessary to determine the result. If any operand is true, the result
is true and no further operands are evaluated.

The global flag prederror governs the behavior of or when an evaluated operand can-
not be determined to be true or false. or prints an error message when prederror

is true. Otherwise, operands which do not evaluate to true or false are accepted,
and the result is a Boolean expression.

or is not commutative: a or b might not be equal to b or a due to the treatment of
indeterminate operands.

Chapter 7: Operators 107

7.5 Operators for Equations

Operator#
Represents the negation of syntactic equality =.

Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
instead of a # b.

Examples:

(%i1) a = b;
(%o1) a = b
(%i2) is (a = b);
(%o2) false
(%i3) a # b;
(%o3) a # b
(%i4) not a = b;
(%o4) true
(%i5) is (a # b);
(%o5) true
(%i6) is (not a = b);
(%o6) true

Operator=
The equation operator.

An expression a = b, by itself, represents an unevaluated equation, which might or
might not hold. Unevaluated equations may appear as arguments to solve and
algsys or some other functions.

The function is evaluates = to a Boolean value. is(a = b) evaluates a = b to true

when a and b are identical. That is, a and b are atoms which are identical, or they
are not atoms and their operators are identical and their arguments are identical.
Otherwise, is(a = b) evaluates to false; it never evaluates to unknown. When is(a
= b) is true, a and b are said to be syntactically equal, in contrast to equivalent
expressions, for which is(equal(a, b)) is true. Expressions can be equivalent and
not syntactically equal.

The negation of = is represented by #. As with =, an expression a # b, by itself, is not
evaluated. is(a # b) evaluates a # b to true or false.

In addition to is, some other operators evaluate = and # to true or false, namely
if, and, or, and not.

Note that because of the rules for evaluation of predicate expressions (in particular
because not expr causes evaluation of expr), not a = b is equivalent to is(a # b),
instead of a # b.

rhs and lhs return the right-hand and left-hand sides, respectively, of an equation
or inequation.

See also equal and notequal.

Examples:

108 Maxima 5.35.1 Manual

An expression a = b, by itself, represents an unevaluated equation, which might or
might not hold.

(%i1) eq_1 : a * x - 5 * y = 17;
(%o1) a x - 5 y = 17
(%i2) eq_2 : b * x + 3 * y = 29;
(%o2) 3 y + b x = 29
(%i3) solve ([eq_1, eq_2], [x, y]);

196 29 a - 17 b
(%o3) [[x = ---------, y = -----------]]

5 b + 3 a 5 b + 3 a
(%i4) subst (%, [eq_1, eq_2]);

196 a 5 (29 a - 17 b)
(%o4) [--------- - --------------- = 17,

5 b + 3 a 5 b + 3 a
196 b 3 (29 a - 17 b)

--------- + --------------- = 29]
5 b + 3 a 5 b + 3 a

(%i5) ratsimp (%);
(%o5) [17 = 17, 29 = 29]

is(a = b) evaluates a = b to true when a and b are syntactically equal (that is,
identical). Expressions can be equivalent and not syntactically equal.

(%i1) a : (x + 1) * (x - 1);
(%o1) (x - 1) (x + 1)
(%i2) b : x^2 - 1;

2
(%o2) x - 1
(%i3) [is (a = b), is (a # b)];
(%o3) [false, true]
(%i4) [is (equal (a, b)), is (notequal (a, b))];
(%o4) [true, false]

Some operators evaluate = and # to true or false.

(%i1) if expand ((x + y)^2) = x^2 + 2 * x * y + y^2 then FOO else
BAR;

(%o1) FOO
(%i2) eq_3 : 2 * x = 3 * x;
(%o2) 2 x = 3 x
(%i3) eq_4 : exp (2) = %e^2;

2 2
(%o3) %e = %e
(%i4) [eq_3 and eq_4, eq_3 or eq_4, not eq_3];
(%o4) [false, true, true]

Because not expr causes evaluation of expr, not a = b is equivalent to is(a # b).

(%i1) [2 * x # 3 * x, not (2 * x = 3 * x)];
(%o1) [2 x # 3 x, true]
(%i2) is (2 * x # 3 * x);
(%o2) true

Chapter 7: Operators 109

7.6 Assignment operators

Operator:
Assignment operator.

When the left-hand side is a simple variable (not subscripted), : evaluates its right-
hand side and associates that value with the left-hand side.

When the left-hand side is a subscripted element of a list, matrix, declared Maxima
array, or Lisp array, the right-hand side is assigned to that element. The subscript
must name an existing element; such objects cannot be extended by naming nonex-
istent elements.

When the left-hand side is a subscripted element of an undeclared Maxima array, the
right-hand side is assigned to that element, if it already exists, or a new element is
allocated, if it does not already exist.

When the left-hand side is a list of simple and/or subscripted variables, the right-hand
side must evaluate to a list, and the elements of the right-hand side are assigned to
the elements of the left-hand side, in parallel.

See also kill and remvalue, which undo the association between the left-hand side
and its value.

Examples:

Assignment to a simple variable.

(%i1) a;
(%o1) a
(%i2) a : 123;
(%o2) 123
(%i3) a;
(%o3) 123

Assignment to an element of a list.

(%i1) b : [1, 2, 3];
(%o1) [1, 2, 3]
(%i2) b[3] : 456;
(%o2) 456
(%i3) b;
(%o3) [1, 2, 456]

Assignment creates an undeclared array.

(%i1) c[99] : 789;
(%o1) 789
(%i2) c[99];
(%o2) 789
(%i3) c;
(%o3) c
(%i4) arrayinfo (c);
(%o4) [hashed, 1, [99]]
(%i5) listarray (c);
(%o5) [789]

Multiple assignment.

110 Maxima 5.35.1 Manual

(%i1) [a, b, c] : [45, 67, 89];
(%o1) [45, 67, 89]
(%i2) a;
(%o2) 45
(%i3) b;
(%o3) 67
(%i4) c;
(%o4) 89

Multiple assignment is carried out in parallel. The values of a and b are exchanged
in this example.

(%i1) [a, b] : [33, 55];
(%o1) [33, 55]
(%i2) [a, b] : [b, a];
(%o2) [55, 33]
(%i3) a;
(%o3) 55
(%i4) b;
(%o4) 33

Operator::
Assignment operator.

:: is the same as : (which see) except that :: evaluates its left-hand side as well as
its right-hand side.

Examples:

(%i1) x : ’foo;
(%o1) foo
(%i2) x :: 123;
(%o2) 123
(%i3) foo;
(%o3) 123
(%i4) x : ’[a, b, c];
(%o4) [a, b, c]
(%i5) x :: [11, 22, 33];
(%o5) [11, 22, 33]
(%i6) a;
(%o6) 11
(%i7) b;
(%o7) 22
(%i8) c;
(%o8) 33

Operator::=
Macro function definition operator. ::= defines a function (called a "macro" for
historical reasons) which quotes its arguments, and the expression which it returns
(called the "macro expansion") is evaluated in the context from which the macro was
called. A macro function is otherwise the same as an ordinary function.

Chapter 7: Operators 111

macroexpand returns a macro expansion (without evaluating it). macroexpand (foo

(x)) followed by ’’% is equivalent to foo (x) when foo is a macro function.

::= puts the name of the new macro function onto the global list macros. kill,
remove, and remfunction unbind macro function definitions and remove names from
macros.

fundef or dispfun return a macro function definition or assign it to a label, respec-
tively.

Macro functions commonly contain buildq and splice expressions to construct an
expression, which is then evaluated.

Examples

A macro function quotes its arguments, so message (1) shows y - z, not the value of
y - z. The macro expansion (the quoted expression ’(print ("(2) x is equal to",

x))) is evaluated in the context from which the macro was called, printing message
(2).

(%i1) x: %pi$
(%i2) y: 1234$
(%i3) z: 1729 * w$
(%i4) printq1 (x) ::= block (print ("(1) x is equal to", x),

’(print ("(2) x is equal to", x)))$
(%i5) printq1 (y - z);
(1) x is equal to y - z
(2) x is equal to %pi
(%o5) %pi

An ordinary function evaluates its arguments, so message (1) shows the value of y -

z. The return value is not evaluated, so message (2) is not printed until the explicit
evaluation ’’%.

(%i1) x: %pi$
(%i2) y: 1234$
(%i3) z: 1729 * w$
(%i4) printe1 (x) := block (print ("(1) x is equal to", x),

’(print ("(2) x is equal to", x)))$
(%i5) printe1 (y - z);
(1) x is equal to 1234 - 1729 w
(%o5) print((2) x is equal to, x)
(%i6) ’’%;
(2) x is equal to %pi
(%o6) %pi

macroexpand returns a macro expansion. macroexpand (foo (x)) followed by ’’% is
equivalent to foo (x) when foo is a macro function.

(%i1) x: %pi$
(%i2) y: 1234$
(%i3) z: 1729 * w$
(%i4) g (x) ::= buildq ([x], print ("x is equal to", x))$
(%i5) macroexpand (g (y - z));
(%o5) print(x is equal to, y - z)
(%i6) ’’%;

112 Maxima 5.35.1 Manual

x is equal to 1234 - 1729 w
(%o6) 1234 - 1729 w
(%i7) g (y - z);
x is equal to 1234 - 1729 w
(%o7) 1234 - 1729 w

Operator:=
The function definition operator.

f (x 1, ..., x n) := expr defines a function named f with arguments x 1, . . . , x n
and function body expr. := never evaluates the function body (unless explicitly
evaluated by quote-quote ’’). The function body is evaluated every time the function
is called.

f [x 1, ..., x n] := expr defines a so-called array function. Its function body is
evaluated just once for each distinct value of its arguments, and that value is returned,
without evaluating the function body, whenever the arguments have those values
again. (A function of this kind is commonly known as a “memoizing function”.)

f [x 1, ..., x n](y 1, ..., y m) := expr is a special case of an array function.
f [x 1, ..., x n] is an array function which returns a lambda expression with ar-
guments y 1, ..., y m. The function body is evaluated once for each distinct value
of x 1, ..., x n, and the body of the lambda expression is that value.

When the last or only function argument x n is a list of one element, the function
defined by := accepts a variable number of arguments. Actual arguments are assigned
one-to-one to formal arguments x 1, . . . , x (n - 1), and any further actual arguments,
if present, are assigned to x n as a list.

All function definitions appear in the same namespace; defining a function f within an-
other function g does not automatically limit the scope of f to g. However, local(f)
makes the definition of function f effective only within the block or other compound
expression in which local appears.

If some formal argument x k is a quoted symbol, the function defined by := does
not evaluate the corresponding actual argument. Otherwise all actual arguments are
evaluated.

See also define and ::=.

Examples:

:= never evaluates the function body (unless explicitly evaluated by quote-quote).

(%i1) expr : cos(y) - sin(x);
(%o1) cos(y) - sin(x)
(%i2) F1 (x, y) := expr;
(%o2) F1(x, y) := expr
(%i3) F1 (a, b);
(%o3) cos(y) - sin(x)
(%i4) F2 (x, y) := ’’expr;
(%o4) F2(x, y) := cos(y) - sin(x)
(%i5) F2 (a, b);
(%o5) cos(b) - sin(a)

f(x 1, ..., x n) := ... defines an ordinary function.

Chapter 7: Operators 113

(%i1) G1(x, y) := (print ("Evaluating G1 for x=", x, "and y=", y), x.y - y.x);
(%o1) G1(x, y) := (print("Evaluating G1 for x=", x, "and y=",

y), x . y - y . x)
(%i2) G1([1, a], [2, b]);
Evaluating G1 for x= [1, a] and y= [2, b]
(%o2) 0
(%i3) G1([1, a], [2, b]);
Evaluating G1 for x= [1, a] and y= [2, b]
(%o3) 0

f[x 1, ..., x n] := ... defines an array function.

(%i1) G2[a] := (print ("Evaluating G2 for a=", a), a^2);
2

(%o1) G2 := (print("Evaluating G2 for a=", a), a)
a

(%i2) G2[1234];
Evaluating G2 for a= 1234
(%o2) 1522756
(%i3) G2[1234];
(%o3) 1522756
(%i4) G2[2345];
Evaluating G2 for a= 2345
(%o4) 5499025
(%i5) arrayinfo (G2);
(%o5) [hashed, 1, [1234], [2345]]
(%i6) listarray (G2);
(%o6) [1522756, 5499025]

f [x 1, ..., x n](y 1, ..., y m) := expr is a special case of an array function.

(%i1) G3[n](x) := (print ("Evaluating G3 for n=", n), diff (sin(x)^2, x, n));
(%o1) G3 (x) := (print("Evaluating G3 for n=", n),

n
2

diff(sin (x), x, n))
(%i2) G3[2];
Evaluating G3 for n= 2

2 2
(%o2) lambda([x], 2 cos (x) - 2 sin (x))
(%i3) G3[2];

2 2
(%o3) lambda([x], 2 cos (x) - 2 sin (x))
(%i4) G3[2](1);

2 2
(%o4) 2 cos (1) - 2 sin (1)
(%i5) arrayinfo (G3);
(%o5) [hashed, 1, [2]]
(%i6) listarray (G3);

2 2
(%o6) [lambda([x], 2 cos (x) - 2 sin (x))]

114 Maxima 5.35.1 Manual

When the last or only function argument x n is a list of one element, the function
defined by := accepts a variable number of arguments.

(%i1) H ([L]) := apply ("+", L);
(%o1) H([L]) := apply("+", L)
(%i2) H (a, b, c);
(%o2) c + b + a

local makes a local function definition.

(%i1) foo (x) := 1 - x;
(%o1) foo(x) := 1 - x
(%i2) foo (100);
(%o2) - 99
(%i3) block (local (foo), foo (x) := 2 * x, foo (100));
(%o3) 200
(%i4) foo (100);
(%o4) - 99

7.7 User defined operators

Functioninfix
infix (op)
infix (op, lbp, rbp)
infix (op, lbp, rbp, lpos, rpos, pos)

Declares op to be an infix operator. An infix operator is a function of two arguments,
with the name of the function written between the arguments. For example, the
subtraction operator - is an infix operator.

infix (op) declares op to be an infix operator with default binding powers (left and
right both equal to 180) and parts of speech (left and right both equal to any).

infix (op, lbp, rbp) declares op to be an infix operator with stated left and right
binding powers and default parts of speech (left and right both equal to any).

infix (op, lbp, rbp, lpos, rpos, pos) declares op to be an infix operator with
stated left and right binding powers and parts of speech lpos, rpos, and pos for the
left operand, the right operand, and the operator result, respectively.

"Part of speech", in reference to operator declarations, means expression type. Three
types are recognized: expr, clause, and any, indicating an algebraic expression, a
Boolean expression, or any kind of expression, respectively. Maxima can detect some
syntax errors by comparing the declared part of speech to an actual expression.

The precedence of op with respect to other operators derives from the left and right
binding powers of the operators in question. If the left and right binding powers of
op are both greater the left and right binding powers of some other operator, then op
takes precedence over the other operator. If the binding powers are not both greater
or less, some more complicated relation holds.

The associativity of op depends on its binding powers. Greater left binding power
(lbp) implies an instance of op is evaluated before other operators to its left in an
expression, while greater right binding power (rbp) implies an instance of op is eval-
uated before other operators to its right in an expression. Thus greater lbp makes op

Chapter 7: Operators 115

right-associative, while greater rbp makes op left-associative. If lbp is equal to rbp,
op is left-associative.

See also Section 7.1 [Introduction to operators], page 99.

Examples:

If the left and right binding powers of op are both greater the left and right binding
powers of some other operator, then op takes precedence over the other operator.

(%i1) :lisp (get ’$+ ’lbp)
100
(%i1) :lisp (get ’$+ ’rbp)
100
(%i1) infix ("##", 101, 101);
(%o1) ##
(%i2) "##"(a, b) := sconcat("(", a, ",", b, ")");
(%o2) (a ## b) := sconcat("(", a, ",", b, ")")
(%i3) 1 + a ## b + 2;
(%o3) (a,b) + 3
(%i4) infix ("##", 99, 99);
(%o4) ##
(%i5) 1 + a ## b + 2;
(%o5) (a+1,b+2)

Greater lbp makes op right-associative, while greater rbp makes op left-associative.

(%i1) infix ("##", 100, 99);
(%o1) ##
(%i2) "##"(a, b) := sconcat("(", a, ",", b, ")")$
(%i3) foo ## bar ## baz;
(%o3) (foo,(bar,baz))
(%i4) infix ("##", 100, 101);
(%o4) ##
(%i5) foo ## bar ## baz;
(%o5) ((foo,bar),baz)

Maxima can detect some syntax errors by comparing the declared part of speech to
an actual expression.

(%i1) infix ("##", 100, 99, expr, expr, expr);
(%o1) ##
(%i2) if x ## y then 1 else 0;
Incorrect syntax: Found algebraic expression where logical
expression expected
if x ## y then

^
(%i2) infix ("##", 100, 99, expr, expr, clause);
(%o2) ##
(%i3) if x ## y then 1 else 0;
(%o3) if x ## y then 1 else 0

116 Maxima 5.35.1 Manual

Functionmatchfix
matchfix (ldelimiter, rdelimiter)
matchfix (ldelimiter, rdelimiter, arg pos, pos)

Declares a matchfix operator with left and right delimiters ldelimiter and rdelimiter.
The delimiters are specified as strings.

A "matchfix" operator is a function of any number of arguments, such that the
arguments occur between matching left and right delimiters. The delimiters may be
any strings, so long as the parser can distinguish the delimiters from the operands
and other expressions and operators. In practice this rules out unparseable delimiters
such as %, ,, $ and ;, and may require isolating the delimiters with white space. The
right delimiter can be the same or different from the left delimiter.

A left delimiter can be associated with only one right delimiter; two different matchfix
operators cannot have the same left delimiter.

An existing operator may be redeclared as a matchfix operator without changing its
other properties. In particular, built-in operators such as addition + can be declared
matchfix, but operator functions cannot be defined for built-in operators.

The command matchfix (ldelimiter, rdelimiter, arg pos, pos) declares the argu-
ment part-of-speech arg pos and result part-of-speech pos, and the delimiters lde-
limiter and rdelimiter.

"Part of speech", in reference to operator declarations, means expression type. Three
types are recognized: expr, clause, and any, indicating an algebraic expression, a
Boolean expression, or any kind of expression, respectively. Maxima can detect some
syntax errors by comparing the declared part of speech to an actual expression.

The function to carry out a matchfix operation is an ordinary user-defined function.
The operator function is defined in the usual way with the function definition operator
:= or define. The arguments may be written between the delimiters, or with the
left delimiter as a quoted string and the arguments following in parentheses. dispfun
(ldelimiter) displays the function definition.

The only built-in matchfix operator is the list constructor []. Parentheses () and
double-quotes " " act like matchfix operators, but are not treated as such by the
Maxima parser.

matchfix evaluates its arguments. matchfix returns its first argument, ldelimiter.

Examples:

Delimiters may be almost any strings.

(%i1) matchfix ("@@", "~");
(%o1) @@
(%i2) @@ a, b, c ~;
(%o2) @@a, b, c~
(%i3) matchfix (">>", "<<");
(%o3) >>
(%i4) >> a, b, c <<;
(%o4) >>a, b, c<<
(%i5) matchfix ("foo", "oof");
(%o5) foo
(%i6) foo a, b, c oof;

Chapter 7: Operators 117

(%o6) fooa, b, coof
(%i7) >> w + foo x, y oof + z << / @@ p, q ~;

>>z + foox, yoof + w<<
(%o7) ----------------------

@@p, q~

Matchfix operators are ordinary user-defined functions.

(%i1) matchfix ("!-", "-!");
(%o1) "!-"
(%i2) !- x, y -! := x/y - y/x;

x y
(%o2) !-x, y-! := - - -

y x
(%i3) define (!-x, y-!, x/y - y/x);

x y
(%o3) !-x, y-! := - - -

y x
(%i4) define ("!-" (x, y), x/y - y/x);

x y
(%o4) !-x, y-! := - - -

y x
(%i5) dispfun ("!-");

x y
(%t5) !-x, y-! := - - -

y x

(%o5) done
(%i6) !-3, 5-!;

16
(%o6) - --

15
(%i7) "!-" (3, 5);

16
(%o7) - --

15

Functionnary
nary (op)
nary (op, bp, arg pos, pos)

An nary operator is used to denote a function of any number of arguments, each
of which is separated by an occurrence of the operator, e.g. A+B or A+B+C. The
nary("x") function is a syntax extension function to declare x to be an nary operator.
Functions may be declared to be nary. If declare(j,nary); is done, this tells the
simplifier to simplify, e.g. j(j(a,b),j(c,d)) to j(a, b, c, d).

See also Section 7.1 [Introduction to operators], page 99.

118 Maxima 5.35.1 Manual

Functionnofix
nofix (op)
nofix (op, pos)

nofix operators are used to denote functions of no arguments. The mere presence of
such an operator in a command will cause the corresponding function to be evaluated.
For example, when one types "exit;" to exit from a Maxima break, "exit" is behaving
similar to a nofix operator. The function nofix("x") is a syntax extension function
which declares x to be a nofix operator.

See also Section 7.1 [Introduction to operators], page 99.

Functionpostfix
postfix (op)
postfix (op, lbp, lpos, pos)

postfix operators like the prefix variety denote functions of a single argument, but
in this case the argument immediately precedes an occurrence of the operator in the
input string, e.g. 3!. The postfix("x") function is a syntax extension function to
declare x to be a postfix operator.

See also Section 7.1 [Introduction to operators], page 99.

Functionprefix
prefix (op)
prefix (op, rbp, rpos, pos)

A prefix operator is one which signifies a function of one argument, which argument
immediately follows an occurrence of the operator. prefix("x") is a syntax extension
function to declare x to be a prefix operator.

See also Section 7.1 [Introduction to operators], page 99.

Chapter 8: Evaluation 119

8 Evaluation

8.1 Functions and Variables for Evaluation

Operator’
The single quote operator ’ prevents evaluation.

Applied to a symbol, the single quote prevents evaluation of the symbol.

Applied to a function call, the single quote prevents evaluation of the function call, al-
though the arguments of the function are still evaluated (if evaluation is not otherwise
prevented). The result is the noun form of the function call.

Applied to a parenthesized expression, the single quote prevents evaluation of all
symbols and function calls in the expression. E.g., ’(f(x)) means do not evaluate
the expression f(x). ’f(x) (with the single quote applied to f instead of f(x)) means
return the noun form of f applied to [x].

The single quote does not prevent simplification.

When the global flag noundisp is true, nouns display with a single quote. This switch
is always true when displaying function definitions.

See also the quote-quote operator ’’ and nouns.

Examples:

Applied to a symbol, the single quote prevents evaluation of the symbol.

(%i1) aa: 1024;
(%o1) 1024
(%i2) aa^2;
(%o2) 1048576
(%i3) ’aa^2;

2
(%o3) aa
(%i4) ’’%;
(%o4) 1048576

Applied to a function call, the single quote prevents evaluation of the function call.
The result is the noun form of the function call.

(%i1) x0: 5;
(%o1) 5
(%i2) x1: 7;
(%o2) 7
(%i3) integrate (x^2, x, x0, x1);

218
(%o3) ---

3
(%i4) ’integrate (x^2, x, x0, x1);

120 Maxima 5.35.1 Manual

7
/
[2

(%o4) I x dx
]
/
5

(%i5) %, nouns;
218

(%o5) ---
3

Applied to a parenthesized expression, the single quote prevents evaluation of all
symbols and function calls in the expression.

(%i1) aa: 1024;
(%o1) 1024
(%i2) bb: 19;
(%o2) 19
(%i3) sqrt(aa) + bb;
(%o3) 51
(%i4) ’(sqrt(aa) + bb);
(%o4) bb + sqrt(aa)
(%i5) ’’%;
(%o5) 51

The single quote does not prevent simplification.

(%i1) sin (17 * %pi) + cos (17 * %pi);
(%o1) - 1
(%i2) ’(sin (17 * %pi) + cos (17 * %pi));
(%o2) - 1

Maxima considers floating point operations by its in-built mathematical functions to
be a simplification.

(%i1) sin(1.0);
(%o1) .8414709848078965
(%i2) ’(sin(1.0));
(%o2) .8414709848078965

When the global flag noundisp is true, nouns display with a single quote.

(%i1) x:%pi;
(%o1) %pi
(%i2) bfloat(x);
(%o2) 3.141592653589793b0
(%i3) sin(x);
(%o3) 0
(%i4) noundisp;
(%o4) false
(%i5) ’bfloat(x);
(%o5) bfloat(%pi)
(%i6) bfloat(’x);
(%o6) x

Chapter 8: Evaluation 121

(%i7) ’sin(x);
(%o7) 0
(%i8) sin(’x);
(%o8) sin(x)
(%i9) noundisp : not noundisp;
(%o9) true
(%i10) ’bfloat(x);
(%o10) ’bfloat(%pi)
(%i11) bfloat(’x);
(%o11) x
(%i12) ’sin(x);
(%o12) 0
(%i13) sin(’x);
(%o13) sin(x)
(%i14)

Operator”
The quote-quote operator ’’ (two single quote marks) modifies evaluation in input
expressions.

Applied to a general expression expr, quote-quote causes the value of expr to be
substituted for expr in the input expression.

Applied to the operator of an expression, quote-quote changes the operator from a
noun to a verb (if it is not already a verb).

The quote-quote operator is applied by the input parser; it is not stored as part
of a parsed input expression. The quote-quote operator is always applied as soon
as it is parsed, and cannot be quoted. Thus quote-quote causes evaluation when
evaluation is otherwise suppressed, such as in function definitions, lambda expressions,
and expressions quoted by single quote ’.

Quote-quote is recognized by batch and load.

See also the single-quote operator ’ and nouns.

Examples:

Applied to a general expression expr, quote-quote causes the value of expr to be
substituted for expr in the input expression.

(%i1) expand ((a + b)^3);
3 2 2 3

(%o1) b + 3 a b + 3 a b + a
(%i2) [_, ’’_];

3 3 2 2 3
(%o2) [expand((b + a)), b + 3 a b + 3 a b + a]
(%i3) [%i1, ’’%i1];

3 3 2 2 3
(%o3) [expand((b + a)), b + 3 a b + 3 a b + a]
(%i4) [aa : cc, bb : dd, cc : 17, dd : 29];
(%o4) [cc, dd, 17, 29]
(%i5) foo_1 (x) := aa - bb * x;
(%o5) foo_1(x) := aa - bb x

122 Maxima 5.35.1 Manual

(%i6) foo_1 (10);
(%o6) cc - 10 dd
(%i7) ’’%;
(%o7) - 273
(%i8) ’’(foo_1 (10));
(%o8) - 273
(%i9) foo_2 (x) := ’’aa - ’’bb * x;
(%o9) foo_2(x) := cc - dd x
(%i10) foo_2 (10);
(%o10) - 273
(%i11) [x0 : x1, x1 : x2, x2 : x3];
(%o11) [x1, x2, x3]
(%i12) x0;
(%o12) x1
(%i13) ’’x0;
(%o13) x2
(%i14) ’’ ’’x0;
(%o14) x3

Applied to the operator of an expression, quote-quote changes the operator from a
noun to a verb (if it is not already a verb).

(%i1) declare (foo, noun);
(%o1) done
(%i2) foo (x) := x - 1729;
(%o2) ’’foo(x) := x - 1729
(%i3) foo (100);
(%o3) foo(100)
(%i4) ’’foo (100);
(%o4) - 1629

The quote-quote operator is applied by the input parser; it is not stored as part of a
parsed input expression.

(%i1) [aa : bb, cc : dd, bb : 1234, dd : 5678];
(%o1) [bb, dd, 1234, 5678]
(%i2) aa + cc;
(%o2) dd + bb
(%i3) display (_, op (_), args (_));

_ = cc + aa

op(cc + aa) = +

args(cc + aa) = [cc, aa]

(%o3) done
(%i4) ’’(aa + cc);
(%o4) 6912
(%i5) display (_, op (_), args (_));

_ = dd + bb

op(dd + bb) = +

Chapter 8: Evaluation 123

args(dd + bb) = [dd, bb]

(%o5) done

Quote-quote causes evaluation when evaluation is otherwise suppressed, such as in
function definitions, lambda expressions, and expressions quoted by single quote ’.

(%i1) foo_1a (x) := ’’(integrate (log (x), x));
(%o1) foo_1a(x) := x log(x) - x
(%i2) foo_1b (x) := integrate (log (x), x);
(%o2) foo_1b(x) := integrate(log(x), x)
(%i3) dispfun (foo_1a, foo_1b);
(%t3) foo_1a(x) := x log(x) - x

(%t4) foo_1b(x) := integrate(log(x), x)

(%o4) [%t3, %t4]
(%i5) integrate (log (x), x);
(%o5) x log(x) - x
(%i6) foo_2a (x) := ’’%;
(%o6) foo_2a(x) := x log(x) - x
(%i7) foo_2b (x) := %;
(%o7) foo_2b(x) := %
(%i8) dispfun (foo_2a, foo_2b);
(%t8) foo_2a(x) := x log(x) - x

(%t9) foo_2b(x) := %

(%o9) [%t7, %t8]
(%i10) F : lambda ([u], diff (sin (u), u));
(%o10) lambda([u], diff(sin(u), u))
(%i11) G : lambda ([u], ’’(diff (sin (u), u)));
(%o11) lambda([u], cos(u))
(%i12) ’(sum (a[k], k, 1, 3) + sum (b[k], k, 1, 3));
(%o12) sum(b , k, 1, 3) + sum(a , k, 1, 3)

k k
(%i13) ’(’’(sum (a[k], k, 1, 3)) + ’’(sum (b[k], k, 1, 3)));
(%o13) b + a + b + a + b + a

3 3 2 2 1 1

Functionev (expr, arg 1, . . . , arg n)
Evaluates the expression expr in the environment specified by the arguments arg 1,
. . . , arg n. The arguments are switches (Boolean flags), assignments, equations, and
functions. ev returns the result (another expression) of the evaluation.

The evaluation is carried out in steps, as follows.

1. First the environment is set up by scanning the arguments which may be any or
all of the following.

• simp causes expr to be simplified regardless of the setting of the switch simp

which inhibits simplification if false.

124 Maxima 5.35.1 Manual

• noeval suppresses the evaluation phase of ev (see step (4) below). This
is useful in conjunction with the other switches and in causing expr to be
resimplified without being reevaluated.

• nouns causes the evaluation of noun forms (typically unevaluated functions
such as ’integrate or ’diff) in expr.

• expand causes expansion.

• expand (m, n) causes expansion, setting the values of maxposex and
maxnegex to m and n respectively.

• detout causes any matrix inverses computed in expr to have their determi-
nant kept outside of the inverse rather than dividing through each element.

• diff causes all differentiations indicated in expr to be performed.

• derivlist (x, y, z, ...) causes only differentiations with respect to the
indicated variables. See also derivlist.

• risch causes integrals in expr to be evaluated using the Risch algorithm. See
risch. The standard integration routine is invoked when using the special
symbol nouns.

• float causes non-integral rational numbers to be converted to floating point.

• numer causes some mathematical functions (including exponentiation) with
numerical arguments to be evaluated in floating point. It causes variables
in expr which have been given numervals to be replaced by their values. It
also sets the float switch on.

• pred causes predicates (expressions which evaluate to true or false) to be
evaluated.

• eval causes an extra post-evaluation of expr to occur. (See step (5) below.)
eval may occur multiple times. For each instance of eval, the expression is
evaluated again.

• A where A is an atom declared to be an evaluation flag evflag causes A to
be bound to true during the evaluation of expr.

• V: expression (or alternately V=expression) causes V to be bound to the
value of expression during the evaluation of expr. Note that if V is a
Maxima option, then expression is used for its value during the evaluation
of expr. If more than one argument to ev is of this type then the binding is
done in parallel. If V is a non-atomic expression then a substitution rather
than a binding is performed.

• F where F, a function name, has been declared to be an evaluation function
evfun causes F to be applied to expr.

• Any other function names, e.g. sum, cause evaluation of occurrences of those
names in expr as though they were verbs.

• In addition a function occurring in expr (say F(x)) may be defined locally
for the purpose of this evaluation of expr by giving F(x) := expression as
an argument to ev.

• If an atom not mentioned above or a subscripted variable or subscripted
expression was given as an argument, it is evaluated and if the result is an

Chapter 8: Evaluation 125

equation or assignment then the indicated binding or substitution is per-
formed. If the result is a list then the members of the list are treated as if
they were additional arguments given to ev. This permits a list of equations
to be given (e.g. [X=1, Y=A**2]) or a list of names of equations (e.g., [%t1,
%t2] where %t1 and %t2 are equations) such as that returned by solve.

The arguments of ev may be given in any order with the exception of substi-
tution equations which are handled in sequence, left to right, and evaluation
functions which are composed, e.g., ev (expr, ratsimp, realpart) is handled
as realpart (ratsimp (expr)).

The simp, numer, and float switches may also be set locally in a block, or
globally in Maxima so that they will remain in effect until being reset.

If expr is a canonical rational expression (CRE), then the expression returned by
ev is also a CRE, provided the numer and float switches are not both true.

2. During step (1), a list is made of the non-subscripted variables appearing on the
left side of equations in the arguments or in the value of some arguments if the
value is an equation. The variables (subscripted variables which do not have
associated array functions as well as non-subscripted variables) in the expression
expr are replaced by their global values, except for those appearing in this list.
Usually, expr is just a label or % (as in %i2 in the example below), so this step
simply retrieves the expression named by the label, so that ev may work on it.

3. If any substitutions are indicated by the arguments, they are carried out now.

4. The resulting expression is then re-evaluated (unless one of the arguments was
noeval) and simplified according to the arguments. Note that any function
calls in expr will be carried out after the variables in it are evaluated and that
ev(F(x)) thus may behave like F(ev(x)).

5. For each instance of eval in the arguments, steps (3) and (4) are repeated.

Examples:

(%i1) sin(x) + cos(y) + (w+1)^2 + ’diff (sin(w), w);
d 2

(%o1) cos(y) + sin(x) + -- (sin(w)) + (w + 1)
dw

(%i2) ev (%, numer, expand, diff, x=2, y=1);
2

(%o2) cos(w) + w + 2 w + 2.449599732693821

An alternate top level syntax has been provided for ev, whereby one may just type
in its arguments, without the ev(). That is, one may write simply

expr, arg 1, ..., arg n

This is not permitted as part of another expression, e.g., in functions, blocks, etc.

Notice the parallel binding process in the following example.

(%i3) programmode: false;
(%o3) false
(%i4) x+y, x: a+y, y: 2;
(%o4) y + a + 2
(%i5) 2*x - 3*y = 3$

126 Maxima 5.35.1 Manual

(%i6) -3*x + 2*y = -4$
(%i7) solve ([%o5, %o6]);
Solution

1
(%t7) y = - -

5

6
(%t8) x = -

5
(%o8) [[%t7, %t8]]
(%i8) %o6, %o8;
(%o8) - 4 = - 4
(%i9) x + 1/x > gamma (1/2);

1
(%o9) x + - > sqrt(%pi)

x
(%i10) %, numer, x=1/2;
(%o10) 2.5 > 1.772453850905516
(%i11) %, pred;
(%o11) true

Special symboleval
As an argument in a call to ev (expr), eval causes an extra evaluation of expr. See
ev.

Example:

(%i1) [a:b,b:c,c:d,d:e];
(%o1) [b, c, d, e]
(%i2) a;
(%o2) b
(%i3) ev(a);
(%o3) c
(%i4) ev(a),eval;
(%o4) e
(%i5) a,eval,eval;
(%o5) e

Propertyevflag
When a symbol x has the evflag property, the expressions ev(expr, x) and expr,
x (at the interactive prompt) are equivalent to ev(expr, x = true). That is, x is
bound to true while expr is evaluated.

The expression declare(x, evflag) gives the evflag property to the variable x.

The flags which have the evflag property by default are the following:

algebraic cauchysum demoivre

Chapter 8: Evaluation 127

dotscrules %emode %enumer
exponentialize exptisolate factorflag
float halfangles infeval
isolate_wrt_times keepfloat letrat
listarith logabs logarc
logexpand lognegint
m1pbranch numer_pbranch programmode
radexpand ratalgdenom ratfac
ratmx ratsimpexpons simp
simpproduct simpsum sumexpand
trigexpand

Examples:

(%i1) sin (1/2);
1

(%o1) sin(-)
2

(%i2) sin (1/2), float;
(%o2) 0.479425538604203
(%i3) sin (1/2), float=true;
(%o3) 0.479425538604203
(%i4) simp : false;
(%o4) false
(%i5) 1 + 1;
(%o5) 1 + 1
(%i6) 1 + 1, simp;
(%o6) 2
(%i7) simp : true;
(%o7) true
(%i8) sum (1/k^2, k, 1, inf);

inf
====
\ 1

(%o8) > --
/ 2
==== k
k = 1

(%i9) sum (1/k^2, k, 1, inf), simpsum;
2

%pi
(%o9) ----

6
(%i10) declare (aa, evflag);
(%o10) done
(%i11) if aa = true then YES else NO;
(%o11) NO
(%i12) if aa = true then YES else NO, aa;
(%o12) YES

128 Maxima 5.35.1 Manual

Propertyevfun
When a function F has the evfun property, the expressions ev(expr, F) and expr,
F (at the interactive prompt) are equivalent to F(ev(expr)).

If two or more evfun functions F, G, etc., are specified, the functions are applied in
the order that they are specified.

The expression declare(F, evfun) gives the evfun property to the function F. The
functions which have the evfun property by default are the following:

bfloat factor fullratsimp
logcontract polarform radcan
ratexpand ratsimp rectform
rootscontract trigexpand trigreduce

Examples:

(%i1) x^3 - 1;
3

(%o1) x - 1
(%i2) x^3 - 1, factor;

2
(%o2) (x - 1) (x + x + 1)
(%i3) factor (x^3 - 1);

2
(%o3) (x - 1) (x + x + 1)
(%i4) cos(4 * x) / sin(x)^4;

cos(4 x)
(%o4) --------

4
sin (x)

(%i5) cos(4 * x) / sin(x)^4, trigexpand;
4 2 2 4

sin (x) - 6 cos (x) sin (x) + cos (x)
(%o5) -------------------------------------

4
sin (x)

(%i6) cos(4 * x) / sin(x)^4, trigexpand, ratexpand;
2 4

6 cos (x) cos (x)
(%o6) - --------- + ------- + 1

2 4
sin (x) sin (x)

(%i7) ratexpand (trigexpand (cos(4 * x) / sin(x)^4));
2 4

6 cos (x) cos (x)
(%o7) - --------- + ------- + 1

2 4
sin (x) sin (x)

(%i8) declare ([F, G], evfun);
(%o8) done
(%i9) (aa : bb, bb : cc, cc : dd);

Chapter 8: Evaluation 129

(%o9) dd
(%i10) aa;
(%o10) bb
(%i11) aa, F;
(%o11) F(cc)
(%i12) F (aa);
(%o12) F(bb)
(%i13) F (ev (aa));
(%o13) F(cc)
(%i14) aa, F, G;
(%o14) G(F(cc))
(%i15) G (F (ev (aa)));
(%o15) G(F(cc))

Option variableinfeval
Enables "infinite evaluation" mode. ev repeatedly evaluates an expression until it
stops changing. To prevent a variable, say X, from being evaluated away in this
mode, simply include X=’X as an argument to ev. Of course expressions such as ev

(X, X=X+1, infeval) will generate an infinite loop.

Special symbolnoeval
noeval suppresses the evaluation phase of ev. This is useful in conjunction with other
switches and in causing expressions to be resimplified without being reevaluated.

Special symbolnouns
nouns is an evflag. When used as an option to the ev command, nouns converts all
"noun" forms occurring in the expression being ev’d to "verbs", i.e., evaluates them.
See also noun, nounify, verb, and verbify.

Special symbolpred
As an argument in a call to ev (expr), pred causes predicates (expressions which
evaluate to true or false) to be evaluated. See ev.

Example:

(%i1) 1<2;
(%o1) 1 < 2
(%i2) 1<2,pred;
(%o2) true

130 Maxima 5.35.1 Manual

Chapter 9: Simplification 131

9 Simplification

9.1 Functions and Variables for Simplification

Propertyadditive
If declare(f,additive) has been executed, then:

(1) If f is univariate, whenever the simplifier encounters f applied to a sum, f will be
distributed over that sum. I.e. f(y+x) will simplify to f(y)+f(x).

(2) If f is a function of 2 or more arguments, additivity is defined as additivity in
the first argument to f, as in the case of sum or integrate, i.e. f(h(x)+g(x),x)

will simplify to f(h(x),x)+f(g(x),x). This simplification does not occur when f is
applied to expressions of the form sum(x[i],i,lower-limit,upper-limit).

Example:

(%i1) F3 (a + b + c);
(%o1) F3(c + b + a)
(%i2) declare (F3, additive);
(%o2) done
(%i3) F3 (a + b + c);
(%o3) F3(c) + F3(b) + F3(a)

Propertyantisymmetric
If declare(h,antisymmetric) is done, this tells the simplifier that h is antisymmet-
ric. E.g. h(x,z,y) will simplify to - h(x, y, z). That is, it will give (-1)^n times the
result given by symmetric or commutative, where n is the number of interchanges of
two arguments necessary to convert it to that form.

Examples:

(%i1) S (b, a);
(%o1) S(b, a)
(%i2) declare (S, symmetric);
(%o2) done
(%i3) S (b, a);
(%o3) S(a, b)
(%i4) S (a, c, e, d, b);
(%o4) S(a, b, c, d, e)
(%i5) T (b, a);
(%o5) T(b, a)
(%i6) declare (T, antisymmetric);
(%o6) done
(%i7) T (b, a);
(%o7) - T(a, b)
(%i8) T (a, c, e, d, b);
(%o8) T(a, b, c, d, e)

132 Maxima 5.35.1 Manual

Functioncombine (expr)
Simplifies the sum expr by combining terms with the same denominator into a single
term.

Example:

(%i1) 1*f/2*b + 2*c/3*a + 3*f/4*b +c/5*b*a;
5 b f a b c 2 a c

(%o1) ----- + ----- + -----
4 5 3

(%i2) combine (%);
75 b f + 4 (3 a b c + 10 a c)

(%o2) -----------------------------
60

Propertycommutative
If declare(h, commutative) is done, this tells the simplifier that h is a commutative
function. E.g. h(x, z, y) will simplify to h(x, y, z). This is the same as symmetric.

Exemplo:

(%i1) S (b, a);
(%o1) S(b, a)
(%i2) S (a, b) + S (b, a);
(%o2) S(b, a) + S(a, b)
(%i3) declare (S, commutative);
(%o3) done
(%i4) S (b, a);
(%o4) S(a, b)
(%i5) S (a, b) + S (b, a);
(%o5) 2 S(a, b)
(%i6) S (a, c, e, d, b);
(%o6) S(a, b, c, d, e)

Functiondemoivre (expr)
Option variabledemoivre

The function demoivre (expr) converts one expression without setting the global
variable demoivre.

When the variable demoivre is true, complex exponentials are converted into equiv-
alent expressions in terms of circular functions: exp (a + b*%i) simplifies to %e^a *

(cos(b) + %i*sin(b)) if b is free of %i. a and b are not expanded.

The default value of demoivre is false.

exponentialize converts circular and hyperbolic functions to exponential form.
demoivre and exponentialize cannot both be true at the same time.

Functiondistrib (expr)
Distributes sums over products. It differs from expand in that it works at only the
top level of an expression, i.e., it doesn’t recurse and it is faster than expand. It
differs from multthru in that it expands all sums at that level.

Examples:

Chapter 9: Simplification 133

(%i1) distrib ((a+b) * (c+d));
(%o1) b d + a d + b c + a c
(%i2) multthru ((a+b) * (c+d));
(%o2) (b + a) d + (b + a) c
(%i3) distrib (1/((a+b) * (c+d)));

1
(%o3) ---------------

(b + a) (d + c)
(%i4) expand (1/((a+b) * (c+d)), 1, 0);

1
(%o4) ---------------------

b d + a d + b c + a c

Option variabledistribute over
Default value: true

distribute_over controls the mapping of functions over bags like lists, matrices, and
equations. At this time not all Maxima functions have this property. It is possible to
look up this property with the command properties.

The mapping of functions is switched off, when setting distribute_over to the value
false.

Examples:

The sin function maps over a list:

(%i1) sin([x,1,1.0]);
(%o1) [sin(x), sin(1), .8414709848078965]

mod is a function with two arguments which maps over lists. Mapping over nested
lists is possible too:

(%i2) mod([x,11,2*a],10);
(%o2) [mod(x, 10), 1, 2 mod(a, 5)]
(%i3) mod([[x,y,z],11,2*a],10);
(%o3) [[mod(x, 10), mod(y, 10), mod(z, 10)], 1, 2 mod(a, 5)]

Mapping of the floor function over a matrix and an equation:

(%i4) floor(matrix([a,b],[c,d]));
[floor(a) floor(b)]

(%o4) []
[floor(c) floor(d)]

(%i5) floor(a=b);
(%o5) floor(a) = floor(b)

Functions with more than one argument map over any of the arguments or all argu-
ments:

(%i6) expintegral_e([1,2],[x,y]);
(%o6) [[expintegral_e(1, x), expintegral_e(1, y)],

[expintegral_e(2, x), expintegral_e(2, y)]]

Check if a function has the property distribute over:

(%i7) properties(abs);
(%o7) [integral, distributes over bags, noun, rule, gradef]

134 Maxima 5.35.1 Manual

The mapping of functions is switched off, when setting distribute_over to the value
false.

(%i1) distribute_over;
(%o1) true
(%i2) sin([x,1,1.0]);
(%o2) [sin(x), sin(1), 0.8414709848078965]
(%i3) distribute_over : not distribute_over;
(%o3) false
(%i4) sin([x,1,1.0]);
(%o4) sin([x, 1, 1.0])
(%i5)

Option variabledomain
Default value: real

When domain is set to complex, sqrt (x^2) will remain sqrt (x^2) instead of re-
turning abs(x).

Propertyevenfun
Propertyoddfun

declare(f, evenfun) or declare(f, oddfun) tells Maxima to recognize the function
f as an even or odd function.

Examples:

(%i1) o (- x) + o (x);
(%o1) o(x) + o(- x)
(%i2) declare (o, oddfun);
(%o2) done
(%i3) o (- x) + o (x);
(%o3) 0
(%i4) e (- x) - e (x);
(%o4) e(- x) - e(x)
(%i5) declare (e, evenfun);
(%o5) done
(%i6) e (- x) - e (x);
(%o6) 0

Functionexpand
expand (expr)
expand (expr, p, n)

Expand expression expr. Products of sums and exponentiated sums are multiplied
out, numerators of rational expressions which are sums are split into their respective
terms, and multiplication (commutative and non-commutative) are distributed over
addition at all levels of expr.

For polynomials one should usually use ratexpand which uses a more efficient algo-
rithm.

Chapter 9: Simplification 135

maxnegex and maxposex control the maximum negative and positive exponents, re-
spectively, which will expand.

expand (expr, p, n) expands expr, using p for maxposex and n for maxnegex. This
is useful in order to expand part but not all of an expression.

expon - the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example if expon is 4 then (x+1)^(-5) will not
be automatically expanded.

expop - the highest positive exponent which is automatically expanded. Thus
(x+1)^3, when typed, will be automatically expanded only if expop is greater than
or equal to 3. If it is desired to have (x+1)^n expanded where n is greater than
expop then executing expand ((x+1)^n) will work only if maxposex is not less than
n.

expand(expr, 0, 0) causes a resimplification of expr. expr is not reevaluated. In
distinction from ev(expr, noeval) a special representation (e. g. a CRE form) is
removed. See also ev.

The expand flag used with ev causes expansion.

The file ‘share/simplification/facexp.mac’ contains several related functions (in
particular facsum, factorfacsum and collectterms, which are autoloaded) and
variables (nextlayerfactor and facsum_combine) that provide the user with the
ability to structure expressions by controlled expansion. Brief function descrip-
tions are available in ‘simplification/facexp.usg’. A demo is available by doing
demo("facexp").

Examples:

(%i1) expr:(x+1)^2*(y+1)^3;
2 3

(%o1) (x + 1) (y + 1)
(%i2) expand(expr);

2 3 3 3 2 2 2 2 2
(%o2) x y + 2 x y + y + 3 x y + 6 x y + 3 y + 3 x y

2
+ 6 x y + 3 y + x + 2 x + 1

(%i3) expand(expr,2);
2 3 3 3

(%o3) x (y + 1) + 2 x (y + 1) + (y + 1)
(%i4) expr:(x+1)^-2*(y+1)^3;

3
(y + 1)

(%o4) --------
2

(x + 1)
(%i5) expand(expr);

3 2
y 3 y 3 y 1

(%o5) ------------ + ------------ + ------------ + ------------
2 2 2 2
x + 2 x + 1 x + 2 x + 1 x + 2 x + 1 x + 2 x + 1

136 Maxima 5.35.1 Manual

(%i6) expand(expr,2,2);
3

(y + 1)
(%o6) ------------

2
x + 2 x + 1

Resimplify an expression without expansion:

(%i7) expr:(1+x)^2*sin(x);
2

(%o7) (x + 1) sin(x)
(%i8) exponentialize:true;
(%o8) true
(%i9) expand(expr,0,0);

2 %i x - %i x
%i (x + 1) (%e - %e)

(%o9) - -------------------------------
2

Functionexpandwrt (expr, x 1, . . . , x n)
Expands expression expr with respect to the variables x 1, . . . , x n. All products
involving the variables appear explicitly. The form returned will be free of products of
sums of expressions that are not free of the variables. x 1, . . . , x n may be variables,
operators, or expressions.

By default, denominators are not expanded, but this can be controlled by means of
the switch expandwrt_denom.

This function is autoloaded from ‘simplification/stopex.mac’.

Option variableexpandwrt denom
Default value: false

expandwrt_denom controls the treatment of rational expressions by expandwrt. If
true, then both the numerator and denominator of the expression will be expanded
according to the arguments of expandwrt, but if expandwrt_denom is false, then
only the numerator will be expanded in that way.

Functionexpandwrt factored (expr, x 1, . . . , x n)
is similar to expandwrt, but treats expressions that are products somewhat differently.
expandwrt_factored expands only on those factors of expr that contain the variables
x 1, . . . , x n.

This function is autoloaded from ‘simplification/stopex.mac’.

Option variableexpon
Default value: 0

expon is the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example, if expon is 4 then (x+1)^(-5) will
not be automatically expanded.

Chapter 9: Simplification 137

Functionexponentialize (expr)
Option variableexponentialize

The function exponentialize (expr) converts circular and hyperbolic functions in
expr to exponentials, without setting the global variable exponentialize.

When the variable exponentialize is true, all circular and hyperbolic functions are
converted to exponential form. The default value is false.

demoivre converts complex exponentials into circular functions. exponentialize

and demoivre cannot both be true at the same time.

Option variableexpop
Default value: 0

expop is the highest positive exponent which is automatically expanded. Thus (x +

1)^3, when typed, will be automatically expanded only if expop is greater than or
equal to 3. If it is desired to have (x + 1)^n expanded where n is greater than expop

then executing expand ((x + 1)^n) will work only if maxposex is not less than n.

Propertylassociative
declare (g, lassociative) tells the Maxima simplifier that g is left-associative.
E.g., g (g (a, b), g (c, d)) will simplify to g (g (g (a, b), c), d).

Propertylinear
One of Maxima’s operator properties. For univariate f so declared, "expansion" f(x

+ y) yields f(x) + f(y), f(a*x) yields a*f(x) takes place where a is a "constant".
For functions of two or more arguments, "linearity" is defined to be as in the case of
sum or integrate, i.e., f (a*x + b, x) yields a*f(x,x) + b*f(1,x) for a and b free
of x.

Example:

(%i1) declare (f, linear);
(%o1) done
(%i2) f(x+y);
(%o2) f(y) + f(x)
(%i3) declare (a, constant);
(%o3) done
(%i4) f(a*x);
(%o4) a f(x)

linear is equivalent to additive and outative. See also opproperties.

Example:

(%i1) ’sum (F(k) + G(k), k, 1, inf);
inf
====
\

(%o1) > (G(k) + F(k))
/
====

138 Maxima 5.35.1 Manual

k = 1
(%i2) declare (nounify (sum), linear);
(%o2) done
(%i3) ’sum (F(k) + G(k), k, 1, inf);

inf inf
==== ====
\ \

(%o3) > G(k) + > F(k)
/ /
==== ====
k = 1 k = 1

Option variablemaxnegex
Default value: 1000

maxnegex is the largest negative exponent which will be expanded by the expand

command (see also maxposex).

Option variablemaxposex
Default value: 1000

maxposex is the largest exponent which will be expanded with the expand command
(see also maxnegex).

Propertymultiplicative
declare(f, multiplicative) tells the Maxima simplifier that f is multiplicative.

1. If f is univariate, whenever the simplifier encounters f applied to a product,
f distributes over that product. E.g., f(x*y) simplifies to f(x)*f(y). This
simplification is not applied to expressions of the form f(’product(...)).

2. If f is a function of 2 or more arguments, multiplicativity is defined as multiplica-
tivity in the first argument to f, e.g., f (g(x) * h(x), x) simplifies to f (g(x)

,x) * f (h(x), x).

declare(nounify(product), multiplicative) tells Maxima to simplify symbolic
products.

Example:

(%i1) F2 (a * b * c);
(%o1) F2(a b c)
(%i2) declare (F2, multiplicative);
(%o2) done
(%i3) F2 (a * b * c);
(%o3) F2(a) F2(b) F2(c)

declare(nounify(product), multiplicative) tells Maxima to simplify symbolic
products.

(%i1) product (a[i] * b[i], i, 1, n);
n

/===\

Chapter 9: Simplification 139

! !
(%o1) ! ! a b

! ! i i
i = 1

(%i2) declare (nounify (product), multiplicative);
(%o2) done
(%i3) product (a[i] * b[i], i, 1, n);

n n
/===\ /===\
! ! ! !

(%o3) (! ! a) ! ! b
! ! i ! ! i
i = 1 i = 1

Functionmultthru
multthru (expr)
multthru (expr 1, expr 2)

Multiplies a factor (which should be a sum) of expr by the other factors of expr. That
is, expr is f 1 f 2 ... f n where at least one factor, say f i, is a sum of terms. Each
term in that sum is multiplied by the other factors in the product. (Namely all the
factors except f i). multthru does not expand exponentiated sums. This function is
the fastest way to distribute products (commutative or noncommutative) over sums.
Since quotients are represented as products multthru can be used to divide sums by
products as well.

multthru (expr 1, expr 2) multiplies each term in expr 2 (which should be a sum
or an equation) by expr 1. If expr 1 is not itself a sum then this form is equivalent
to multthru (expr 1*expr 2).

(%i1) x/(x-y)^2 - 1/(x-y) - f(x)/(x-y)^3;
1 x f(x)

(%o1) - ----- + -------- - --------
x - y 2 3

(x - y) (x - y)
(%i2) multthru ((x-y)^3, %);

2
(%o2) - (x - y) + x (x - y) - f(x)
(%i3) ratexpand (%);

2
(%o3) - y + x y - f(x)
(%i4) ((a+b)^10*s^2 + 2*a*b*s + (a*b)^2)/(a*b*s^2);

10 2 2 2
(b + a) s + 2 a b s + a b

(%o4) ------------------------------
2

a b s
(%i5) multthru (%); /* note that this does not expand (b+a)^10 */

10
2 a b (b + a)

(%o5) - + --- + ---------

140 Maxima 5.35.1 Manual

s 2 a b
s

(%i6) multthru (a.(b+c.(d+e)+f));
(%o6) a . f + a . c . (e + d) + a . b
(%i7) expand (a.(b+c.(d+e)+f));
(%o7) a . f + a . c . e + a . c . d + a . b

Propertynary
declare(f, nary) tells Maxima to recognize the function f as an n-ary function.

The nary declaration is not the same as calling the nary function. The sole effect of
declare(f, nary) is to instruct the Maxima simplifier to flatten nested expressions,
for example, to simplify foo(x, foo(y, z)) to foo(x, y, z). See also declare.

Example:

(%i1) H (H (a, b), H (c, H (d, e)));
(%o1) H(H(a, b), H(c, H(d, e)))
(%i2) declare (H, nary);
(%o2) done
(%i3) H (H (a, b), H (c, H (d, e)));
(%o3) H(a, b, c, d, e)

Option variablenegdistrib
Default value: true

When negdistrib is true, -1 distributes over an expression. E.g., -(x + y) becomes
- y - x. Setting it to false will allow - (x + y) to be displayed like that. This is
sometimes useful but be very careful: like the simp flag, this is one flag you do not
want to set to false as a matter of course or necessarily for other than local use in
your Maxima.

Example:

(%i1) negdistrib;
(%o1) true
(%i2) -(x+y);
(%o2) - y - x
(%i3) negdistrib : not negdistrib ;
(%o3) false
(%i4) -(x+y);
(%o4) - (y + x)

System variableopproperties
opproperties is the list of the special operator properties recognized by the Maxima
simplifier:

Example:

(%i1) opproperties;
(%o1) [linear, additive, multiplicative, outative, evenfun, oddfun,.

commutative, symmetric, antisymmetric, nary, lassociative, rassociative]

Chapter 9: Simplification 141

Propertyoutative
declare(f, outative) tells the Maxima simplifier that constant factors in the argu-
ment of f can be pulled out.

1. If f is univariate, whenever the simplifier encounters f applied to a product, that
product will be partitioned into factors that are constant and factors that are not
and the constant factors will be pulled out. E.g., f(a*x) will simplify to a*f(x)

where a is a constant. Non-atomic constant factors will not be pulled out.

2. If f is a function of 2 or more arguments, outativity is defined as in the case of
sum or integrate, i.e., f (a*g(x), x) will simplify to a * f(g(x), x) for a free
of x.

sum, integrate, and limit are all outative.

Example:

(%i1) F1 (100 * x);
(%o1) F1(100 x)
(%i2) declare (F1, outative);
(%o2) done
(%i3) F1 (100 * x);
(%o3) 100 F1(x)
(%i4) declare (zz, constant);
(%o4) done
(%i5) F1 (zz * y);
(%o5) zz F1(y)

Functionradcan (expr)
Simplifies expr, which can contain logs, exponentials, and radicals, by converting it
into a form which is canonical over a large class of expressions and a given ordering
of variables; that is, all functionally equivalent forms are mapped into a unique form.
For a somewhat larger class of expressions, radcan produces a regular form. Two
equivalent expressions in this class do not necessarily have the same appearance, but
their difference can be simplified by radcan to zero.

For some expressions radcan is quite time consuming. This is the cost of exploring
certain relationships among the components of the expression for simplifications based
on factoring and partial-fraction expansions of exponents.

Examples:

(%i1) radcan((log(x+x^2)-log(x))^a/log(1+x)^(a/2));
a/2

(%o1) log(x + 1)

(%i2) radcan((log(1+2*a^x+a^(2*x))/log(1+a^x)));
(%o2) 2

(%i3) radcan((%e^x-1)/(1+%e^(x/2)));
x/2

(%o3) %e - 1

142 Maxima 5.35.1 Manual

Option variableradexpand
Default value: true

radexpand controls some simplifications of radicals.

When radexpand is all, causes nth roots of factors of a product which are powers
of n to be pulled outside of the radical. E.g. if radexpand is all, sqrt (16*x^2)

simplifies to 4*x.

More particularly, consider sqrt (x^2).

• If radexpand is all or assume (x > 0) has been executed, sqrt(x^2) simplifies
to x.

• If radexpand is true and domain is real (its default), sqrt(x^2) simplifies to
abs(x).

• If radexpand is false, or radexpand is true and domain is complex, sqrt(x^2)
is not simplified.

Note that domain only matters when radexpand is true.

Propertyrassociative
declare (g, rassociative) tells the Maxima simplifier that g is right-associative.
E.g., g(g(a, b), g(c, d)) simplifies to g(a, g(b, g(c, d))).

Functionscsimp (expr, rule 1, . . . , rule n)
Sequential Comparative Simplification (method due to Stoute). scsimp attempts to
simplify expr according to the rules rule 1, . . . , rule n. If a smaller expression is
obtained, the process repeats. Otherwise after all simplifications are tried, it returns
the original answer.

example (scsimp) displays some examples.

Option variablesimp
Default value: true

simp enables simplification. This is the standard. simp is also an evflag, which is
recognized by the function ev. See ev.

When simp is used as an evflag with a value false, the simplification is suppressed
only during the evaluation phase of an expression. The flag can not suppress the
simplification which follows the evaluation phase.

Examples:

The simplification is switched off globally. The expression sin(1.0) is not simplified
to its numerical value. The simp-flag switches the simplification on.

(%i1) simp:false;
(%o1) false
(%i2) sin(1.0);
(%o2) sin(1.0)
(%i3) sin(1.0),simp;
(%o3) .8414709848078965

Chapter 9: Simplification 143

The simplification is switched on again. The simp-flag cannot suppress the simplifi-
cation completely. The output shows a simplified expression, but the variable x has
an unsimplified expression as a value, because the assignment has occurred during
the evaluation phase of the expression.

(%i4) simp:true;
(%o4) true
(%i5) x:sin(1.0),simp:false;
(%o5) .8414709848078965
(%i6) :lisp $X
((%SIN) 1.0)

Propertysymmetric
declare (h, symmetric) tells the Maxima simplifier that h is a symmetric function.
E.g., h (x, z, y) simplifies to h (x, y, z).

commutative is synonymous with symmetric.

Functionxthru (expr)
Combines all terms of expr (which should be a sum) over a common denominator
without expanding products and exponentiated sums as ratsimp does. xthru cancels
common factors in the numerator and denominator of rational expressions but only
if the factors are explicit.

Sometimes it is better to use xthru before ratsimping an expression in order to
cause explicit factors of the gcd of the numerator and denominator to be canceled
thus simplifying the expression to be ratsimped.

Examples:

(%i1) ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
20

1 (x + 2) - 2 y x
(%o1) --------- + --------------- - ---------

19 20 20
(y + x) (y + x) (y + x)

(%i2) xthru (%);
20

(x + 2) - y
(%o2) -------------

20
(y + x)

144 Maxima 5.35.1 Manual

Chapter 10: Mathematical Functions 145

10 Mathematical Functions

10.1 Functions for Numbers

Functionabs (z)
The abs function represents the mathematical absolute value function and works
for both numerical and symbolic values. If the argument, z, is a real or complex
number, abs returns the absolute value of z. If possible, symbolic expressions using
the absolute value function are also simplified.

Maxima can differentiate, integrate and calculate limits for expressions containing
abs. The abs_integrate package further extends Maxima’s ability to calculate in-
tegrals involving the abs function. See (%i12) in the examples below.

When applied to a list or matrix, abs automatically distributes over the terms. Sim-
ilarly, it distributes over both sides of an equation. To alter this behaviour, see the
variable distribute_over.

Examples:

Calculation of abs for real and complex numbers, including numerical constants and
various infinities. The first example shows how abs distributes over the elements of
a list.

(%i1) abs([-4, 0, 1, 1+%i]);
(%o1) [4, 0, 1, sqrt(2)]

(%i2) abs((1+%i)*(1-%i));
(%o2) 2
(%i3) abs(%e+%i);

2
(%o3) sqrt(%e + 1)
(%i4) abs([inf, infinity, minf]);
(%o4) [inf, inf, inf]

Simplification of expressions containing abs:

(%i5) abs(x^2);
2

(%o5) x
(%i6) abs(x^3);

2
(%o6) x abs(x)

(%i7) abs(abs(x));
(%o7) abs(x)
(%i8) abs(conjugate(x));
(%o8) abs(x)

Integrating and differentiating with the abs function. Note that more integrals in-
volving the abs function can be performed, if the abs_integrate package is loaded.
The last example shows the Laplace transform of abs: see laplace.

146 Maxima 5.35.1 Manual

(%i9) diff(x*abs(x),x),expand;
(%o9) 2 abs(x)

(%i10) integrate(abs(x),x);
x abs(x)

(%o10) --------
2

(%i11) integrate(x*abs(x),x);
/
[

(%o11) I x abs(x) dx
]
/

(%i12) load(abs_integrate)$
(%i13) integrate(x*abs(x),x);

2 3
x abs(x) x signum(x)

(%o13) --------- - ------------
2 6

(%i14) integrate(abs(x),x,-2,%pi);
2

%pi
(%o14) ---- + 2

2

(%i15) laplace(abs(x),x,s);
1

(%o15) --
2
s

Functionceiling (x)
When x is a real number, return the least integer that is greater than or equal to x.

If x is a constant expression (10 * %pi, for example), ceiling evaluates x using
big floating point numbers, and applies ceiling to the resulting big float. Because
ceiling uses floating point evaluation, it’s possible, although unlikely, that ceiling
could return an erroneous value for constant inputs. To guard against errors, the
floating point evaluation is done using three values for fpprec.

For non-constant inputs, ceiling tries to return a simplified value. Here are examples
of the simplifications that ceiling knows about:

(%i1) ceiling (ceiling (x));
(%o1) ceiling(x)
(%i2) ceiling (floor (x));
(%o2) floor(x)
(%i3) declare (n, integer)$

Chapter 10: Mathematical Functions 147

(%i4) [ceiling (n), ceiling (abs (n)), ceiling (max (n, 6))];
(%o4) [n, abs(n), max(n, 6)]
(%i5) assume (x > 0, x < 1)$
(%i6) ceiling (x);
(%o6) 1
(%i7) tex (ceiling (a));
$$\left \lceil a \right \rceil$$
(%o7) false

The ceiling function distributes over lists, matrices and equations. See distribute_
over.

Finally, for all inputs that are manifestly complex, ceiling returns a noun form.

If the range of a function is a subset of the integers, it can be declared to be
integervalued. Both the ceiling and floor functions can use this information;
for example:

(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2) f(x)
(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1

Example use:

(%i1) unitfrac(r) := block([uf : [], q],
if not(ratnump(r)) then

error("unitfrac: argument must be a rational number"),
while r # 0 do (

uf : cons(q : 1/ceiling(1/r), uf),
r : r - q),

reverse(uf))$
(%i2) unitfrac (9/10);

1 1 1
(%o2) [-, -, --]

2 3 15
(%i3) apply ("+", %);

9
(%o3) --

10
(%i4) unitfrac (-9/10);

1
(%o4) [- 1, --]

10
(%i5) apply ("+", %);

9
(%o5) - --

10
(%i6) unitfrac (36/37);

1 1 1 1 1
(%o6) [-, -, -, --, ----]

2 3 8 69 6808
(%i7) apply ("+", %);

148 Maxima 5.35.1 Manual

36
(%o7) --

37

Functionentier (x)
Returns the largest integer less than or equal to x where x is numeric. fix (as in
fixnum) is a synonym for this, so fix(x) is precisely the same.

Functionfloor (x)
When x is a real number, return the largest integer that is less than or equal to x.

If x is a constant expression (10 * %pi, for example), floor evaluates x using big
floating point numbers, and applies floor to the resulting big float. Because floor

uses floating point evaluation, it’s possible, although unlikely, that floor could return
an erroneous value for constant inputs. To guard against errors, the floating point
evaluation is done using three values for fpprec.

For non-constant inputs, floor tries to return a simplified value. Here are examples
of the simplifications that floor knows about:

(%i1) floor (ceiling (x));
(%o1) ceiling(x)
(%i2) floor (floor (x));
(%o2) floor(x)
(%i3) declare (n, integer)$
(%i4) [floor (n), floor (abs (n)), floor (min (n, 6))];
(%o4) [n, abs(n), min(n, 6)]
(%i5) assume (x > 0, x < 1)$
(%i6) floor (x);
(%o6) 0
(%i7) tex (floor (a));
$$\left \lfloor a \right \rfloor$$
(%o7) false

The floor function distributes over lists, matrices and equations. See distribute_

over.

Finally, for all inputs that are manifestly complex, floor returns a noun form.

If the range of a function is a subset of the integers, it can be declared to be
integervalued. Both the ceiling and floor functions can use this information;
for example:

(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2) f(x)
(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1

Functionfix (x)
A synonym for entier (x).

Chapter 10: Mathematical Functions 149

Functionlmax (L)
When L is a list or a set, return apply (’max, args (L)). When L is not a list or a
set, signal an error. See also lmin and max.

Functionlmin (L)
When L is a list or a set, return apply (’min, args (L)). When L is not a list or a
set, signal an error. See also lmax and min.

Functionmax (x 1, . . . , x n)
Return a simplified value for the maximum of the expressions x 1 through x n. When
get (trylevel, maxmin), is 2 or greater, max uses the simplification max (e, -e)

--> |e|. When get (trylevel, maxmin) is 3 or greater, max tries to eliminate
expressions that are between two other arguments; for example, max (x, 2*x, 3*x) -

-> max (x, 3*x). To set the value of trylevel to 2, use put (trylevel, 2, maxmin).

See also min and lmax.

Functionmin (x 1, . . . , x n)
Return a simplified value for the minimum of the expressions x_1 through x_n. When
get (trylevel, maxmin), is 2 or greater, min uses the simplification min (e, -e)

--> -|e|. When get (trylevel, maxmin) is 3 or greater, min tries to eliminate
expressions that are between two other arguments; for example, min (x, 2*x, 3*x) -

-> min (x, 3*x). To set the value of trylevel to 2, use put (trylevel, 2, maxmin).

See also max and lmin.

Functionround (x)
When x is a real number, returns the closest integer to x. Multiples of 1/2 are rounded
to the nearest even integer. Evaluation of x is similar to floor and ceiling.

The round function distributes over lists, matrices and equations. See distribute_

over.

Functionsignum (x)
For either real or complex numbers x, the signum function returns 0 if x is zero; for
a nonzero numeric input x, the signum function returns x/abs(x).

For non-numeric inputs, Maxima attempts to determine the sign of the input. When
the sign is negative, zero, or positive, signum returns -1,0, 1, respectively. For all
other values for the sign, signum a simplified but equivalent form. The simplifica-
tions include reflection (signum(-x) gives -signum(x)) and multiplicative identity
(signum(x*y) gives signum(x) * signum(y)).

The signum function distributes over a list, a matrix, or an equation. See
distribute_over.

150 Maxima 5.35.1 Manual

Functiontruncate (x)
When x is a real number, return the closest integer to x not greater in absolute value
than x. Evaluation of x is similar to floor and ceiling.

The truncate function distributes over lists, matrices and equations. See
distribute_over.

10.2 Functions for Complex Numbers

Functioncabs (expr)
Calculates the absolute value of an expression representing a complex number. Unlike
the function abs, the cabs function always decomposes its argument into a real and an
imaginary part. If x and y represent real variables or expressions, the cabs function
calculates the absolute value of x + %i*y as

2 2
sqrt(y + x)

The cabs function can use known properties like symmetry properties of complex
functions to help it calculate the absolute value of an expression. If such identities
exist, they can be advertised to cabs using function properties. The symmetries that
cabs understands are: mirror symmetry, conjugate function and complex character-
istic.

cabs is a verb function and is not suitable for symbolic calculations. For such calcula-
tions (including integration, differentiation and taking limits of expressions containing
absolute values), use abs.

The result of cabs can include the absolute value function, abs, and the arc tangent,
atan2.

When applied to a list or matrix, cabs automatically distributes over the terms.
Similarly, it distributes over both sides of an equation.

For further ways to compute with complex numbers, see the functions rectform,
realpart, imagpart, carg, conjugate and polarform.

Examples:

Examples with sqrt and sin.

(%i1) cabs(sqrt(1+%i*x));
2 1/4

(%o1) (x + 1)
(%i2) cabs(sin(x+%i*y));

2 2 2 2
(%o2) sqrt(cos (x) sinh (y) + sin (x) cosh (y))

The error function, erf, has mirror symmetry, which is used here in the calculation
of the absolute value with a complex argument:

(%i3) cabs(erf(x+%i*y));
2

(erf(%i y + x) - erf(%i y - x))
(%o3) sqrt(--------------------------------

4

Chapter 10: Mathematical Functions 151

2
(erf(%i y + x) + erf(%i y - x))

- --------------------------------)
4

Maxima knows complex identities for the Bessel functions, which allow it to compute
the absolute value for complex arguments. Here is an example for bessel_j.

(%i4) cabs(bessel_j(1,%i));
(%o4) abs(bessel_j(1, %i))

Functioncarg (z)
Returns the complex argument of z. The complex argument is an angle theta in
(-%pi, %pi] such that r exp (theta %i) = z where r is the magnitude of z.

carg is a computational function, not a simplifying function.

See also abs (complex magnitude), polarform, rectform, realpart, and imagpart.

Examples:

(%i1) carg (1);
(%o1) 0
(%i2) carg (1 + %i);

%pi
(%o2) ---

4
(%i3) carg (exp (%i));
(%o3) 1
(%i4) carg (exp (%pi * %i));
(%o4) %pi
(%i5) carg (exp (3/2 * %pi * %i));

%pi
(%o5) - ---

2
(%i6) carg (17 * exp (2 * %i));
(%o6) 2

Functionconjugate (x)
Returns the complex conjugate of x.

(%i1) declare ([aa, bb], real, cc, complex, ii, imaginary);

(%o1) done
(%i2) conjugate (aa + bb*%i);

(%o2) aa - %i bb
(%i3) conjugate (cc);

(%o3) conjugate(cc)
(%i4) conjugate (ii);

(%o4) - ii

152 Maxima 5.35.1 Manual

(%i5) conjugate (xx + yy);

(%o5) conjugate(yy) + conjugate(xx)

Functionimagpart (expr)
Returns the imaginary part of the expression expr.

imagpart is a computational function, not a simplifying function.

See also abs, carg, polarform, rectform, and realpart.

Example:

(%i1) imagpart (a+b*%i);
(%o1) b
(%i2) imagpart (1+sqrt(2)*%i);
(%o2) sqrt(2)
(%i3) imagpart (1);
(%o3) 0
(%i4) imagpart (sqrt(2)*%i);
(%o4) sqrt(2)

Functionpolarform (expr)
Returns an expression r %e^(%i theta) equivalent to expr, such that r and theta

are purely real.

Example:

(%i1) polarform(a+b*%i);
2 2 %i atan2(b, a)

(%o1) sqrt(b + a) %e
(%i2) polarform(1+%i);

%i %pi

4

(%o2) sqrt(2) %e
(%i3) polarform(1+2*%i);

%i atan(2)
(%o3) sqrt(5) %e

Functionrealpart (expr)
Returns the real part of expr. realpart and imagpart will work on expressions
involving trigonometric and hyperbolic functions, as well as square root, logarithm,
and exponentiation.

Example:

(%i1) realpart (a+b*%i);
(%o1) a
(%i2) realpart (1+sqrt(2)*%i);
(%o2) 1
(%i3) realpart (sqrt(2)*%i);
(%o3) 0
(%i4) realpart (1);
(%o4) 1

Chapter 10: Mathematical Functions 153

Functionrectform (expr)
Returns an expression a + b %i equivalent to expr, such that a and b are purely real.

Example:

(%i1) rectform(sqrt(2)*%e^(%i*%pi/4));
(%o1) %i + 1
(%i2) rectform(sqrt(b^2+a^2)*%e^(%i*atan2(b, a)));
(%o2) %i b + a
(%i3) rectform(sqrt(5)*%e^(%i*atan(2)));
(%o3) 2 %i + 1

10.3 Combinatorial Functions

Operator!!
The double factorial operator.

For an integer, float, or rational number n, n!! evaluates to the product n (n-2) (n-

4) (n-6) ... (n - 2 (k-1)) where k is equal to entier (n/2), that is, the largest
integer less than or equal to n/2. Note that this definition does not coincide with
other published definitions for arguments which are not integers.

For an even (or odd) integer n, n!! evaluates to the product of all the consecutive
even (or odd) integers from 2 (or 1) through n inclusive.

For an argument n which is not an integer, float, or rational, n!! yields a noun form
genfact (n, n/2, 2).

Functionbinomial (x, y)
The binomial coefficient x!/(y! (x - y)!). If x and y are integers, then the numer-
ical value of the binomial coefficient is computed. If y, or x - y, is an integer, the
binomial coefficient is expressed as a polynomial.

Examples:

(%i1) binomial (11, 7);
(%o1) 330
(%i2) 11! / 7! / (11 - 7)!;
(%o2) 330
(%i3) binomial (x, 7);

(x - 6) (x - 5) (x - 4) (x - 3) (x - 2) (x - 1) x
(%o3) ---

5040
(%i4) binomial (x + 7, x);

(x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6) (x + 7)
(%o4) ---

5040
(%i5) binomial (11, y);
(%o5) binomial(11, y)

154 Maxima 5.35.1 Manual

Functionfactcomb (expr)
Tries to combine the coefficients of factorials in expr with the factorials themselves
by converting, for example, (n + 1)*n! into (n + 1)!.

sumsplitfact if set to false will cause minfactorial to be applied after a factcomb.

Example:

(%i1) sumsplitfact;
(%o1) true
(%i2) (n + 1)*(n + 1)*n!;

2
(%o2) (n + 1) n!
(%i3) factcomb (%);
(%o3) (n + 2)! - (n + 1)!
(%i4) sumsplitfact: not sumsplitfact;
(%o4) false
(%i5) (n + 1)*(n + 1)*n!;

2
(%o5) (n + 1) n!
(%i6) factcomb (%);
(%o6) n (n + 1)! + (n + 1)!

Functionfactorial
Operator!

Represents the factorial function. Maxima treats factorial (x) the same as x!.

For any complex number x, except for negative integers, x! is defined as gamma(x+1).

For an integer x, x! simplifies to the product of the integers from 1 to x inclusive.
0! simplifies to 1. For a real or complex number in float or bigfloat precision x, x!
simplifies to the value of gamma (x+1). For x equal to n/2 where n is an odd integer,
x! simplifies to a rational factor times sqrt (%pi) (since gamma (1/2) is equal to
sqrt (%pi)).

The option variables factlim and gammalim control the numerical evaluation of facto-
rials for integer and rational arguments. The functions minfactorial and factcomb

simplifies expressions containing factorials.

The functions gamma, bffac, and cbffac are varieties of the gamma function. bffac
and cbffac are called internally by gamma to evaluate the gamma function for real
and complex numbers in bigfloat precision.

makegamma substitutes gamma for factorials and related functions.

Maxima knows the derivative of the factorial function and the limits for specific values
like negative integers.

The option variable factorial_expand controls the simplification of expressions like
(n+x)!, where n is an integer.

See also binomial.

The factorial of an integer is simplified to an exact number unless the operand is
greater than factlim. The factorial for real and complex numbers is evaluated in
float or bigfloat precision.

Chapter 10: Mathematical Functions 155

(%i1) factlim:10;
(%o1) 10
(%i2) [0!, (7/2)!, 8!, 20!];

105 sqrt(%pi)
(%o2) [1, -------------, 40320, 20!]

16
(%i3) [4.77!, (1.0+%i)!];
(%o3) [81.44668037931197,

.3430658398165454 %i + .6529654964201665]
(%i4) [2.86b0!, (1.0b0+%i)!];
(%o4) [5.046635586910012b0,

3.430658398165454b-1 %i + 6.529654964201667b-1]

The factorial of a known constant, or general expression is not simplified. Even so it
may be possible to simplify the factorial after evaluating the operand.

(%i1) [(%i + 1)!, %pi!, %e!, (cos(1) + sin(1))!];
(%o1) [(%i + 1)!, %pi!, %e!, (sin(1) + cos(1))!]
(%i2) ev (%, numer, %enumer);
(%o2) [.3430658398165454 %i + .6529654964201665,

7.188082728976031,
4.260820476357003, 1.227580202486819]

Factorials are simplified, not evaluated. Thus x! may be replaced even in a quoted
expression.

(%i1) ’([0!, (7/2)!, 4.77!, 8!, 20!]);
105 sqrt(%pi)

(%o1) [1, -------------, 81.44668037931199, 40320,
16

2432902008176640000]

Maxima knows the derivative of the factorial function.

(%i1) diff(x!,x);
(%o1) x! psi (x + 1)

0

The option variable factorial_expand controls expansion and simplification of ex-
pressions with the factorial function.

(%i1) (n+1)!/n!,factorial_expand:true;
(%o1) n + 1

Option variablefactlim
Default value: -1

factlim specifies the highest factorial which is automatically expanded. If it is -1
then all integers are expanded.

Option variablefactorial expand
Default value: false

The option variable factorial_expand controls the simplification of expressions like
(n+1)!, where n is an integer. See factorial for an example.

156 Maxima 5.35.1 Manual

Functiongenfact (x, y, z)
Returns the generalized factorial, defined as x (x-z) (x - 2 z) ... (x - (y - 1) z).
Thus, when x is an integer, genfact (x, x, 1) = x! and genfact (x, x/2, 2) = x!!.

Functionminfactorial (expr)
Examines expr for occurrences of two factorials which differ by an integer.
minfactorial then turns one into a polynomial times the other.

(%i1) n!/(n+2)!;
n!

(%o1) --------
(n + 2)!

(%i2) minfactorial (%);
1

(%o2) ---------------
(n + 1) (n + 2)

Option variablesumsplitfact
Default value: true

When sumsplitfact is false, minfactorial is applied after a factcomb.

(%i1) sumsplitfact
(%o1) true
(%i2) n!/(2+n)!

n!
(%o2) --------

(n + 2)!
(%i3) factcomb(%)

n!
(%o3) --------

(n + 2)!
(%i4) sumsplitfact:not sumsplitfact
(%o4) false
(%i5) n!/(2+n)!

n!
(%o5) --------

(n + 2)!
(%i6) factcomb(%)

1
(%o6) ---------------

(n + 1) (n + 2)

10.4 Root, Exponential and Logarithmic Functions

Option variable%e to numlog
Default value: false

When true, r some rational number, and x some expression, %e^(r*log(x)) will
be simplified into x^r . It should be noted that the radcan command also does

Chapter 10: Mathematical Functions 157

this transformation, and more complicated transformations of this ilk as well. The
logcontract command "contracts" expressions containing log.

Option variable%emode
Default value: true

When %emode is true, %e^(%pi %i x) is simplified as follows.

%e^(%pi %i x) simplifies to cos (%pi x) + %i sin (%pi x) if x is a floating point
number, an integer, or a multiple of 1/2, 1/3, 1/4, or 1/6, and then further simplified.

For other numerical x, %e^(%pi %i x) simplifies to %e^(%pi %i y) where y is x - 2 k

for some integer k such that abs(y) < 1.

When %emode is false, no special simplification of %e^(%pi %i x) is carried out.

(%i1) %emode
(%o1) true
(%i2) %e^(%pi*%i*1)
(%o2) - 1
(%i3) %e^(%pi*%i*216/144)
(%o3) - %i
(%i4) %e^(%pi*%i*192/144)

sqrt(3) %i 1
(%o4) - ---------- - -

2 2
(%i5) %e^(%pi*%i*180/144)

%i 1
(%o5) - ------- - -------

sqrt(2) sqrt(2)
(%i6) %e^(%pi*%i*120/144)

%i sqrt(3)
(%o6) -- - -------

2 2
(%i7) %e^(%pi*%i*121/144)

121 %i %pi

144
(%o7) %e

Option variable%enumer
Default value: false

When %enumer is true, %e is replaced by its numeric value 2.718. . . whenever numer
is true.

When %enumer is false, this substitution is carried out only if the exponent in %e^x

evaluates to a number.

See also ev and numer.

(%i1) %enumer
(%o1) false
(%i2) numer

158 Maxima 5.35.1 Manual

(%o2) false
(%i3) 2*%e
(%o3) 2 %e
(%i4) %enumer:not %enumer
(%o4) true
(%i5) 2*%e
(%o5) 2 %e
(%i6) numer:not numer
(%o6) true
(%i7) 2*%e
(%o7) 5.43656365691809
(%i8) 2*%e^1
(%o8) 5.43656365691809
(%i9) 2*%e^x

x
(%o9) 2 2.718281828459045

Functionexp (x)
Represents the exponential function. Instances of exp (x) in input are simplified to
%e^x; exp does not appear in simplified expressions.

demoivre if true causes %e^(a + b %i) to simplify to %e^(a (cos(b) + %i sin(b)))

if b is free of %i. See demoivre.

%emode, when true, causes %e^(%pi %i x) to be simplified. See %emode.

%enumer, when true causes %e to be replaced by 2.718. . . whenever numer is true.
See %enumer.

(%i1) demoivre;
(%o1) false
(%i2) %e^(a + b*%i);

%i b + a
(%o2) %e
(%i3) demoivre: not demoivre;
(%o3) true
(%i4) %e^(a + b*%i);

a
(%o4) %e (%i sin(b) + cos(b))

Functionli [s] (z)
Represents the polylogarithm function of order s and argument z, defined by the
infinite series

Lis (z) =
∞∑
k=1

zk

ks

li [1] is - log (1 - z). li [2] and li [3] are the dilogarithm and trilogarithm
functions, respectively.

Chapter 10: Mathematical Functions 159

When the order is 1, the polylogarithm simplifies to - log (1 - z), which in turn
simplifies to a numerical value if z is a real or complex floating point number or the
numer evaluation flag is present.

When the order is 2 or 3, the polylogarithm simplifies to a numerical value if z is a
real floating point number or the numer evaluation flag is present.

Examples:

(%i1) assume (x > 0);
(%o1) [x > 0]
(%i2) integrate ((log (1 - t)) / t, t, 0, x);
(%o2) - li (x)

2
(%i3) li [2] (7);
(%o3) li (7)

2
(%i4) li [2] (7), numer;
(%o4) 1.24827317833392 - 6.113257021832577 %i
(%i5) li [3] (7);
(%o5) li (7)

3
(%i6) li [2] (7), numer;
(%o6) 1.24827317833392 - 6.113257021832577 %i
(%i7) L : makelist (i / 4.0, i, 0, 8);
(%o7) [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
(%i8) map (lambda ([x], li [2] (x)), L);
(%o8) [0, .2676526384986274, .5822405249432515,
.9784693966661848, 1.64493407, 2.190177004178597
- .7010261407036192 %i, 2.374395264042415
- 1.273806203464065 %i, 2.448686757245154
- 1.758084846201883 %i, 2.467401098097648
- 2.177586087815347 %i]
(%i9) map (lambda ([x], li [3] (x)), L);
(%o9) [0, .2584613953442624, 0.537213192678042,
.8444258046482203, 1.2020569, 1.642866878950322
- .07821473130035025 %i, 2.060877505514697
- .2582419849982037 %i, 2.433418896388322
- .4919260182322965 %i, 2.762071904015935
- .7546938285978846 %i]

Functionlog (x)
Represents the natural (base e) logarithm of x.

Maxima does not have a built-in function for the base 10 logarithm or other bases.
log10(x) := log(x) / log(10) is a useful definition.

Simplification and evaluation of logarithms is governed by several global flags:

logexpand

causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will
also simplify to log(a)+log(b). If it is set to super, then log(a/b)

160 Maxima 5.35.1 Manual

will also simplify to log(a)-log(b) for rational numbers a/b, a#1.
(log(1/b), for b integer, always simplifies.) If it is set to false, all of
these simplifications will be turned off.

logsimp if false then no simplification of %e to a power containing log’s is done.

lognegint

if true implements the rule log(-n) -> log(n)+%i*%pi for n a positive
integer.

%e_to_numlog

when true, r some rational number, and x some expression, the expres-
sion %e^(r*log(x)) will be simplified into x^r. It should be noted that
the radcan command also does this transformation, and more compli-
cated transformations of this as well. The logcontract command "con-
tracts" expressions containing log.

Option variablelogabs
Default value: false

When doing indefinite integration where logs are generated, e.g. integrate(1/x,x),
the answer is given in terms of log(abs(...)) if logabs is true, but in terms of
log(...) if logabs is false. For definite integration, the logabs:true setting is
used, because here "evaluation" of the indefinite integral at the endpoints is often
needed.

Option variablelogarc
Functionlogarc (expr)

When the global variable logarc is true, inverse circular and hyperbolic functions are
replaced by equivalent logarithmic functions. The default value of logarc is false.

The function logarc(expr) carries out that replacement for an expression expr with-
out setting the global variable logarc.

Option variablelogconcoeffp
Default value: false

Controls which coefficients are contracted when using logcontract. It may be set to
the name of a predicate function of one argument. E.g. if you like to generate SQRTs,
you can do logconcoeffp:’logconfun$ logconfun(m):=featurep(m,integer) or

ratnump(m)$. Then logcontract(1/2*log(x)); will give log(sqrt(x)).

Functionlogcontract (expr)
Recursively scans the expression expr, transforming subexpressions of the form
a1*log(b1) + a2*log(b2) + c into log(ratsimp(b1^a1 * b2^a2)) + c

(%i1) 2*(a*log(x) + 2*a*log(y))$
(%i2) logcontract(%);

2 4
(%o2) a log(x y)

Chapter 10: Mathematical Functions 161

The declaration declare(n,integer) causes logcontract(2*a*n*log(x)) to sim-
plify to a*log(x^(2*n)). The coefficients that "contract" in this manner are those
such as the 2 and the n here which satisfy featurep(coeff,integer). The user can
control which coefficients are contracted by setting the option logconcoeffp to the
name of a predicate function of one argument. E.g. if you like to generate SQRTs,
you can do logconcoeffp:’logconfun$ logconfun(m):=featurep(m,integer) or

ratnump(m)$. Then logcontract(1/2*log(x)); will give log(sqrt(x)).

Option variablelogexpand
Default value: true

If true, that is the default value, causes log(a^b) to become b*log(a). If it is
set to all, log(a*b) will also simplify to log(a)+log(b). If it is set to super,
then log(a/b) will also simplify to log(a)-log(b) for rational numbers a/b, a#1.
(log(1/b), for integer b, always simplifies.) If it is set to false, all of these simplifi-
cations will be turned off.

Option variablelognegint
Default value: false

If true implements the rule log(-n) -> log(n)+%i*%pi for n a positive integer.

Option variablelogsimp
Default value: true

If false then no simplification of %e to a power containing log’s is done.

Functionplog (x)
Represents the principal branch of the complex-valued natural logarithm with -%pi

< carg(x) <= +%pi .

Functionsqrt (x)
The square root of x. It is represented internally by x^(1/2). See also
rootscontract.

radexpand if true will cause nth roots of factors of a product which are powers of
n to be pulled outside of the radical, e.g. sqrt(16*x^2) will become 4*x only if
radexpand is true.

162 Maxima 5.35.1 Manual

10.5 Trigonometric Functions

10.5.1 Introduction to Trigonometric

Maxima has many trigonometric functions defined. Not all trigonometric identities are
programmed, but it is possible for the user to add many of them using the pattern matching
capabilities of the system. The trigonometric functions defined in Maxima are: acos,
acosh, acot, acoth, acsc, acsch, asec, asech, asin, asinh, atan, atanh, cos, cosh,
cot, coth, csc, csch, sec, sech, sin, sinh, tan, and tanh. There are a number of
commands especially for handling trigonometric functions, see trigexpand, trigreduce,
and the switch trigsign. Two share packages extend the simplification rules built into
Maxima, ntrig and atrig1. Do describe(command) for details.

10.5.2 Functions and Variables for Trigonometric

Option variable%piargs
Default value: true

When %piargs is true, trigonometric functions are simplified to algebraic constants
when the argument is an integer multiple of π, π/2, π/3, π/4, or π/6.

Maxima knows some identities which can be applied when π, etc., are multiplied by
an integer variable (that is, a symbol declared to be integer).

Examples:

(%i1) %piargs : false$
(%i2) [sin (%pi), sin (%pi/2), sin (%pi/3)];

%pi %pi
(%o2) [sin(%pi), sin(---), sin(---)]

2 3

(%i3) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];
%pi %pi %pi

(%o3) [sin(---), sin(---), sin(---)]
4 5 6

(%i4) %piargs : true$
(%i5) [sin (%pi), sin (%pi/2), sin (%pi/3)];

sqrt(3)
(%o5) [0, 1, -------]

2

(%i6) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];
1 %pi 1

(%o6) [-------, sin(---), -]
sqrt(2) 5 2

(%i7) [cos (%pi/3), cos (10*%pi/3), tan (10*%pi/3),
cos (sqrt(2)*%pi/3)];

1 1 sqrt(2) %pi
(%o7) [-, - -, sqrt(3), cos(-----------)]

2 2 3

Some identities are applied when π and π/2 are multiplied by an integer variable.

Chapter 10: Mathematical Functions 163

(%i1) declare (n, integer, m, even)$
(%i2) [sin (%pi * n), cos (%pi * m), sin (%pi/2 * m),

cos (%pi/2 * m)];
m/2

(%o2) [0, 1, 0, (- 1)]

Option variable%iargs
Default value: true

When %iargs is true, trigonometric functions are simplified to hyperbolic functions
when the argument is apparently a multiple of the imaginary unit i.

Even when the argument is demonstrably real, the simplification is applied; Maxima
considers only whether the argument is a literal multiple of i.

Examples:

(%i1) %iargs : false$
(%i2) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%o2) [sin(%i x), cos(%i x), tan(%i x)]
(%i3) %iargs : true$
(%i4) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%o4) [%i sinh(x), cosh(x), %i tanh(x)]

Even when the argument is demonstrably real, the simplification is applied.

(%i1) declare (x, imaginary)$
(%i2) [featurep (x, imaginary), featurep (x, real)];
(%o2) [true, false]

(%i3) sin (%i * x);
(%o3) %i sinh(x)

Functionacos (x)
– Arc Cosine.

Functionacosh (x)
– Hyperbolic Arc Cosine.

Functionacot (x)
– Arc Cotangent.

Functionacoth (x)
– Hyperbolic Arc Cotangent.

Functionacsc (x)
– Arc Cosecant.

Functionacsch (x)
– Hyperbolic Arc Cosecant.

Functionasec (x)
– Arc Secant.

164 Maxima 5.35.1 Manual

Functionasech (x)
– Hyperbolic Arc Secant.

Functionasin (x)
– Arc Sine.

Functionasinh (x)
– Hyperbolic Arc Sine.

Functionatan (x)
– Arc Tangent.

Functionatan2 (y, x)
– yields the value of atan(y/x) in the interval -%pi to %pi.

Functionatanh (x)
– Hyperbolic Arc Tangent.

Packageatrig1
The atrig1 package contains several additional simplification rules for inverse trigono-
metric functions. Together with rules already known to Maxima, the following angles
are fully implemented: 0, %pi/6, %pi/4, %pi/3, and %pi/2. Corresponding angles in
the other three quadrants are also available. Do load(atrig1); to use them.

Functioncos (x)
– Cosine.

Functioncosh (x)
– Hyperbolic Cosine.

Functioncot (x)
– Cotangent.

Functioncoth (x)
– Hyperbolic Cotangent.

Functioncsc (x)
– Cosecant.

Functioncsch (x)
– Hyperbolic Cosecant.

Chapter 10: Mathematical Functions 165

Option variablehalfangles
Default value: false

When halfangles is true, trigonometric functions of arguments expr/2 are simplified
to functions of expr.

For a real argument x in the interval 0 < x < 2*%pi the sine of the half-angle simplifies
to a simple formula:

sqrt(1 - cos(x))

sqrt(2)

A complicated factor is needed to make this formula correct for all complex arguments
z:

realpart(z)
floor(-----------)

2 %pi
(- 1) (1 - unit_step(- imagpart(z))

realpart(z) realpart(z)
floor(-----------) - ceiling(-----------)

2 %pi 2 %pi
((- 1) + 1))

Maxima knows this factor and similar factors for the functions sin, cos, sinh, and
cosh. For special values of the argument z these factors simplify accordingly.

Examples:

(%i1) halfangles:false;
(%o1) false
(%i2) sin(x/2);

x
(%o2) sin(-)

2
(%i3) halfangles:true;
(%o3) true
(%i4) sin(x/2);

x
floor(-----)

2 %pi
sqrt(1 - cos(x)) (- 1)

(%o4) ----------------------------------
sqrt(2)

(%i5) assume(x>0, x<2*%pi)$
(%i6) sin(x/2);

sqrt(1 - cos(x))
(%o6) ----------------

sqrt(2)

166 Maxima 5.35.1 Manual

Packagentrig
The ntrig package contains a set of simplification rules that are used to simplify
trigonometric function whose arguments are of the form f (n %pi/10) where f is any
of the functions sin, cos, tan, csc, sec and cot.

Functionsec (x)
– Secant.

Functionsech (x)
– Hyperbolic Secant.

Functionsin (x)
– Sine.

Functionsinh (x)
– Hyperbolic Sine.

Functiontan (x)
– Tangent.

Functiontanh (x)
– Hyperbolic Tangent.

Functiontrigexpand (expr)
Expands trigonometric and hyperbolic functions of sums of angles and of multiple
angles occurring in expr. For best results, expr should be expanded. To enhance user
control of simplification, this function expands only one level at a time, expanding
sums of angles or multiple angles. To obtain full expansion into sines and cosines
immediately, set the switch trigexpand: true.

trigexpand is governed by the following global flags:

trigexpand

If true causes expansion of all expressions containing sin’s and cos’s oc-
curring subsequently.

halfangles

If true causes half-angles to be simplified away.

trigexpandplus

Controls the "sum" rule for trigexpand, expansion of sums (e.g. sin(x

+ y)) will take place only if trigexpandplus is true.

trigexpandtimes

Controls the "product" rule for trigexpand, expansion of products (e.g.
sin(2 x)) will take place only if trigexpandtimes is true.

Examples:

Chapter 10: Mathematical Functions 167

(%i1) x+sin(3*x)/sin(x),trigexpand=true,expand;
2 2

(%o1) - sin (x) + 3 cos (x) + x
(%i2) trigexpand(sin(10*x+y));
(%o2) cos(10 x) sin(y) + sin(10 x) cos(y)

Option variabletrigexpandplus
Default value: true

trigexpandplus controls the "sum" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
sums (e.g. sin(x+y)) will take place only if trigexpandplus is true.

Option variabletrigexpandtimes
Default value: true

trigexpandtimes controls the "product" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
products (e.g. sin(2*x)) will take place only if trigexpandtimes is true.

Option variabletriginverses
Default value: true

triginverses controls the simplification of the composition of trigonometric and
hyperbolic functions with their inverse functions.

If all, both e.g. atan(tan(x)) and tan(atan(x)) simplify to x.

If true, the arcfun(fun(x)) simplification is turned off.

If false, both the arcfun(fun(x)) and fun(arcfun(x)) simplifications are turned off.

Functiontrigreduce
trigreduce (expr, x)
trigreduce (expr)

Combines products and powers of trigonometric and hyperbolic sin’s and cos’s of x
into those of multiples of x. It also tries to eliminate these functions when they occur
in denominators. If x is omitted then all variables in expr are used.

See also poissimp.

(%i1) trigreduce(-sin(x)^2+3*cos(x)^2+x);
cos(2 x) cos(2 x) 1 1

(%o1) -------- + 3 (-------- + -) + x - -
2 2 2 2

Option variabletrigsign
Default value: true

When trigsign is true, it permits simplification of negative arguments to trigono-
metric functions. E.g., sin(-x) will become -sin(x) only if trigsign is true.

168 Maxima 5.35.1 Manual

Functiontrigsimp (expr)
Employs the identities sin (x)

2
+ cos (x)

2
= 1 and cosh (x)

2− sinh (x)
2

= 1 to simplify
expressions containing tan, sec, etc., to sin, cos, sinh, cosh.

trigreduce, ratsimp, and radcan may be able to further simplify the result.

demo ("trgsmp.dem") displays some examples of trigsimp.

Functiontrigrat (expr)
Gives a canonical simplified quasilinear form of a trigonometrical expression; expr is
a rational fraction of several sin, cos or tan, the arguments of them are linear forms
in some variables (or kernels) and %pi/n (n integer) with integer coefficients. The
result is a simplified fraction with numerator and denominator linear in sin and cos.
Thus trigrat linearize always when it is possible.

(%i1) trigrat(sin(3*a)/sin(a+%pi/3));
(%o1) sqrt(3) sin(2 a) + cos(2 a) - 1

The following example is taken from Davenport, Siret, and Tournier, Calcul Formel,
Masson (or in English, Addison-Wesley), section 1.5.5, Morley theorem.

(%i1) c : %pi/3 - a - b$
(%i2) bc : sin(a)*sin(3*c)/sin(a+b);

%pi
sin(a) sin(3 (- b - a + ---))

3
(%o2) -----------------------------

sin(b + a)
(%i3) ba : bc, c=a, a=c;

%pi
sin(3 a) sin(b + a - ---)

3
(%o3) -------------------------

%pi
sin(a - ---)

3
(%i4) ac2 : ba^2 + bc^2 - 2*bc*ba*cos(b);

Chapter 10: Mathematical Functions 169

2 2 %pi
sin (3 a) sin (b + a - ---)

3
(%o4) ---------------------------

2 %pi
sin (a - ---)

3
%pi

- (2 sin(a) sin(3 a) sin(3 (- b - a + ---)) cos(b)
3

%pi %pi
sin(b + a - ---))/(sin(a - ---) sin(b + a))

3 3
2 2 %pi

sin (a) sin (3 (- b - a + ---))
3

+ -------------------------------
2

sin (b + a)
(%i5) trigrat (ac2);
(%o5) - (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a)
- 2 sqrt(3) sin(4 b + 2 a) + 2 cos(4 b + 2 a)
- 2 sqrt(3) sin(2 b + 4 a) + 2 cos(2 b + 4 a)
+ 4 sqrt(3) sin(2 b + 2 a) - 8 cos(2 b + 2 a) - 4 cos(2 b - 2 a)
+ sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b)
+ sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a)
- 9)/4

170 Maxima 5.35.1 Manual

10.6 Random Numbers

Functionmake random state
make_random_state (n)
make_random_state (s)
make_random_state (true)
make_random_state (false)

A random state object represents the state of the random number generator. The
state comprises 627 32-bit words.

make_random_state (n) returns a new random state object created from an integer
seed value equal to n modulo 2^32. n may be negative.

make_random_state (s) returns a copy of the random state s.

make_random_state (true) returns a new random state object, using the current
computer clock time as the seed.

make_random_state (false) returns a copy of the current state of the random num-
ber generator.

Functionset random state (s)
Copies s to the random number generator state.

set_random_state always returns done.

Functionrandom (x)
Returns a pseudorandom number. If x is an integer, random (x) returns an integer
from 0 through x - 1 inclusive. If x is a floating point number, random (x) returns
a nonnegative floating point number less than x. random complains with an error if
x is neither an integer nor a float, or if x is not positive.

The functions make_random_state and set_random_state maintain the state of the
random number generator.

The Maxima random number generator is an implementation of the Mersenne twister
MT 19937.

Examples:

(%i1) s1: make_random_state (654321)$
(%i2) set_random_state (s1);
(%o2) done
(%i3) random (1000);
(%o3) 768
(%i4) random (9573684);
(%o4) 7657880
(%i5) random (2^75);
(%o5) 11804491615036831636390
(%i6) s2: make_random_state (false)$
(%i7) random (1.0);
(%o7) .2310127244107132
(%i8) random (10.0);

Chapter 10: Mathematical Functions 171

(%o8) 4.394553645870825
(%i9) random (100.0);
(%o9) 32.28666704056853
(%i10) set_random_state (s2);
(%o10) done
(%i11) random (1.0);
(%o11) .2310127244107132
(%i12) random (10.0);
(%o12) 4.394553645870825
(%i13) random (100.0);
(%o13) 32.28666704056853

172 Maxima 5.35.1 Manual

Chapter 11: Maximas Database 173

11 Maximas Database

11.1 Introduction to Maximas Database

11.2 Functions and Variables for Properties

Propertyalphabetic
alphabetic is a property type recognized by declare. The expression declare(s,
alphabetic) tells Maxima to recognize as alphabetic all of the characters in s, which
must be a string.

See also Section 6.3 [Identifiers], page 74.

Example:

(%i1) xx\~yy\‘\@ : 1729;
(%o1) 1729
(%i2) declare ("~‘@", alphabetic);
(%o2) done
(%i3) xx~yy‘@ + @yy‘xx + ‘xx@@yy~;
(%o3) ‘xx@@yy~ + @yy‘xx + 1729
(%i4) listofvars (%);
(%o4) [@yy‘xx, ‘xx@@yy~]

Propertybindtest
The command declare(x, bindtest) tells Maxima to trigger an error when the
symbol x is evaluated unbound.

(%i1) aa + bb;
(%o1) bb + aa
(%i2) declare (aa, bindtest);
(%o2) done
(%i3) aa + bb;
aa unbound variable
-- an error. Quitting. To debug this try debugmode(true);
(%i4) aa : 1234;
(%o4) 1234
(%i5) aa + bb;
(%o5) bb + 1234

Propertyconstant
declare(a, constant) declares a to be a constant. The declaration of a symbol to
be constant does not prevent the assignment of a nonconstant value to the symbol.

See constantp and declare.

Example:

174 Maxima 5.35.1 Manual

(%i1) declare(c, constant);
(%o1) done
(%i2) constantp(c);
(%o2) true
(%i3) c : x;
(%o3) x
(%i4) constantp(c);
(%o4) false

Functionconstantp (expr)
Returns true if expr is a constant expression, otherwise returns false.

An expression is considered a constant expression if its arguments are numbers (in-
cluding rational numbers, as displayed with /R/), symbolic constants such as %pi, %e,
and %i, variables bound to a constant or declared constant by declare, or functions
whose arguments are constant.

constantp evaluates its arguments.

See the property constant which declares a symbol to be constant.

Examples:

(%i1) constantp (7 * sin(2));
(%o1) true
(%i2) constantp (rat (17/29));
(%o2) true
(%i3) constantp (%pi * sin(%e));
(%o3) true
(%i4) constantp (exp (x));
(%o4) false
(%i5) declare (x, constant);
(%o5) done
(%i6) constantp (exp (x));
(%o6) true
(%i7) constantp (foo (x) + bar (%e) + baz (2));
(%o7) false
(%i8)

Functiondeclare (a 1, p 1, a 2, p 2, . . .)
Assigns the atom or list of atoms a i the property or list of properties p i. When a i
and/or p i are lists, each of the atoms gets all of the properties.

declare quotes its arguments. declare always returns done.

As noted in the description for each declaration flag, for some flags featurep(object,
feature) returns true if object has been declared to have feature.

For more information about the features system, see features. To remove a property
from an atom, use remove.

declare recognizes the following properties:

Chapter 11: Maximas Database 175

additive Tells Maxima to simplify a i expressions by the substitution a i(x + y +

z + ...) --> a i(x) + a i(y) + a i(z) + The substitution is carried
out on the first argument only.

alphabetic

Tells Maxima to recognize all characters in a i (which must be a string)
as alphabetic characters.

antisymmetric, commutative, symmetric

Tells Maxima to recognize a i as a symmetric or antisymmetric function.
commutative is the same as symmetric.

bindtest Tells Maxima to trigger an error when a i is evaluated unbound.

constant Tells Maxima to consider a i a symbolic constant.

even, odd Tells Maxima to recognize a i as an even or odd integer variable.

evenfun, oddfun

Tells Maxima to recognize a i as an odd or even function.

evflag Makes a i known to the ev function so that a i is bound to true during the
execution of ev when a i appears as a flag argument of ev. See evflag.

evfun Makes a i known to ev so that the function named by a i is applied when
a i appears as a flag argument of ev. See evfun.

feature Tells Maxima to recognize a i as the name of a feature. Other atoms may
then be declared to have the a i property.

increasing, decreasing

Tells Maxima to recognize a i as an increasing or decreasing function.

integer, noninteger

Tells Maxima to recognize a i as an integer or noninteger variable.

integervalued

Tells Maxima to recognize a i as an integer-valued function.

lassociative, rassociative

Tells Maxima to recognize a i as a right-associative or left-associative
function.

linear Equivalent to declaring a i both outative and additive.

mainvar Tells Maxima to consider a i a "main variable". A main variable succeeds
all other constants and variables in the canonical ordering of Maxima
expressions, as determined by ordergreatp.

multiplicative

Tells Maxima to simplify a i expressions by the substitution a i(x * y *

z * ...) --> a i(x) * a i(y) * a i(z) * The substitution is carried
out on the first argument only.

nary Tells Maxima to recognize a i as an n-ary function.

The nary declaration is not the same as calling the nary function. The
sole effect of declare(foo, nary) is to instruct the Maxima simplifier to

176 Maxima 5.35.1 Manual

flatten nested expressions, for example, to simplify foo(x, foo(y, z))

to foo(x, y, z).

nonarray Tells Maxima to consider a i not an array. This declaration prevents
multiple evaluation of a subscripted variable name.

nonscalar

Tells Maxima to consider a i a nonscalar variable. The usual application
is to declare a variable as a symbolic vector or matrix.

noun Tells Maxima to parse a i as a noun. The effect of this is to replace
instances of a i with ’a i or nounify(a i), depending on the context.

outative Tells Maxima to simplify a i expressions by pulling constant factors out
of the first argument.

When a i has one argument, a factor is considered constant if it is a literal
or declared constant.

When a i has two or more arguments, a factor is considered constant
if the second argument is a symbol and the factor is free of the second
argument.

posfun Tells Maxima to recognize a i as a positive function.

rational, irrational

Tells Maxima to recognize a i as a rational or irrational real variable.

real, imaginary, complex

Tells Maxima to recognize a i as a real, pure imaginary, or complex vari-
able.

scalar Tells Maxima to consider a i a scalar variable.

Examples of the usage of the properties are available in the documentation for each
separate description of a property.

Propertydecreasing
Propertyincreasing

The commands declare(f, decreasing) or declare(f, increasing) tell Maxima
to recognize the function f as an decreasing or increasing function.

See also declare for more properties.

Example:

(%i1) assume(a > b);
(%o1) [a > b]
(%i2) is(f(a) > f(b));
(%o2) unknown
(%i3) declare(f, increasing);
(%o3) done
(%i4) is(f(a) > f(b));
(%o4) true

Chapter 11: Maximas Database 177

Propertyeven
Propertyodd

declare(a, even) or declare(a, odd) tells Maxima to recognize the symbol a as
an even or odd integer variable. The properties even and odd are not recognized by
the functions evenp, oddp, and integerp.

See also declare and askinteger.

Example:

(%i1) declare(n, even);
(%o1) done
(%i2) askinteger(n, even);
(%o2) yes
(%i3) askinteger(n);
(%o3) yes
(%i4) evenp(n);
(%o4) false

Propertyfeature
Maxima understands two distinct types of features, system features and features
which apply to mathematical expressions. See also status for information about sys-
tem features. See also features and featurep for information about mathematical
features.

feature itself is not the name of a function or variable.

Functionfeaturep (a, f)
Attempts to determine whether the object a has the feature f on the basis of the facts
in the current database. If so, it returns true, else false.

Note that featurep returns false when neither f nor the negation of f can be
established.

featurep evaluates its argument.

See also declare and features.

(%i1) declare (j, even)$
(%i2) featurep (j, integer);
(%o2) true

Declarationfeatures
Maxima recognizes certain mathematical properties of functions and variables. These
are called "features".

declare (x, foo) gives the property foo to the function or variable x.

declare (foo, feature) declares a new feature foo. For example, declare ([red,

green, blue], feature) declares three new features, red, green, and blue.

The predicate featurep (x, foo) returns true if x has the foo property, and false

otherwise.

The infolist features is a list of known features. These are

178 Maxima 5.35.1 Manual

integer noninteger even
odd rational irrational
real imaginary complex
analytic increasing decreasing
oddfun evenfun posfun
constant commutative lassociative
rassociative symmetric antisymmetric
integervalued

plus any user-defined features.

features is a list of mathematical features. There is also a list of non-mathematical,
system-dependent features. See status.

Example:

(%i1) declare (FOO, feature);
(%o1) done
(%i2) declare (x, FOO);
(%o2) done
(%i3) featurep (x, FOO);
(%o3) true

Functionget (a, i)
Retrieves the user property indicated by i associated with atom a or returns false if
a doesn’t have property i.

get evaluates its arguments.

See also put and qput.

(%i1) put (%e, ’transcendental, ’type);
(%o1) transcendental
(%i2) put (%pi, ’transcendental, ’type)$
(%i3) put (%i, ’algebraic, ’type)$
(%i4) typeof (expr) := block ([q],

if numberp (expr)
then return (’algebraic),
if not atom (expr)
then return (maplist (’typeof, expr)),
q: get (expr, ’type),
if q=false
then errcatch (error(expr,"is not numeric.")) else q)$

(%i5) typeof (2*%e + x*%pi);
x is not numeric.
(%o5) [[transcendental, []], [algebraic, transcendental]]
(%i6) typeof (2*%e + %pi);
(%o6) [transcendental, [algebraic, transcendental]]

Propertyinteger
Propertynoninteger

declare(a, integer) or declare(a, noninteger) tells Maxima to recognize a as
an integer or noninteger variable.

Chapter 11: Maximas Database 179

See also declare.

Example:

(%i1) declare(n, integer, x, noninteger);
(%o1) done
(%i2) askinteger(n);
(%o2) yes
(%i3) askinteger(x);
(%o3) no

Propertyintegervalued
declare(f, integervalued) tells Maxima to recognize f as an integer-valued func-
tion.

See also declare.

Example:

(%i1) exp(%i)^f(x);
%i f(x)

(%o1) (%e)
(%i2) declare(f, integervalued);
(%o2) done
(%i3) exp(%i)^f(x);

%i f(x)
(%o3) %e

Propertynonarray
The command declare(a, nonarray) tells Maxima to consider a not an array. This
declaration prevents multiple evaluation, if a is a subscripted variable.

See also declare.

Example:

(%i1) a:’b$ b:’c$ c:’d$

(%i4) a[x];
(%o4) d

x
(%i5) declare(a, nonarray);
(%o5) done
(%i6) a[x];
(%o6) a

x

Propertynonscalar
Makes atoms behave as does a list or matrix with respect to the dot operator.

See also declare.

180 Maxima 5.35.1 Manual

Functionnonscalarp (expr)
Returns true if expr is a non-scalar, i.e., it contains atoms declared as non-scalars,
lists, or matrices.

See also the predicate function scalarp and declare.

Propertyposfun
declare (f, posfun) declares f to be a positive function. is (f(x) > 0) yields true.

See also declare.

Functionprintprops
printprops (a, i)
printprops ([a 1, . . . , a n], i)
printprops (all, i)

Displays the property with the indicator i associated with the atom a. a may also
be a list of atoms or the atom all in which case all of the atoms with the given
property will be used. For example, printprops ([f, g], atvalue). printprops

is for properties that cannot otherwise be displayed, i.e. for atvalue, atomgrad,
gradef, and matchdeclare.

Functionproperties (a)
Returns a list of the names of all the properties associated with the atom a.

System variableprops
Default value: []

props are atoms which have any property other than those explicitly mentioned in
infolists, such as specified by atvalue, matchdeclare, etc., as well as properties
specified in the declare function.

Functionpropvars (prop)
Returns a list of those atoms on the props list which have the property indicated by
prop. Thus propvars (atvalue) returns a list of atoms which have atvalues.

Functionput (atom, value, indicator)
Assigns value to the property (specified by indicator) of atom. indicator may be the
name of any property, not just a system-defined property.

rem reverses the effect of put.

put evaluates its arguments. put returns value.

See also qput and get.

Examples:

Chapter 11: Maximas Database 181

(%i1) put (foo, (a+b)^5, expr);
5

(%o1) (b + a)
(%i2) put (foo, "Hello", str);
(%o2) Hello
(%i3) properties (foo);
(%o3) [[user properties, str, expr]]
(%i4) get (foo, expr);

5
(%o4) (b + a)
(%i5) get (foo, str);
(%o5) Hello

Functionqput (atom, value, indicator)
Assigns value to the property (specified by indicator) of atom. This is the same as
put, except that the arguments are quoted.

See also get.

Example:

(%i1) foo: aa$
(%i2) bar: bb$
(%i3) baz: cc$
(%i4) put (foo, bar, baz);
(%o4) bb
(%i5) properties (aa);
(%o5) [[user properties, cc]]
(%i6) get (aa, cc);
(%o6) bb
(%i7) qput (foo, bar, baz);
(%o7) bar
(%i8) properties (foo);
(%o8) [value, [user properties, baz]]
(%i9) get (’foo, ’baz);
(%o9) bar

Propertyrational
Propertyirrational

declare(a, rational) or declare(a, irrational) tells Maxima to recognize a as
a rational or irrational real variable.

See also declare.

Propertyreal
Propertyimaginary
Propertycomplex

declare(a, real), declare(a, imaginary), or declare(a, complex) tells Maxima
to recognize a as a real, pure imaginary, or complex variable.

See also declare.

182 Maxima 5.35.1 Manual

Functionrem (atom, indicator)
Removes the property indicated by indicator from atom. rem reverses the effect of
put.

rem returns done if atom had an indicator property when rem was called, or false if
it had no such property.

Functionremove
remove (a 1, p 1, . . . , a n, p n)
remove ([a 1, . . . , a m], [p 1, . . . , p n], . . .)
remove ("a", operator)
remove (a, transfun)
remove (all, p)

Removes properties associated with atoms.

remove (a 1, p 1, ..., a n, p n) removes property p_k from atom a_k.

remove ([a 1, ..., a m], [p 1, ..., p n], ...) removes properties p 1, ...,

p n from atoms a 1, . . . , a m. There may be more than one pair of lists.

remove (all, p) removes the property p from all atoms which have it.

The removed properties may be system-defined properties such as function, macro,
or mode_declare. remove does not remove properties defined by put.

A property may be transfun to remove the translated Lisp version of a function.
After executing this, the Maxima version of the function is executed rather than the
translated version.

remove ("a", operator) or, equivalently, remove ("a", op) removes from a the op-
erator properties declared by prefix, infix, nary, postfix, matchfix, or nofix.
Note that the name of the operator must be written as a quoted string.

remove always returns done whether or not an atom has a specified property.
This behavior is unlike the more specific remove functions remvalue, remarray,
remfunction, and remrule.

remove quotes its arguments.

Propertyscalar
declare(a, scalar) tells Maxima to consider a a scalar variable.

See also declare.

Functionscalarp (expr)
Returns true if expr is a number, constant, or variable declared scalar with declare,
or composed entirely of numbers, constants, and such variables, but not containing
matrices or lists.

See also the predicate function nonscalarp.

Chapter 11: Maximas Database 183

11.3 Functions and Variables for Facts

Functionactivate (context 1, . . . , context n)
Activates the contexts context 1, . . . , context n. The facts in these contexts are then
available to make deductions and retrieve information. The facts in these contexts
are not listed by facts ().

The variable activecontexts is the list of contexts which are active by way of the
activate function.

System variableactivecontexts
Default value: []

activecontexts is a list of the contexts which are active by way of the activate

function, as opposed to being active because they are subcontexts of the current
context.

Functionaskinteger
askinteger (expr, integer)
askinteger (expr)
askinteger (expr, even)
askinteger (expr, odd)

askinteger (expr, integer) attempts to determine from the assume database
whether expr is an integer. askinteger prompts the user if it cannot tell otherwise,
and attempt to install the information in the database if possible. askinteger

(expr) is equivalent to askinteger (expr, integer).

askinteger (expr, even) and askinteger (expr, odd) likewise attempt to deter-
mine if expr is an even integer or odd integer, respectively.

Functionasksign (expr)
First attempts to determine whether the specified expression is positive, negative, or
zero. If it cannot, it asks the user the necessary questions to complete its deduc-
tion. The user’s answer is recorded in the data base for the duration of the current
computation. The return value of asksign is one of pos, neg, or zero.

Functionassume (pred 1, . . . , pred n)
Adds predicates pred 1, . . . , pred n to the current context. If a predicate is inconsis-
tent or redundant with the predicates in the current context, it is not added to the
context. The context accumulates predicates from each call to assume.

assume returns a list whose elements are the predicates added to the context or the
atoms redundant or inconsistent where applicable.

The predicates pred 1, . . . , pred n can only be expressions with the relational opera-
tors < <= equal notequal >= and >. Predicates cannot be literal equality = or literal
inequality # expressions, nor can they be predicate functions such as integerp.

184 Maxima 5.35.1 Manual

Compound predicates of the form pred 1 and ... and pred n are recognized, but not
pred 1 or ... or pred n. not pred k is recognized if pred k is a relational predicate.
Expressions of the form not (pred 1 and pred 2) and not (pred 1 or pred 2) are
not recognized.

Maxima’s deduction mechanism is not very strong; there are many obvious conse-
quences which cannot be determined by is. This is a known weakness.

assume does not handle predicates with complex numbers. If a predicate contains a
complex number assume returns inconsistent or redunant.

assume evaluates its arguments.

See also is, facts, forget, context, and declare.

Examples:

(%i1) assume (xx > 0, yy < -1, zz >= 0);
(%o1) [xx > 0, yy < - 1, zz >= 0]
(%i2) assume (aa < bb and bb < cc);
(%o2) [bb > aa, cc > bb]
(%i3) facts ();
(%o3) [xx > 0, - 1 > yy, zz >= 0, bb > aa, cc > bb]
(%i4) is (xx > yy);
(%o4) true
(%i5) is (yy < -yy);
(%o5) true
(%i6) is (sinh (bb - aa) > 0);
(%o6) true
(%i7) forget (bb > aa);
(%o7) [bb > aa]
(%i8) prederror : false;
(%o8) false
(%i9) is (sinh (bb - aa) > 0);
(%o9) unknown
(%i10) is (bb^2 < cc^2);
(%o10) unknown

Option variableassumescalar
Default value: true

assumescalar helps govern whether expressions expr for which nonscalarp (expr)

is false are assumed to behave like scalars for certain transformations.

Let expr represent any expression other than a list or a matrix, and let [1, 2, 3]

represent any list or matrix. Then expr . [1, 2, 3] yields [expr, 2 expr, 3 expr]

if assumescalar is true, or scalarp (expr) is true, or constantp (expr) is true.

If assumescalar is true, such expressions will behave like scalars only for commuta-
tive operators, but not for noncommutative multiplication ..

When assumescalar is false, such expressions will behave like non-scalars.

When assumescalar is all, such expressions will behave like scalars for all the op-
erators listed above.

Chapter 11: Maximas Database 185

Option variableassume pos
Default value: false

When assume_pos is true and the sign of a parameter x cannot be determined from
the current context or other considerations, sign and asksign (x) return true. This
may forestall some automatically-generated asksign queries, such as may arise from
integrate or other computations.

By default, a parameter is x such that symbolp (x) or subvarp (x). The class of
expressions considered parameters can be modified to some extent via the variable
assume_pos_pred.

sign and asksign attempt to deduce the sign of expressions from the sign of operands
within the expression. For example, if a and b are both positive, then a + b is also
positive.

However, there is no way to bypass all asksign queries. In particular, when the
asksign argument is a difference x - y or a logarithm log(x), asksign always re-
quests an input from the user, even when assume_pos is true and assume_pos_pred

is a function which returns true for all arguments.

Option variableassume pos pred
Default value: false

When assume_pos_pred is assigned the name of a function or a lambda expression
of one argument x, that function is called to determine whether x is considered a
parameter for the purpose of assume_pos. assume_pos_pred is ignored when assume_

pos is false.

The assume_pos_pred function is called by sign and asksign with an argument x
which is either an atom, a subscripted variable, or a function call expression. If the
assume_pos_pred function returns true, x is considered a parameter for the purpose
of assume_pos.

By default, a parameter is x such that symbolp (x) or subvarp (x).

See also assume and assume_pos.

Examples:

(%i1) assume_pos: true$
(%i2) assume_pos_pred: symbolp$
(%i3) sign (a);
(%o3) pos
(%i4) sign (a[1]);
(%o4) pnz
(%i5) assume_pos_pred: lambda ([x], display (x), true)$
(%i6) asksign (a);

x = a

(%o6) pos
(%i7) asksign (a[1]);

x = a
1

186 Maxima 5.35.1 Manual

(%o7) pos
(%i8) asksign (foo (a));

x = foo(a)

(%o8) pos
(%i9) asksign (foo (a) + bar (b));

x = foo(a)

x = bar(b)

(%o9) pos
(%i10) asksign (log (a));

x = a

Is a - 1 positive, negative, or zero?

p;
(%o10) pos
(%i11) asksign (a - b);

x = a

x = b

x = a

x = b

Is b - a positive, negative, or zero?

p;
(%o11) neg

Option variablecontext
Default value: initial

context names the collection of facts maintained by assume and forget. assume

adds facts to the collection named by context, while forget removes facts.

Binding context to a name foo changes the current context to foo. If the specified
context foo does not yet exist, it is created automatically by a call to newcontext.
The specified context is activated automatically.

See contexts for a general description of the context mechanism.

Option variablecontexts
Default value: [initial, global]

contexts is a list of the contexts which currently exist, including the currently active
context.

Chapter 11: Maximas Database 187

The context mechanism makes it possible for a user to bind together and name a
collection of facts, called a context. Once this is done, the user can have Maxima
assume or forget large numbers of facts merely by activating or deactivating their
context.

Any symbolic atom can be a context, and the facts contained in that context will be
retained in storage until destroyed one by one by calling forget or destroyed as a
whole by calling kill to destroy the context to which they belong.

Contexts exist in a hierarchy, with the root always being the context global, which
contains information about Maxima that some functions need. When in a given
context, all the facts in that context are "active" (meaning that they are used in
deductions and retrievals) as are all the facts in any context which is a subcontext of
the active context.

When a fresh Maxima is started up, the user is in a context called initial, which
has global as a subcontext.

See also facts, newcontext, supcontext, killcontext, activate, deactivate,
assume, and forget.

Functiondeactivate (context 1, . . . , context n)
Deactivates the specified contexts context 1, . . . , context n.

Functionfacts
facts (item)
facts ()

If item is the name of a context, facts (item) returns a list of the facts in the specified
context.

If item is not the name of a context, facts (item) returns a list of the facts known
about item in the current context. Facts that are active, but in a different context,
are not listed.

facts () (i.e., without an argument) lists the current context.

Functionforget
forget (pred 1, . . . , pred n)
forget (L)

Removes predicates established by assume. The predicates may be expressions equiv-
alent to (but not necessarily identical to) those previously assumed.

forget (L), where L is a list of predicates, forgets each item on the list.

Functionis (expr)
Attempts to determine whether the predicate expr is provable from the facts in the
assume database.

If the predicate is provably true or false, is returns true or false, respectively.
Otherwise, the return value is governed by the global flag prederror. When

188 Maxima 5.35.1 Manual

prederror is true, is complains with an error message. Otherwise, is returns
unknown.

ev(expr, pred) (which can be written expr, pred at the interactive prompt) is equiv-
alent to is(expr).

See also assume, facts, and maybe.

Examples:

is causes evaluation of predicates.

(%i1) %pi > %e;
(%o1) %pi > %e
(%i2) is (%pi > %e);
(%o2) true

is attempts to derive predicates from the assume database.

(%i1) assume (a > b);
(%o1) [a > b]
(%i2) assume (b > c);
(%o2) [b > c]
(%i3) is (a < b);
(%o3) false
(%i4) is (a > c);
(%o4) true
(%i5) is (equal (a, c));
(%o5) false

If is can neither prove nor disprove a predicate from the assume database, the global
flag prederror governs the behavior of is.

(%i1) assume (a > b);
(%o1) [a > b]
(%i2) prederror: true$
(%i3) is (a > 0);
Maxima was unable to evaluate the predicate:
a > 0
-- an error. Quitting. To debug this try debugmode(true);
(%i4) prederror: false$
(%i5) is (a > 0);
(%o5) unknown

Functionkillcontext (context 1, . . . , context n)
Kills the contexts context 1, . . . , context n.

If one of the contexts is the current context, the new current context will become the
first available subcontext of the current context which has not been killed. If the first
available unkilled context is global then initial is used instead. If the initial

context is killed, a new, empty initial context is created.

killcontext refuses to kill a context which is currently active, either because it is a
subcontext of the current context, or by use of the function activate.

killcontext evaluates its arguments. killcontext returns done.

Chapter 11: Maximas Database 189

Functionmaybe (expr)
Attempts to determine whether the predicate expr is provable from the facts in the
assume database.

If the predicate is provably true or false, maybe returns true or false, respectively.
Otherwise, maybe returns unknown.

maybe is functionally equivalent to is with prederror: false, but the result is com-
puted without actually assigning a value to prederror.

See also assume, facts, and is.

Examples:

(%i1) maybe (x > 0);
(%o1) unknown
(%i2) assume (x > 1);
(%o2) [x > 1]
(%i3) maybe (x > 0);
(%o3) true

Functionnewcontext
newcontext (name)
newcontext ()

Creates a new, empty context, called name, which has global as its only subcontext.
The newly-created context becomes the currently active context.

If name is not specified, a new name is created (via gensym) and returned.

newcontext evaluates its argument. newcontext returns name (if specified) or the
new context name.

Functionsign (expr)
Attempts to determine the sign of expr on the basis of the facts in the current data
base. It returns one of the following answers: pos (positive), neg (negative), zero, pz
(positive or zero), nz (negative or zero), pn (positive or negative), or pnz (positive,
negative, or zero, i.e. nothing known).

Functionsupcontext
supcontext (name, context)
supcontext (name)
supcontext ()

Creates a new context, called name, which has context as a subcontext. context must
exist.

If context is not specified, the current context is assumed.

If name is not specified, a new name is created (via gensym) and returned.

supcontext evaluates its argument. supcontext returns name (if specified) or the
new context name.

190 Maxima 5.35.1 Manual

11.4 Functions and Variables for Predicates

Functioncharfun (p)
Return 0 when the predicate p evaluates to false; return 1 when the predicate
evaluates to true. When the predicate evaluates to something other than true or
false (unknown), return a noun form.

Examples:

(%i1) charfun (x < 1);
(%o1) charfun(x < 1)
(%i2) subst (x = -1, %);
(%o2) 1
(%i3) e : charfun (’"and" (-1 < x, x < 1))$
(%i4) [subst (x = -1, e), subst (x = 0, e), subst (x = 1, e)];
(%o4) [0, 1, 0]

Functioncompare (x, y)
Return a comparison operator op (<, <=, >, >=, =, or #) such that is (x op y) eval-
uates to true; when either x or y depends on %i and x # y , return notcomparable;
when there is no such operator or Maxima isn’t able to determine the operator, return
unknown.

Examples:

(%i1) compare (1, 2);
(%o1) <
(%i2) compare (1, x);
(%o2) unknown
(%i3) compare (%i, %i);
(%o3) =
(%i4) compare (%i, %i + 1);
(%o4) notcomparable
(%i5) compare (1/x, 0);
(%o5) #
(%i6) compare (x, abs(x));
(%o6) <=

The function compare doesn’t try to determine whether the real domains of its argu-
ments are nonempty; thus

(%i1) compare (acos (x^2 + 1), acos (x^2 + 1) + 1);
(%o1) <

The real domain of acos (x^2 + 1) is empty.

Functionequal (a, b)
Represents equivalence, that is, equal value.

By itself, equal does not evaluate or simplify. The function is attempts to evaluate
equal to a Boolean value. is(equal(a, b)) returns true (or false) if and only if a
and b are equal (or not equal) for all possible values of their variables, as determined by

Chapter 11: Maximas Database 191

evaluating ratsimp(a - b); if ratsimp returns 0, the two expressions are considered
equivalent. Two expressions may be equivalent even if they are not syntactically equal
(i.e., identical).

When is fails to reduce equal to true or false, the result is governed by the global
flag prederror. When prederror is true, is complains with an error message.
Otherwise, is returns unknown.

In addition to is, some other operators evaluate equal and notequal to true or
false, namely if, and, or, and not.

The negation of equal is notequal.

Examples:

By itself, equal does not evaluate or simplify.

(%i1) equal (x^2 - 1, (x + 1) * (x - 1));
2

(%o1) equal(x - 1, (x - 1) (x + 1))
(%i2) equal (x, x + 1);
(%o2) equal(x, x + 1)
(%i3) equal (x, y);
(%o3) equal(x, y)

The function is attempts to evaluate equal to a Boolean value. is(equal(a, b))
returns true when ratsimp(a - b) returns 0. Two expressions may be equivalent
even if they are not syntactically equal (i.e., identical).

(%i1) ratsimp (x^2 - 1 - (x + 1) * (x - 1));
(%o1) 0
(%i2) is (equal (x^2 - 1, (x + 1) * (x - 1)));
(%o2) true
(%i3) is (x^2 - 1 = (x + 1) * (x - 1));
(%o3) false
(%i4) ratsimp (x - (x + 1));
(%o4) - 1
(%i5) is (equal (x, x + 1));
(%o5) false
(%i6) is (x = x + 1);
(%o6) false
(%i7) ratsimp (x - y);
(%o7) x - y
(%i8) is (equal (x, y));
(%o8) unknown
(%i9) is (x = y);
(%o9) false

When is fails to reduce equal to true or false, the result is governed by the global
flag prederror.

(%i1) [aa : x^2 + 2*x + 1, bb : x^2 - 2*x - 1];
2 2

(%o1) [x + 2 x + 1, x - 2 x - 1]
(%i2) ratsimp (aa - bb);
(%o2) 4 x + 2

192 Maxima 5.35.1 Manual

(%i3) prederror : true;
(%o3) true
(%i4) is (equal (aa, bb));
Maxima was unable to evaluate the predicate:

2 2
equal(x + 2 x + 1, x - 2 x - 1)
-- an error. Quitting. To debug this try debugmode(true);
(%i5) prederror : false;
(%o5) false
(%i6) is (equal (aa, bb));
(%o6) unknown

Some operators evaluate equal and notequal to true or false.

(%i1) if equal (y, y - 1) then FOO else BAR;
(%o1) BAR
(%i2) eq_1 : equal (x, x + 1);
(%o2) equal(x, x + 1)
(%i3) eq_2 : equal (y^2 + 2*y + 1, (y + 1)^2);

2 2
(%o3) equal(y + 2 y + 1, (y + 1))
(%i4) [eq_1 and eq_2, eq_1 or eq_2, not eq_1];
(%o4) [false, true, true]

Because not expr causes evaluation of expr, not equal(a, b) is equivalent to
is(notequal(a, b)).

(%i1) [notequal (2*z, 2*z - 1), not equal (2*z, 2*z - 1)];
(%o1) [notequal(2 z, 2 z - 1), true]
(%i2) is (notequal (2*z, 2*z - 1));
(%o2) true

Functionnotequal (a, b)
Represents the negation of equal(a, b).

Examples:

(%i1) equal (a, b);
(%o1) equal(a, b)
(%i2) maybe (equal (a, b));
(%o2) unknown
(%i3) notequal (a, b);
(%o3) notequal(a, b)
(%i4) not equal (a, b);
(%o4) notequal(a, b)
(%i5) maybe (notequal (a, b));
(%o5) unknown
(%i6) assume (a > b);
(%o6) [a > b]
(%i7) equal (a, b);
(%o7) equal(a, b)
(%i8) maybe (equal (a, b));
(%o8) false

Chapter 11: Maximas Database 193

(%i9) notequal (a, b);
(%o9) notequal(a, b)
(%i10) maybe (notequal (a, b));
(%o10) true

Functionunknown (expr)
Returns true if and only if expr contains an operator or function not recognized by
the Maxima simplifier.

Functionzeroequiv (expr, v)
Tests whether the expression expr in the variable v is equivalent to zero, returning
true, false, or dontknow.

zeroequiv has these restrictions:

1. Do not use functions that Maxima does not know how to differentiate and eval-
uate.

2. If the expression has poles on the real line, there may be errors in the result (but
this is unlikely to occur).

3. If the expression contains functions which are not solutions to first order differ-
ential equations (e.g. Bessel functions) there may be incorrect results.

4. The algorithm uses evaluation at randomly chosen points for carefully selected
subexpressions. This is always a somewhat hazardous business, although the
algorithm tries to minimize the potential for error.

For example zeroequiv (sin(2 * x) - 2 * sin(x) * cos(x), x) returns true and
zeroequiv (%e^x + x, x) returns false. On the other hand zeroequiv (log(a *

b) - log(a) - log(b), a) returns dontknow because of the presence of an extra pa-
rameter b.

194 Maxima 5.35.1 Manual

Chapter 12: Plotting 195

12 Plotting

12.1 Introduction to Plotting

Maxima uses an external plotting package to make the plots (see the section on Plotting

Formats). The plotting functions calculate a set of points and pass them to the plotting
package together with a set of commands. That information can be passed to the external
program either through a pipe or by calling the program with the name of a file where the
data has been saved. The data file is given the name maxout.format, where format is the
name of the plotting format being used (gnuplot, xmaxima, mgnuplot or gnuplot_pipes).

There are to save the plot in a graphic format file. In those cases, the file maxout.format
created by Maxima includes commands that will make the external plotting program save
the result in a graphic file. The default name for that graphic file is maxplot.extension,
where extension is the extension normally used for the kind of graphic file selected.

The maxout.format and maxplot.extension files are created in the directory specified
by the system variable maxima_tempdir. That location can be changed by assigning to that
variable (or to the environment variable MAXIMA TEMPDIR) a string that represents a
valid directory where Maxima can create new files. The output of the Maxima plotting
command will be a list with the names of the file(s) created, including their complete path.

If the format used is either gnuplot or xmaxima, the external programs gnuplot or
xmaxima can be run, giving it the file maxout.format as argument, in order to view again a
plot previously created in Maxima. Thus, when a Maxima plotting command fails, the
format can be set to gnuplot or xmaxima and the plain-text file maxout.gnuplot (or
maxout.xmaxima) can be inspected to look for the source of the problem.

The additional package Chapter 50 [draw], page 725 provides functions similar to the
ones described in this section with some extra features. Note that some plotting options
have the same name in both plotting packages, but their syntax and behavior is different.
To view the documentation for a graphic option opt, type ?? opt in order to choose the
information for either of those two packages.

12.2 Plotting Formats

Maxima can use either Gnuplot or Xmaxima as graphics program. Gnuplot is an external
program that has to be installed separately, while Xmaxima is distributed with Maxima.
There are various different formats for those programs, which can be selected with the
option plot_format (see also the Plotting Options section).

The plotting formats are the following:

• gnuplot (default on Windows)

Used to launch the external program gnuplot, which must be installed in your system.
All plotting commands and data are saved into the file maxout.gnuplot.

• gnuplot pipes (default on non-Windows platforms)

This format is not available in Windows platforms. It is similar to the gnuplot format
except that the commands are sent to gnuplot through a pipe, while the data are
saved into the file maxout.gnuplot_pipes. A single gnuplot process is kept open and

196 Maxima 5.35.1 Manual

subsequent plot commands will be sent to the same process, replacing previous plots,
unless the gnuplot pipe is closed with the function gnuplot_close. When this format
is used, the function gnuplot_replot can be used to modify a plot that has already
displayed on the screen.

This format is only used to plot to the screen; whenever graphic files are created, the
format is silently switched to gnuplot and the commands needed to create the graphic
file are saved with the data in file maxout.gnuplot.

• mgnuplot

Mgnuplot is a Tk-based wrapper around gnuplot. It is included in the Maxima distri-
bution. Mgnuplot offers a rudimentary GUI for gnuplot, but has fewer overall features
than the plain gnuplot interface. Mgnuplot requires an external gnuplot installation
and, in Unix systems, the Tcl/Tk system.

• xmaxima

Xmaxima is a Tcl/Tk graphical interface for Maxima that can also be used to display
plots created when Maxima is run from the console or from other graphical interfaces.
To use this format, the xmaxima program, which is distributed together with Maxima,
should be installed. If Maxima is being run from the Xmaxima console, the data and
commands are passed to xmaxima through the same socket used for the communication
between Maxima and the Xmaxima console. When used from a terminal or from
graphical interfaces different from Xmaxima, the commands and data are saved in the
file maxout.xmaxima and xmaxima is run with the name of that file as argument.

In previous versions this format used to be called openmath; that old name still works
as a synonym for xmaxima.

12.3 Functions and Variables for Plotting

Functioncontour plot (expr, x range, y range, options, . . .)
It plots the contours (curves of equal value) of expr over the region x range by y range.
Any additional arguments are treated the same as in plot3d.

This function only works when the plot format is either gnuplot or gnuplot_pipes.
The additional package implicit_plot, which works in any graphic format, can also
be used to plot contours but a separate expression must be given for each contour.

Examples:

Chapter 12: Plotting 197

(%i1) contour_plot (x^2 + y^2, [x, -4, 4], [y, -4, 4])$

y^2+x^2
 30
 20
 10

-4 -3 -2 -1 0 1 2 3 4

x

-4

-3

-2

-1

 0

 1

 2

 3

 4

y

You can add any options accepted by plot3d; for instance, the option legend with
a value of false, to remove the legend. By default, Gnuplot chooses and displays
3 contours. To increase the number of contours, it is necessary to use a custom
gnuplot_preamble, as in the next example:

(%i1) contour_plot (u^3 + v^2, [u, -4, 4], [v, -4, 4],
[legend,false],
[gnuplot_preamble, "set cntrparam levels 12"])$

-4 -3 -2 -1 0 1 2 3 4

u

-4

-3

-2

-1

 0

 1

 2

 3

 4

v

Functionget plot option (keyword, index)
Returns the current default value of the option named keyword, which is a list. The
optional argument index must be a positive integer which can be used to extract only
one element from the list (element 1 is the name of the option).

See also set_plot_option, remove_plot_option and the section on Plotting Op-
tions.

198 Maxima 5.35.1 Manual

System variablegnuplot command
This variable stores the name of the command used to run the gnuplot program when
the plot format is gnuplot. Its default value is "wgnuplot" in Windows and "gnuplot"
in other systems. If the gnuplot program is not found unless you give its complete
path or if you want to try a different version of it, you may change the value of this
variable. For instance,

(%i1) gnuplot_command: "/usr/local/bin/my_gnuplot"$

System variablegnuplot file args
When a graphic file is going to be created using gnuplot, this variable is used to
specify the way the file name should be passed to gnuplot. Its default value is "~s",
which means that the name of the file will be passed directly. The contents of this
variable can be changed in order to add options for the gnuplot program, adding those
options before the format directive "~s".

System variablegnuplot view args
This variable is used to parse the argument that will be passed to the gnuplot program
when the plot format is gnuplot. Its default value is "-persist ~s", where "~s" will
be replaced with the name of the file where the gnuplot commands have been written
(usually "maxout.gnuplot"). The option -persist tells gnuplot to exit after the
commands in the file have been executed, without closing the window that displays
the plot.

Those familiar with gnuplot, might want to change the value of this variable. For
example, by changing it to:

(%i1) gnuplot_view_args: "~s -"$

gnuplot will not be closed after the commands in the file have been executed; thus,
the window with the plot will remain, as well as the gnuplot interactive shell where
other commands can be issued in order to modify the plot.

In Windows versions of Gnuplot older than 4.6.3 the behavior of "~s -" and "-persist
~s" were the opposite; namely, "-persist ~s" made the plot window and the gnuplot
interactive shell remain, while "~s -" closed the gnuplot shell keeping the plot window.
Therefore, when older gnuplot versions are used in Windows, it might be necessary
to adjust the value of gnuplot_view_args.

Functionimplicit plot
implicit_plot (expr, x range, y range)
implicit_plot ([expr 1, . . . , expr n], x range, y range)

Displays a plot of a function on the real plane, defined implicitly by the expression
expr. The domain in the plane is defined by x range and y range. Several functions
can be represented on the same plot, giving a list [expr 1, . . . , expr n] of expres-
sions that define them. This function uses the global format options set up with the
set_plot_option. Additional options can also be given as extra arguments for the
implicit_plot command.

Chapter 12: Plotting 199

The method used by implicit_plot consists of tracking sign changes on the domain
given and it can fail for complicated expressions.

load(implicit_plot) loads this function.

Example:

(%i1) load(implicit_plot)$
(%i2) implicit_plot (x^2 = y^3 - 3*y + 1, [x, -4, 4], [y, -4, 4])$

y

x

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

Functionjulia (x, y, ...options...)
Creates a graphic representation of the Julia set for the complex number (x + i y).
The two mandatory parameters x and y must be real. This program is part of the
additional package dynamics, but that package does not have to be loaded; the first
time julia is used, it will be loaded automatically.

Each pixel in the grid is given a color corresponding to the number of iterations it
takes the sequence that starts at that point to move out of the convergence circle of
radius 2 centered at the origin. The number of pixels in the grid is controlled by the
grid plot option (default 30 by 30). The maximum number of iterations is set with
the option iterations. The program uses its own default palette: magenta,violet,
blue, cyan, green, yellow, orange, red, brown and black, but it can be changed by
adding an explicit palette option in the command.

The default domain used goes from -2 to 2 in both axes and can be changed with
the x and y options. By default, the two axes are shown with the same scale, unless
the option yx_ratio is used or the option same_xy is disabled. Other general plot
options are also accepted.

The following example shows a region of the Julia set for the number -0.55 + i0.6.
The option color_bar_tics is used to prevent Gnuplot from adjusting the color box
up to 40, in which case the points corresponding the maximum 36 iterations would
not be black.

200 Maxima 5.35.1 Manual

(%i1) julia (-0.55, 0.6, [iterations, 36], [x, -0.3, 0.2],
[y, 0.3, 0.9], [grid, 400, 400], [color_bar_tics, 0, 6, 36])$

y

x

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-0.3 -0.2 -0.1 0 0.1 0.2

 6

 12

 18

 24

 30

 36

Functionmake transform ([var1, var2, var3], fx, fy, fz)
Returns a function suitable to be used in the option transform_xy of plot3d. The
three variables var1, var2, var3 are three dummy variable names, which represent
the 3 variables given by the plot3d command (first the two independent variables
and then the function that depends on those two variables). The three functions fx,
fy, fz must depend only on those 3 variables, and will give the corresponding x, y
and z coordinates that should be plotted. There are two transformations defined by
default: polar_to_xy and spherical_to_xyz. See the documentation for those two
transformations.

Functionmandelbrot (options)
Creates a graphic representation of the Mandelbrot set. This program is part of the
additional package dynamics, but that package does not have to be loaded; the first
time mandelbrot is used, the package will be loaded automatically.

This program can be called without any arguments, in which case it will use a default
value of 9 iterations per point, a grid with dimensions set by the grid plot option
(default 30 by 30) and a region that extends from -2 to 2 in both axes. The options are
all the same that plot2d accepts, plus an option iterations to change the number
of iterations.

Each pixel in the grid is given a color corresponding to the number of iterations it
takes the sequence starting at zero to move out of the convergence circle of radius
2, centered at the origin. The maximum number of iterations is set by the option
iterations. The program uses its own default palette: magenta,violet, blue, cyan,
green, yellow, orange, red, brown and black, but it can be changed by adding an
explicit palette option in the command. By default, the two axes are shown with
the same scale, unless the option yx_ratio is used or the option same_xy is disabled.

Example:

[grid,400,400])$

Chapter 12: Plotting 201

(%i1) mandelbrot ([iterations, 30], [x, -2, 1], [y, -1.2, 1.2],
[grid,400,400])$

y

x

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5 1
 0

 5

 10

 15

 20

 25

 30

System functionpolar to xy
It can be given as value for the transform_xy option of plot3d. Its effect will be to
interpret the two independent variables in plot3d as the distance from the z axis and
the azimuthal angle (polar coordinates), and transform them into x and y coordinates.

Functionplot2d
plot2d (plot, x range, . . . , options, . . .)
plot2d ([plot 1, . . . , plot n], . . . , options, . . .)
plot2d ([plot 1, . . . , plot n], x range, . . . , options, . . .)

Where plot, plot 1, . . . , plot n can be either expressions, function names or a list
with the any of the forms: [discrete, [x1, ..., xn], [y1, ..., yn]], [discrete,
[[x1, y1], ..., [xn, ..., yn]]] or [parametric, x expr, y expr, t range].

Displays a plot of one or more expressions as a function of one variable or parameter.

plot2d displays one or several plots in two dimensions. When expressions or function
name are used to define the plots, they should all depend on only one variable var
and the use of x range will be mandatory, to provide the name of the variable and its
minimum and maximum values; the syntax for x range is: [variable, min, max].

A plot can also be defined in the discrete or parametric forms. The discrete form is
used to plot a set of points with given coordinates. A discrete plot is defined by a list
starting with the keyword discrete, followed by one or two lists of values. If two lists
are given, they must have the same length; the first list will be interpreted as the x
coordinates of the points to be plotted and the second list as the y coordinates. If
only one list is given after the discrete keyword, each element on the list could also
be a list with two values that correspond to the x and y coordinates of a point, or it
could be a sequence of numerical values which will be plotted at consecutive integer
values (1,2,3,...) on the x axis.

A parametric plot is defined by a list starting with the keyword parametric, followed
by two expressions or function names and a range for the parameter. The range for

202 Maxima 5.35.1 Manual

the parameter must be a list with the name of the parameter followed by its minimum
and maximum values: [param, min, max]. The plot will show the path traced out
by the point with coordinates given by the two expressions or functions, as param
increases from min to max.

A range for the vertical axis is an optional argument with the form: [y, min, max]
(the keyword y is always used for the vertical axis). If that option is used, the plot
will show that exact vertical range, independently of the values reached by the plot.
If the vertical range is not specified, it will be set up according to the minimum and
maximum values of the second coordinate of the plot points.

All other options should also be lists, starting with a keyword and followed by one or
more values. See plot_options.

If there are several plots to be plotted, a legend will be written to identity each of
the expressions. The labels that should be used in that legend can be given with
the option legend. If that option is not used, Maxima will create labels from the
expressions or function names.

Examples:

Plot of a common function:

(%i1) plot2d (sin(x), [x, -%pi, %pi])$

si
n
(x

)

x

-1

-0.5

 0

 0.5

 1

-3 -2 -1 0 1 2 3

If the function grows too fast, it might be necessary to limit the values in the vertical
axis using the y option:

Chapter 12: Plotting 203

(%i1) plot2d (sec(x), [x, -2, 2], [y, -20, 20])$

se
c(

x
)

x

-20

-15

-10

-5

 0

 5

 10

 15

 20

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

When the plot box is disabled, no labels are created for the axes. In that case, instead
of using xlabel and ylabel to set the names of the axes, it is better to use option
label, which allows more flexibility. Option yx_ratio is used to change the default
rectangular shape of the plot; in this example the plot will fill a square.

(%i1) plot2d (x^2 - 1, [x, -3, 3], [box, false], grid2d,
[yx_ratio, 1], [axes, solid], [xtics, -2, 4, 2],
[ytics, 2, 2, 6], [label, ["x", 2.9, -0.3],
["x^2-1", 0.1, 8]], [title, "A parabola"])$

A parabola

x

x^2-1

 2

 4

 6

-2 2

A plot with a logarithmic scale in the vertical axis:

204 Maxima 5.35.1 Manual

(%i1) plot2d (exp(3*s), [s, -2, 2], logy)$

%
e
^

(3
*s

)

s

 0.001

 0.01

 0.1

 1

 10

 100

 1000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Plotting functions by name:

(%i1) F(x) := x^2 $
(%i2) :lisp (defun |$g| (x) (m* x x x))
$g
(%i2) H(x) := if x < 0 then x^4 - 1 else 1 - x^5 $
(%i3) plot2d ([F, G, H], [u, -1, 1], [y, -1.5, 1.5])$

u

F
G
H

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

A plot of the butterfly curve, defined parametrically:

(%i1) r: (exp(cos(t))-2*cos(4*t)-sin(t/12)^5)$

Chapter 12: Plotting 205

(%i2) plot2d([parametric, r*sin(t), r*cos(t), [t, -8*%pi, 8*%pi]])$

co
s(

t)
*(

-2
*c

o
s(

4
*t

)-
si

n
(t

/1
2

)^
5

+
%

e
^

co
s(

t)
)

sin(t)*(-2*cos(4*t)-sin(t/12)^5+%e^cos(t))

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

Plot of a circle, using its parametric representation, together with the function -|x|.
The circle will only look like a circle if the scale in the two axes is the same, which is
done with the option same_xy.

(%i1) plot2d([[parametric, cos(t), sin(t), [t,0,2*%pi]], -abs(x)],
[x, -sqrt(2), sqrt(2)], same_xy)$

x

cos(t), sin(t)
-abs(x)

-1.5

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

A plot of 200 random numbers between 0 and 9:

206 Maxima 5.35.1 Manual

(%i1) plot2d ([discrete, makelist (random(10), 200)])$

y

x

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180 200

A plot of a discrete set of points, defining x and y coordinates separately:

(%i1) plot2d ([discrete, makelist(i*%pi, i, 1, 5),
[0.6, 0.9, 0.2, 1.3, 1]])$

y

x

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 6 8 10 12 14 16

In the next example a table with three columns is saved in a file “data.txt” which is
then read and the second and third column are plotted on the two axes:

(%i1) with_stdout ("data.txt", for x:0 thru 10 do
print (x, x^2, x^3))$

(%i2) data: read_matrix ("data.txt")$

Chapter 12: Plotting 207

(%i3) plot2d ([discrete, transpose(data)[2], transpose(data)[3]],
[style,points], [point_type,diamond], [color,red])$

y

x

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

A plot of discrete data points together with a continuous function:

(%i1) xy: [[10, .6], [20, .9], [30, 1.1], [40, 1.3], [50, 1.4]]$
(%i2) plot2d([[discrete, xy], 2*%pi*sqrt(l/980)], [l,0,50],

[style, points, lines], [color, red, blue],
[point_type, asterisk],
[legend, "experiment", "theory"],
[xlabel, "pendulum’s length (cm)"],
[ylabel, "period (s)"])$

p
e
ri

o
d
 (

s)

pendulum's length (cm)

experiment
theory

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

See also the section about Plotting Options.

Functionplot3d
plot3d (expr, x range, y range, . . . , options, . . .)
plot3d ([expr 1, . . . , expr n], x range, y range, . . . , options, . . .)

Displays a plot of one or more surfaces defined as functions of two variables or in
parametric form.

208 Maxima 5.35.1 Manual

The functions to be plotted may be specified as expressions or function names. The
mouse can be used to rotate the plot looking at the surface from different sides.

Examples:

Plot of a function of two variables:

(%i1) plot3d (u^2 - v^2, [u, -2, 2], [v, -3, 3], [grid, 100, 100],
[mesh_lines_color,false])$

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-3
-2

-1
 0

 1
 2

 3

-10

-8

-6

-4

-2

 0

 2

 4

z

u^2-v^2

u

v

z

Use of the z option to limit a function that goes to infinity (in this case the function
is minus infinity on the x and y axes); this also shows how to plot with only lines and
no shading:

(%i1) plot3d (log (x^2*y^2), [x, -2, 2], [y, -2, 2], [z, -8, 4],
[palette, false], [color, magenta])$

log(x^2*y^2)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y
-8

-6

-4

-2

 0

 2

 4

z

The infinite values of z can also be avoided by choosing a grid that does not fall on
any points where the function is undefined, as in the next example, which also shows
how to change the palette and how to include a color bar that relates colors to values
of the z variable:

Chapter 12: Plotting 209

(%i1) plot3d (log (x^2*y^2), [x, -2, 2], [y, -2, 2],[grid, 29, 29],
[palette, [gradient, red, orange, yellow, green]],
color_bar, [xtics, 1], [ytics, 1], [ztics, 4],
[color_bar_tics, 4])$

-2
-1

 0
 1

 2-2

-1

 0

 1

 2

-12

-8

-4

 0

 4

z

log(x^2*y^2)

x

y

z
-12

-8

-4

 0

 4

Two surfaces in the same plot. Ranges specific to one of the surfaces can be given
by placing each expression and its ranges in a separate list; global ranges for the
complete plot are also given after the functions definitions.

(%i1) plot3d ([[-3*x - y, [x, -2, 2], [y, -2, 2]],
4*sin(3*(x^2 + y^2))/(x^2 + y^2), [x, -3, 3], [y, -3, 3]],
[x, -4, 4], [y, -4, 4])$

-4 -3 -2 -1 0 1 2 3 4-4
-3

-2
-1

 0
 1

 2
 3

 4

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12

z

4*sin(3*(y^2+x^2))/(y^2+x^2)
-y-3*x

x

y

z

Plot of a Klein bottle, defined parametrically:

(%i1) expr_1: 5*cos(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3)-10$
(%i2) expr_2: -5*sin(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3)$
(%i3) expr_3: 5*(-sin(x/2)*cos(y)+cos(x/2)*sin(2*y))$

210 Maxima 5.35.1 Manual

(%i4) plot3d ([expr_1, expr_2, expr_3], [x, -%pi, %pi],
[y, -%pi, %pi], [grid, 50, 50])$

-35 -30 -25 -20 -15 -10 -5 0 5 10-25
-20

-15
-10

-5
 0

 5
 10

 15
 20

 25

-8

-6

-4

-2

 0

 2

 4

 6

 8

z

Parametric function

x

y

z

Plot of a “spherical harmonic” function, using the predefined transformation,
spherical_to_xyz to transform from spherical coordinates to rectangular
coordinates. See the documentation for spherical_to_xyz.

(%i1) plot3d (sin(2*theta)*cos(phi), [theta, 0, %pi],
[phi, 0, 2*%pi],
[transform_xy, spherical_to_xyz], [grid,30,60],

[legend,false])$

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-0.4
-0.3

-0.2
-0.1

 0
 0.1

 0.2
 0.3

 0.4

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

z

x

y

z

Use of the pre-defined function polar_to_xy to transform from cylindrical to rectan-
gular coordinates. See the documentation for polar_to_xy.

Chapter 12: Plotting 211

(%i1) plot3d (r^.33*cos(th/3), [r,0,1], [th,0,6*%pi], [box, false],
[grid, 12, 80], [transform_xy, polar_to_xy], [legend, false])$

Plot of a sphere using the transformation from spherical to rectangular coordinates.
Option same_xyz is used to get the three axes scaled in the same proportion. When
transformations are used, it is not convenient to eliminate the mesh lines, because
Gnuplot will not show the surface correctly.

(%i1) plot3d (5, [theta, 0, %pi], [phi, 0, 2*%pi], same_xyz,
[transform_xy, spherical_to_xyz], [mesh_lines_color,blue],
[palette,[gradient,"#1b1b4e", "#8c8cf8"]], [legend, false])$

-6
-4

-2
 0

 2
 4

 6-5-4
-3-2

-1 0
 1 2

 3 4
 5

-6

-4

-2

 0

 2

 4

 6

z

x
y

z

Definition of a function of two-variables using a matrix. Notice the single quote in
the definition of the function, to prevent plot3d from failing when it realizes that the
matrix will require integer indices.

(%i1) M: matrix([1,2,3,4], [1,2,3,2], [1,2,3,4], [1,2,3,3])$
(%i2) f(x, y) := float(’M [round(x), round(y)])$

212 Maxima 5.35.1 Manual

(%i3) plot3d (f(x,y), [x,1,4],[y,1,4],[grid,3,3],[legend,false])$

 1
 1.5

 2
 2.5

 3
 3.5

 4 1
 1.5

 2
 2.5

 3
 3.5

 4

 1

 1.5

 2

 2.5

 3

 3.5

 4

z

x

y

z

By setting the elevation equal to zero, a surface can be seen as a map in which each
color represents a different level.

(%i1) plot3d (cos (-x^2 + y^3/4), [x,-4,4], [y,-4,4], [zlabel,""],
[mesh_lines_color,false], [elevation,0], [azimuth,0],
color_bar, [grid,80,80], [ztics,false], [color_bar_tics,1])$

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

 0

 1

 2

 3

 4

cos(y^3/4-x^2)

x

y

-1

 0

 1

See also the section about Plotting Options.

System variableplot options
This option is being kept for compatibility with older versions, but its use is depre-
cated. To set global plotting options, see their current values or remove options, use
set_plot_option, get_plot_option and remove_plot_option.

Functionremove plot option (name)
Removes the default value of an option. The name of the option must be given.

See also set_plot_option, get_plot_option and the section on Plotting Options.

Chapter 12: Plotting 213

Functionset plot option (option)
Accepts any of the options listed in the section Plotting Options, and saves them for
use in plotting commands. The values of the options set in each plotting command
will have precedence, but if those options are not given, the default values set with
this function will be used.

set_plot_option evaluates its argument and returns the complete list of options
(after modifying the option given). If called without any arguments, it will simply
show the list of current default options.

See also remove_plot_option, get_plot_option and the section on Plotting Op-
tions.

Example:

Modification of the grid values.

(%i1) set_plot_option ([grid, 30, 40]);
(%o1) [[plot_format, gnuplot_pipes], [grid, 30, 40],
[run_viewer, true], [axes, true], [nticks, 29], [adapt_depth, 5],
[color, blue, red, green, magenta, black, cyan],
[point_type, bullet, box, triangle, plus, times, asterisk],
[palette, [gradient, green, cyan, blue, violet],
[gradient, magenta, violet, blue, cyan, green, yellow, orange,
red, brown, black]], [gnuplot_preamble,], [gnuplot_term, default]]

System functionspherical to xyz
It can be given as value for the transform_xy option of plot3d. Its effect will be to
interpret the two independent variables and the function in plot3d as the spherical
coordinates of a point (first, the angle with the z axis, then the angle of the xy
projection with the x axis and finally the distance from the origin) and transform
them into x, y and z coordinates.

12.4 Plotting Options

All options consist of a list starting with one of the keywords in this section, followed
by one or more values. Some of the options may have different effects in different plotting
commands as it will be pointed out in the following list. The options that accept among
their possible values true or false, can also be set to true by simply writing their names.
For instance, typing logx as an option is equivalent to writing [logx, true].

Plot optionadapt depth [adapt depth, integer]
Default value: 5

The maximum number of splittings used by the adaptive plotting routine.

Plot optionaxes [axes, symbol]
Default value: true

Where symbol can be either true, false, x, y or solid. If false, no axes are shown;
if equal to x or y only the x or y axis will be shown; if it is equal to true, both axes
will be shown and solid will show the two axes with a solid line, rather than the
default broken line. This option does not have any effect in the 3 dimensional plots.

214 Maxima 5.35.1 Manual

Plot optionazimuth [azimuth, number]
Default value: 30

A plot3d plot can be thought of as starting with the x and y axis in the horizontal
and vertical axis, as in plot2d, and the z axis coming out of the screen. The z axis
is then rotated around the x axis through an angle equal to elevation and then the
new xy plane is rotated around the new z axis through an angle azimuth. This option
sets the value for the azimuth, in degrees.

See also elevation.

Plot optionbox [box, symbol]
Default value: true

If set to true, a bounding box will be drawn for the plot; if set to false, no box will
be drawn.

Plot optioncolor [color, color 1, . . . , color n]
In 2d plots it defines the color (or colors) for the various curves. In plot3d, it defines
the colors used for the mesh lines of the surfaces, when no palette is being used.

If there are more curves or surfaces than colors, the colors will be repeated in sequence.
The valid colors are red, green, blue, magenta, cyan, yellow, orange, violet,
brown, gray, black, white, or a string starting with the character # and followed by
six hexadecimal digits: two for the red component, two for green component and two
for the blue component. If the name of a given color is unknown color, black will be
used instead.

Plot optioncolor bar [color bar, symbol]
Default value: false in plot3d, true in mandelbrot and julia

Where symbol can be either true or false. If true, whenever plot3d, mandelbrot
or julia use a palette to represent different values, a box will be shown on the right,
showing the corresponding between colors and values.

Plot optioncolor bar tics [color bar tics, x1, x2, x3]
Defines the values at which a mark and a number will be placed in the color bar. The
first number is the initial value, the second the increments and the third is the last
value where a mark is placed. The second and third numbers can be omitted. When
only one number is given, it will be used as the increment from an initial value that
will be chosen automatically.

Plot optionelevation [elevation, number]
Default value: 60

A plot3d plot can be thought of as starting with the x and y axis in the horizontal
and vertical axis, as in plot2d, and the z axis coming out of the screen. The z axis
is then rotated around the x axis through an angle equal to elevation and then the
new xy plane is rotated around the new z axis through an angle azimuth. This option
sets the value for the azimuth, in degrees.

See also azimuth.

Chapter 12: Plotting 215

Plot optiongrid [grid, integer, integer]
Default value: 30, 30

Sets the number of grid points to use in the x- and y-directions for three-dimensional
plotting or for the julia and mandelbrot programs.

Plot optiongrid2d [grid, value]
Default value: false

Shows a grid of lines on the xy plane. The points where the grid lines are placed are
the same points where tics are marked in the x and y axes, which can be controlled
with the xtics and ytics options.

Plot optioniterations [grid, value]
Default value: 9

Number of iterations made by the programs mandelbrot and julia.

Plot optionlabel [label, [string, x, y], . . .]
Writes one or several labels in the points with x, y coordinates indicated after each
label.

Plot optionlegend
legend [legend, string 1, . . . , string n]
legend [legend, false]

It specifies the labels for the plots when various plots are shown. If there are more
plots than the number of labels given, they will be repeated. If given the value false,
no legends will be shown. By default, the names of the expressions or functions will
be used, or the words discrete1, discrete2, . . . , for discrete sets of points.

Plot optionlogx [logx, value]
Makes the horizontal axes to be scaled logarithmically. It can be either true or false.

Plot optionlogy [logy, value]
Makes the vertical axes to be scaled logarithmically. It can be either true or false.

Plot optionmesh lines color [mesh lines color, color]
Default value: black

It sets the color used by plot3d to draw the mesh lines, when a palette is being used.
It accepts the same colors as for the option color (see the list of allowed colors in
color). It can also be given a value false to eliminate completely the mesh lines.

Plot optionnticks [nticks, integer]
Default value: 29

When plotting functions with plot2d, it is gives the initial number of points used
by the adaptive plotting routine for plotting functions. When plotting parametric
functions with plot3d, it sets the number of points that will be shown for the plot.

216 Maxima 5.35.1 Manual

Plot optionpalette
palette [palette, [palette 1], . . . , [palette n]]
palette [palette, false]

It can consist of one palette or a list of several palettes. Each palette is a list with a
keyword followed by values. If the keyword is gradient, it should be followed by a list
of valid colors.

If the keyword is hue, saturation or value, it must be followed by 4 numbers. The first
three numbers, which must be between 0 and 1, define the hue, saturation and value
of a basic color to be assigned to the minimum value of z. The keyword specifies which
of the three attributes (hue, saturation or value) will be increased according to the
values of z. The last number indicates the increase corresponding to the maximum
value of z. That last number can be bigger than 1 or negative; the corresponding
values of the modified attribute will be rounded modulo 1.

Gnuplot only uses the first palette in the list; xmaxima will use the palettes in the
list sequentially, when several surfaces are plotted together; if the number of palettes
is exhausted, they will be repeated sequentially.

The color of the mesh lines will be given by the option mesh_lines_color. If palette
is given the value false, the surfaces will not be shaded but represented with a mesh
of curves only. In that case, the colors of the lines will be determined by the option
color.

Plot optionplot format [plot format, format]
Default value: gnuplot, in Windows systems, or gnuplot_pipes in other systems.

Where format is one of the following: gnuplot, xmaxima, mgnuplot or gnuplot pipes.

It sets the format to be used for plotting.

Plot optionplot realpart [plot realpart, symbol]
Default value: false

If set to true, the functions to be plotted will be considered as complex functions
whose real value should be plotted; this is equivalent to plotting realpart(function).
If set to false, nothing will be plotted when the function does not give a real value.
For instance, when x is negative, log(x) gives a complex value, with real value equal
to log(abs(x)); if plot_realpart were true, log(-5) would be plotted as log(5),
while nothing would be plotted if plot_realpart were false.

Plot optionpoint type [point type, type 1, . . . , type n]
In gnuplot, each set of points to be plotted with the style “points” or “linespoints”
will be represented with objects taken from this list, in sequential order. If there are
more sets of points than objects in this list, they will be repeated sequentially. The
possible objects that can be used are: bullet, circle, plus, times, asterisk, box,
square, triangle, delta, wedge, nabla, diamond, lozenge.

Chapter 12: Plotting 217

Plot optionpdf file [pdf file, file name]
Saves the plot into a PDF file with name equal to file name, rather than showing it in
the screen. By default, the file will be created in the directory defined by the variable
maxima_tempdir, unless file name contains the character “/”, in which case it will be
assumed to contain the complete path where the file should be created. The value of
maxima_tempdir can be changed to save the file in a different directory. When the
option gnuplot_pdf_term_command is also given, it will be used to set up Gnuplot’s
PDF terminal; otherwise, Gnuplot’s pdfcairo terminal will be used with solid colored
lines of width 3, plot size of 17.2 cm by 12.9 cm and font of 18 points.

Plot optionpng file [png file, file name]
Saves the plot into a PNG graphics file with name equal to file name, rather than
showing it in the screen. By default, the file will be created in the directory defined by
the variable maxima_tempdir, unless file name contains the character “/”, in which
case it will be assumed to contain the complete path where the file should be created.
The value of maxima_tempdir can be changed to save the file in a different directory.
When the option gnuplot_png_term_command is also given, it will be used to set up
Gnuplot’s PNG terminal; otherwise, Gnuplot’s pngcairo terminal will be used, with
a font of size 12.

Plot optionps file [ps file, file name]
Saves the plot into a Postscript file with name equal to file name, rather than showing
it in the screen. By default, the file will be created in the directory defined by the
variable maxima_tempdir, unless file name contains the character “/”, in which case
it will be assumed to contain the complete path where the file should be created.
The value of maxima_tempdir can be changed to save the file in a different directory.
When the option gnuplot_ps_term_command is also given, it will be used to set up
Gnuplot’s Postscript terminal; otherwise, Gnuplot’s postscript terminal will be used
with the EPS option, solid colored lines of width 2, plot size of 16.4 cm by 12.3 cm
and font of 24 points.

Plot optionrun viewer [run viewer, symbol]
This option is only used when the plot format is gnuplot and the terminal is default
or when the Gnuplot terminal is set to dumb (see gnuplot_term) and can have a true
or false value.

If the terminal is default, a file maxout.gnuplot (or other name specified with
gnuplot_out_file) is created with the gnuplot commands necessary to generate the
plot. Option run_viewer controls whether or not Gnuplot will be launched to execute
those commands and show the plot.

If the terminal is default, gnuplot is run to execute the commands in
maxout.gnuplot, producing another file maxplot.txt (or other name specified with
gnuplot_out_file). Option run_viewer controls whether or not that file, with an
ASCII representation of the plot, will be shown in the Maxima or Xmaxima console.

The default value for this option is true, making the plots to be shown in either the
console or a separate graphics window.

218 Maxima 5.35.1 Manual

Plot optionsame xy [same xy , value]
It can be either true or false. If true, the scales used in the x and y axes will be the
same, in either 2d or 3d plots. See also yx_ratio.

Plot optionsame xyz [same xyz , value]
It can be either true or false. If true, the scales used in the 3 axes of a 3d plot will
be the same.

Plot optionstyle
style [style, type 1, . . . , type n]
style [style, [style 1], . . . , [style n]]

The styles that will be used for the various functions or sets of data in a 2d plot. The
word style must be followed by one or more styles. If there are more functions and
data sets than the styles given, the styles will be repeated. Each style can be either
lines for line segments, points for isolated points, linespoints for segments and points,
or dots for small isolated dots. Gnuplot accepts also an impulses style.

Each of the styles can be enclosed inside a list with some additional parameters. lines
accepts one or two numbers: the width of the line and an integer that identifies a
color. The default color codes are: 1: blue, 2: red, 3: magenta, 4: orange, 5: brown,
6: lime and 7: aqua. If you use Gnuplot with a terminal different than X11, those
colors might be different; for example, if you use the option [gnuplot term, ps], color
index 4 will correspond to black, instead of orange.

points accepts one two or three parameters; the first parameter is the radius of the
points, the second parameter is an integer that selects the color, using the same
code used for lines and the third parameter is currently used only by Gnuplot and
it corresponds to several objects instead of points. The default types of objects are:
1: filled circles, 2: open circles, 3: plus signs, 4: x, 5: *, 6: filled squares, 7: open
squares, 8: filled triangles, 9: open triangles, 10: filled inverted triangles, 11: open
inverted triangles, 12: filled lozenges and 13: open lozenges.

linespoints accepts up to four parameters: line width, points radius, color and type
of object to replace the points.

See also color and point_type.

Plot optionsvg file [svg file, file name]
Saves the plot into an SVG file with name equal to file name, rather than showing
it in the screen. By default, the file will be created in the directory defined by the
variable maxima_tempdir, unless file name contains the character “/”, in which case
it will be assumed to contain the complete path where the file should be created.
The value of maxima_tempdir can be changed to save the file in a different directory.
When the option gnuplot_svg_term_command is also given, it will be used to set up
Gnuplot’s SVG terminal; otherwise, Gnuplot’s svg terminal will be used with font of
14 points.

Plot optiont [t, min, max]
Default range for parametric plots.

Chapter 12: Plotting 219

Plot optiontitle [title, text]
Defines a title that will be written at the top of the plot.

Plot optiontransform xy [transform xy, symbol]
Where symbol is either false or the result obtained by using the function transform_

xy. If different from false, it will be used to transform the 3 coordinates in plot3d.

See make_transform, polar_to_xy and spherical_to_xyz.

Plot optionx [x, min, max]
When used as the first option in a plot2d command (or any of the first two in plot3d),
it indicates that the first independent variable is x and it sets its range. It can also
be used again after the first option (or after the second option in plot3d) to define
the effective horizontal domain that will be shown in the plot.

Plot optionxlabel [xlabel, string]
Specifies the string that will label the first axis; if this option is not used, that label
will be the name of the independent variable, when plotting functions with plot2d or
implicit_plot, or the name of the first variable, when plotting surfaces with plot3d

or contours with contour_plot, or the first expression in the case of a parametric
plot. It can not be used with set_plot_option.

Plot optionxtics [xtics, x1, x2, x3]
Defines the values at which a mark and a number will be placed in the x axis. The
first number is the initial value, the second the increments and the third is the last
value where a mark is placed. The second and third numbers can be omitted. When
only one number is given, it will be used as the increment from an initial value that
will be chosen automatically.

Plot optionxy scale [xy scale, sx, sy]
In a 2d plot, it defines the ratio of the total size of the Window to the size that will
be used for the plot. The two numbers given as arguments are the scale factors for
the x and y axes.

Plot optiony [y, min, max]
When used as one of the first two options in plot3d, it indicates that one of the
independent variables is y and it sets its range. Otherwise, it defines the effective
domain of the second variable that will be shown in the plot.

Plot optionylabel [ylabel, string]
Specifies the string that will label the second axis; if this option is not used, that
label will be “y”, when plotting functions with plot2d or implicit_plot, or the
name of the second variable, when plotting surfaces with plot3d or contours with
contour_plot, or the second expression in the case of a parametric plot. It can not
be used with set_plot_option.

220 Maxima 5.35.1 Manual

Plot optionytics [ytics, y1, y2, y3]
Defines the values at which a mark and a number will be placed in the y axis. The
first number is the initial value, the second the increments and the third is the last
value where a mark is placed. The second and third numbers can be omitted. When
only one number is given, it will be used as the increment from an initial value that
will be chosen automatically

Plot optionyx ratio [yx ratio, r]
In a 2d plot, the ratio between the vertical and the horizontal sides of the rectangle
used to make the plot. See also same_xy.

Plot optionz [z, min, max]
Used in plot3d to set the effective range of values of z that will be shown in the plot.

Plot optionzlabel [zlabel, string]
Specifies the string that will label the third axis, when using plot3d. If this option
is not used, that label will be “z”, when plotting surfaces, or the third expression in
the case of a parametric plot. It can not be used with set_plot_option and it will
be ignored by plot2d and implicit_plot.

Plot optionzmin [zmin, z]
In 3d plots, the value of z that will be at the bottom of the plot box.

12.5 Gnuplot Options

There are several plot options specific to gnuplot. All of them consist of a keyword (the
name of the option), followed by a string that should be a valid gnuplot command, to be
passed directly to gnuplot. In most cases, there exist a corresponding plotting option that
will produce a similar result and whose use is more recommended than the gnuplot specific
option.

Plot optiongnuplot term [gnuplot term, terminal name]
Sets the output terminal type for gnuplot. The argument terminal name can be a
string or one of the following 3 special symbols

• default (default value)

Gnuplot output is displayed in a separate graphical window and the gnuplot
terminal used will be specified by the value of the option gnuplot_default_

term_command.

• dumb

Gnuplot output is saved to a file maxout.gnuplot using "ASCII art" approx-
imation to graphics. If the option gnuplot_out_file is set to filename, the
plot will be saved there, instead of the default maxout.gnuplot. The settings
for the “dumb” terminal of Gnuplot are given by the value of option gnuplot_

dumb_term_command. If option run_viewer is set to true and the plot format is

Chapter 12: Plotting 221

gnuplot that ASCII representation will also be shown in the Maxima or Xmax-
ima console.

• ps

Gnuplot generates commands in the PostScript page description language. If
the option gnuplot_out_file is set to filename, gnuplot writes the PostScript
commands to filename. Otherwise, it is saved as maxplot.ps file. The settings for
this terminal are given by the value of the option gnuplot_dumb_term_command.

• A string representing any valid gnuplot term specification

Gnuplot can generate output in many other graphical formats such as png, jpeg,
svg etc. To use those formats, option gnuplot_term can be set to any sup-
ported gnuplot term name (which must be a symbol) or even a full gnuplot
term specification with any valid options (which must be a string). For example
[gnuplot_term, png] creates output in PNG (Portable Network Graphics) for-
mat while [gnuplot_term, "png size 1000,1000"] creates PNG of 1000 x 1000
pixels size. If the option gnuplot_out_file is set to filename, gnuplot writes
the output to filename. Otherwise, it is saved as maxplot.term file, where term
is gnuplot terminal name.

Plot optiongnuplot out file [gnuplot out file, file name]
It can be used to replace the default name for the file that contains the commands
that will interpreted by gnuplot, when the terminal is set to default, or to replace the
default name of the graphic file that gnuplot creates, when the terminal is different
from default. If it contains one or more slashes, “/”, the name of the file will be left
as it is; otherwise, it will be appended to the path of the temporary directory. The
complete name of the files created by the plotting commands is always sent as output
of those commands so they can be seen if the command is ended by semi-colon.

When used in conjunction with the gnuplot_term option, it can be used to save the
plot in a file, in one of the graphic formats supported by Gnuplot. To create PNG,
PDF, Postscript or SVG, it is easier to use options png_file, pdf_file, ps_file, or
svg_file.

Plot optiongnuplot pm3d [gnuplot pm3d, value]
With a value of false, it can be used to disable the use of PM3D mode, which is
enabled by default.

Plot optiongnuplot preamble [gnuplot preamble, string]
This option inserts gnuplot commands before any other commands sent to Gnuplot.
Any valid gnuplot commands may be used. Multiple commands should be separated
with a semi-colon. See also gnuplot_postamble.

Plot optiongnuplot postamble [gnuplot postamble, string]
This option inserts gnuplot commands after other commands sent to Gnuplot
and right before the plot command is sent. Any valid gnuplot commands may
be used. Multiple commands should be separated with a semi-colon. See also
gnuplot_preamble.

222 Maxima 5.35.1 Manual

Plot optiongnuplot default term command
[gnuplot default term command, command]

The gnuplot command to set the terminal type for the default terminal. It this option
is not set, the command used will be: "set term wxt size 640,480 font \",12\";

set term pop".

Plot optiongnuplot dumb term command
[gnuplot dumb term command, command]

The gnuplot command to set the terminal type for the dumb terminal. It this option
is not set, the command used will be: "set term dumb 79 22", which makes the text
output 79 characters by 22 characters.

Plot optiongnuplot pdf term command [gnuplot pdf term command,
command]

The gnuplot command to set the terminal type for the PDF terminal. If this option
is not set, the command used will be: "set term pdfcairo color solid lw 3 size

17.2 cm, 12.9 cm font \",18\"". See the gnuplot documentation for more informa-
tion.

Plot optiongnuplot png term command [gnuplot png term command, com-
mand]

The gnuplot command to set the terminal type for the PNG terminal. If this option
is not set, the command used will be: "set term pngcairo font \",12\"". See the
gnuplot documentation for more information.

Plot optiongnuplot ps term command [gnuplot ps term command,
command]

The gnuplot command to set the terminal type for the PostScript terminal. If this
option is not set, the command used will be: "set term postscript eps color solid

lw 2 size 16.4 cm, 12.3 cm font \",24\"". See the gnuplot documentation for set
term postscript for more information.

Plot optiongnuplot svg term command [gnuplot svg term command,
command]

The gnuplot command to set the terminal type for the SVG terminal. If this option is
not set, the command used will be: "set term svg font \",14\"". See the gnuplot
documentation for more information.

Plot optiongnuplot curve titles
This is an obsolete option that has been replaced legend described above.

Plot optiongnuplot curve styles
This is an obsolete option that has been replaced by style.

Chapter 12: Plotting 223

12.6 Gnuplot pipes Format Functions

Functiongnuplot start ()
Opens the pipe to gnuplot used for plotting with the gnuplot_pipes format. Is not
necessary to manually open the pipe before plotting.

Functiongnuplot close ()
Closes the pipe to gnuplot which is used with the gnuplot_pipes format.

Functiongnuplot restart ()
Closes the pipe to gnuplot which is used with the gnuplot_pipes format and opens
a new pipe.

Functiongnuplot replot
gnuplot_replot ()
gnuplot_replot (s)

Updates the gnuplot window. If gnuplot_replot is called with a gnuplot command
in a string s, then s is sent to gnuplot before reploting the window.

Functiongnuplot reset ()
Resets the state of gnuplot used with the gnuplot_pipes format. To update the
gnuplot window call gnuplot_replot after gnuplot_reset.

224 Maxima 5.35.1 Manual

Chapter 13: File Input and Output 225

13 File Input and Output

13.1 Comments

A comment in Maxima input is any text between /* and */.

The Maxima parser treats a comment as whitespace for the purpose of finding tokens
in the input stream; a token always ends at a comment. An input such as a/* foo */b

contains two tokens, a and b, and not a single token ab. Comments are otherwise ignored
by Maxima; neither the content nor the location of comments is stored in parsed input
expressions.

Comments can be nested to arbitrary depth. The /* and */ delimiters form matching
pairs. There must be the same number of /* as there are */.

Examples:

(%i1) /* aa is a variable of interest */ aa : 1234;
(%o1) 1234
(%i2) /* Value of bb depends on aa */ bb : aa^2;
(%o2) 1522756
(%i3) /* User-defined infix operator */ infix ("b");
(%o3) b
(%i4) /* Parses same as a b c, not abc */ a/* foo */b/* bar */c;
(%o4) a b c
(%i5) /* Comments /* can be nested /* to any depth */ */ */ 1 + xyz;
(%o5) xyz + 1

13.2 Files

A file is simply an area on a particular storage device which contains data or text. Files
on the disks are figuratively grouped into "directories". A directory is just a list of files.
Commands which deal with files are:

appendfile batch batchload
closefile file_output_append filename_merge
file_search file_search_maxima file_search_lisp
file_search_demo file_search_usage file_search_tests
file_type file_type_lisp file_type_maxima
load load_pathname loadfile
loadprint pathname_directory pathname_name
pathname_type printfile save
stringout with_stdout writefile

When a file name is passed to functions like plot2d, save, or writefile and the file
name does not include a path, Maxima stores the file in the current working directory.
The current working directory depends on the system like Windows or Linux and on the
installation.

226 Maxima 5.35.1 Manual

13.3 Functions and Variables for File Input and Output

Functionappendfile (filename)
Appends a console transcript to filename. appendfile is the same as writefile,
except that the transcript file, if it exists, is always appended.

closefile closes the transcript file opened by appendfile or writefile.

Functionbatch
batch (filename)
batch (filename, option)

batch(filename) reads Maxima expressions from filename and evaluates them. batch
searches for filename in the list file_search_maxima. See also file_search.

batch(filename, demo) is like demo(filename). In this case batch searches for file-
name in the list file_search_demo. See demo.

batch(filename, test) is like run_testsuite with the option display_all=true.
For this case batch searches filename in the list file_search_maxima and not in
the list file_search_tests like run_testsuite. Furthermore, run_testsuite runs
tests which are in the list testsuite_files. With batch it is possible to run any file
in a test mode, which can be found in the list file_search_maxima. This is useful,
when writing a test file.

filename comprises a sequence of Maxima expressions, each terminated with ; or $.
The special variable % and the function %th refer to previous results within the file.
The file may include :lisp constructs. Spaces, tabs, and newlines in the file are
ignored. A suitable input file may be created by a text editor or by the stringout

function.

batch reads each input expression from filename, displays the input to the console,
computes the corresponding output expression, and displays the output expression.
Input labels are assigned to the input expressions and output labels are assigned to
the output expressions. batch evaluates every input expression in the file unless there
is an error. If user input is requested (by asksign or askinteger, for example) batch
pauses to collect the requisite input and then continue.

It may be possible to halt batch by typing control-C at the console. The effect of
control-C depends on the underlying Lisp implementation.

batch has several uses, such as to provide a reservoir for working command lines, to
give error-free demonstrations, or to help organize one’s thinking in solving complex
problems.

batch evaluates its argument. batch returns the path of filename as a string, when
called with no second argument or with the option demo. When called with the option
test, the return value is a an empty list [] or a list with filename and the numbers
of the tests which have failed.

See also load, batchload, and demo.

Chapter 13: File Input and Output 227

Functionbatchload (filename)
Reads Maxima expressions from filename and evaluates them, without displaying
the input or output expressions and without assigning labels to output expressions.
Printed output (such as produced by print or describe)) is displayed, however.

The special variable % and the function %th refer to previous results from the interac-
tive interpreter, not results within the file. The file cannot include :lisp constructs.

batchload returns the path of filename, as a string. batchload evaluates its argu-
ment.

See also batch, and load.

Functionclosefile ()
Closes the transcript file opened by writefile or appendfile.

Option variablefile output append
Default value: false

file_output_append governs whether file output functions append or truncate their
output file. When file_output_append is true, such functions append to their
output file. Otherwise, the output file is truncated.

save, stringout, and with_stdout respect file_output_append. Other functions
which write output files do not respect file_output_append. In particular, plotting
and translation functions always truncate their output file, and tex and appendfile

always append.

Functionfilename merge (path, filename)
Constructs a modified path from path and filename. If the final component of path
is of the form ###.something , the component is replaced with filename.something .
Otherwise, the final component is simply replaced by filename.

The result is a Lisp pathname object.

Functionfile search
file_search (filename)
file_search (filename, pathlist)

file_search searches for the file filename and returns the path to the file (as a string)
if it can be found; otherwise file_search returns false. file_search (filename)
searches in the default search directories, which are specified by the file_search_

maxima, file_search_lisp, and file_search_demo variables.

file_search first checks if the actual name passed exists, before attempting to match
it to “wildcard” file search patterns. See file_search_maxima concerning file search
patterns.

The argument filename can be a path and file name, or just a file name, or, if a file
search directory includes a file search pattern, just the base of the file name (without
an extension). For example,

228 Maxima 5.35.1 Manual

file_search ("/home/wfs/special/zeta.mac");
file_search ("zeta.mac");
file_search ("zeta");

all find the same file, assuming the file exists and /home/wfs/special/###.mac is in
file_search_maxima.

file_search (filename, pathlist) searches only in the directories specified by path-
list, which is a list of strings. The argument pathlist supersedes the default search
directories, so if the path list is given, file_search searches only the ones specified,
and not any of the default search directories. Even if there is only one directory in
pathlist, it must still be given as a one-element list.

The user may modify the default search directories. See file_search_maxima.

file_search is invoked by load with file_search_maxima and file_search_lisp

as the search directories.

Option variablefile search maxima
Option variablefile search lisp
Option variablefile search demo
Option variablefile search usage
Option variablefile search tests

These variables specify lists of directories to be searched by load, demo, and some
other Maxima functions. The default values of these variables name various directories
in the Maxima installation.

The user can modify these variables, either to replace the default values or to append
additional directories. For example,

file_search_maxima: ["/usr/local/foo/###.mac",
"/usr/local/bar/###.mac"]$

replaces the default value of file_search_maxima, while

file_search_maxima: append (file_search_maxima,
["/usr/local/foo/###.mac", "/usr/local/bar/###.mac"])$

appends two additional directories. It may be convenient to put such an expression
in the file maxima-init.mac so that the file search path is assigned automatically
when Maxima starts. See also Section 32.1 [Introduction for Runtime Environment],
page 523.

Multiple filename extensions and multiple paths can be specified by special “wildcard”
constructions. The string ### expands into the sought-after name, while a comma-
separated list enclosed in curly braces {foo,bar,baz} expands into multiple strings.
For example, supposing the sought-after name is neumann,

"/home/{wfs,gcj}/###.{lisp,mac}"

expands into /home/wfs/neumann.lisp, /home/gcj/neumann.lisp,
/home/wfs/neumann.mac, and /home/gcj/neumann.mac.

Functionfile type (filename)
Returns a guess about the content of filename, based on the filename extension.
filename need not refer to an actual file; no attempt is made to open the file and
inspect the content.

Chapter 13: File Input and Output 229

The return value is a symbol, either object, lisp, or maxima. If the extension is
matches one of the values in file_type_maxima, file_type returns maxima. If the
extension matches one of the values in file_type_lisp, file_type returns lisp. If
none of the above, file_type returns object.

See also pathname_type.

See file_type_maxima and file_type_lisp for the default values.

Examples:

(%i2) map(’file_type,
["test.lisp", "test.mac", "test.dem", "test.txt"]);

(%o2) [lisp, maxima, maxima, object]

Option variablefile type lisp
Default value: [l, lsp, lisp]

file_type_lisp is a list of file extensions that maxima recognizes as denoting a Lisp
source file.

See also file_type.

Option variablefile type maxima
Default value: [mac, mc, demo, dem, dm1, dm2, dm3, dmt]

file_type_maxima is a list of file extensions that maxima recognizes as denoting a
Maxima source file.

See also file_type.

Functionload (filename)
Evaluates expressions in filename, thus bringing variables, functions, and other objects
into Maxima. The binding of any existing object is clobbered by the binding recovered
from filename. To find the file, load calls file_search with file_search_maxima

and file_search_lisp as the search directories. If load succeeds, it returns the
name of the file. Otherwise load prints an error message.

load works equally well for Lisp code and Maxima code. Files created by save,
translate_file, and compile_file, which create Lisp code, and stringout, which
creates Maxima code, can all be processed by load. load calls loadfile to load Lisp
files and batchload to load Maxima files.

load does not recognize :lisp constructs in Maxima files, and while processing file-
name, the global variables _, __, %, and %th have whatever bindings they had when
load was called.

See also loadfile, batch, batchload, and demo. loadfile processes Lisp files;
batch, batchload, and demo process Maxima files.

See file_search for more detail about the file search mechanism.

load evaluates its argument.

230 Maxima 5.35.1 Manual

System variableload pathname
Default value: false

When a file is loaded with the functions load, loadfile or batchload the system
variable load_pathname is bound to the pathname of the file which is processed.

The variable load_pathname can be accessed from the file during the loading.

Example:

Suppose we have a batchfile test.mac in the directory

"/home/dieter/workspace/mymaxima/temp/" with the following commands

print("The value of load_pathname is: ", load_pathname)$
print("End of batchfile")$

then we get the following output

(%i1) load("/home/dieter/workspace/mymaxima/temp/test.mac")$
The value of load_pathname is:

/home/dieter/workspace/mymaxima/temp/test.mac
End of batchfile

Functionloadfile (filename)
Evaluates Lisp expressions in filename. loadfile does not invoke file_search, so
filename must include the file extension and as much of the path as needed to find
the file.

loadfile can process files created by save, translate_file, and compile_file.
The user may find it more convenient to use load instead of loadfile.

Option variableloadprint
Default value: true

loadprint tells whether to print a message when a file is loaded.

• When loadprint is true, always print a message.

• When loadprint is ’loadfile, print a message only if a file is loaded by the
function loadfile.

• When loadprint is ’autoload, print a message only if a file is automatically
loaded. See setup_autoload.

• When loadprint is false, never print a message.

Functionpathname directory (pathname)
Functionpathname name (pathname)
Functionpathname type (pathname)

These functions return the components of pathname.

Examples:

(%i1) pathname_directory("/home/dieter/maxima/changelog.txt");
(%o1) /home/dieter/maxima/
(%i2) pathname_name("/home/dieter/maxima/changelog.txt");
(%o2) changelog
(%i3) pathname_type("/home/dieter/maxima/changelog.txt");
(%o3) txt

Chapter 13: File Input and Output 231

Functionprintfile (path)
Prints the file named by path to the console. path may be a string or a symbol; if it
is a symbol, it is converted to a string.

If path names a file which is accessible from the current working directory, that file is
printed to the console. Otherwise, printfile attempts to locate the file by appending
path to each of the elements of file_search_usage via filename_merge.

printfile returns path if it names an existing file, or otherwise the result of a
successful filename merge.

Functionsave
save (filename, name 1, name 2, name 3, . . .)
save (filename, values, functions, labels, . . .)
save (filename, [m, n])
save (filename, name 1=expr 1, . . .)
save (filename, all)
save (filename, name 1=expr 1, name 2=expr 2, . . .)

Stores the current values of name 1, name 2, name 3, . . . , in filename. The arguments
are the names of variables, functions, or other objects. If a name has no value or
function associated with it, it is ignored. save returns filename.

save stores data in the form of Lisp expressions. The data stored by save may be
recovered by load (filename). See load.

The global flag file_output_append governs whether save appends or truncates the
output file. When file_output_append is true, save appends to the output file.
Otherwise, save truncates the output file. In either case, save creates the file if it
does not yet exist.

The special form save (filename, values, functions, labels, ...) stores the
items named by values, functions, labels, etc. The names may be any specified
by the variable infolists. values comprises all user-defined variables.

The special form save (filename, [m, n]) stores the values of input and output la-
bels m through n. Note that m and n must be literal integers. Input and output labels
may also be stored one by one, e.g., save ("foo.1", %i42, %o42). save (filename,
labels) stores all input and output labels. When the stored labels are recovered,
they clobber existing labels.

The special form save (filename, name 1=expr 1, name 2=expr 2, ...) stores the
values of expr 1, expr 2, . . . , with names name 1, name 2, . . . It is useful to apply
this form to input and output labels, e.g., save ("foo.1", aa=%o88). The right-hand
side of the equality in this form may be any expression, which is evaluated. This form
does not introduce the new names into the current Maxima environment, but only
stores them in filename.

These special forms and the general form of save may be mixed at will. For example,
save (filename, aa, bb, cc=42, functions, [11, 17]).

The special form save (filename, all) stores the current state of Maxima. This
includes all user-defined variables, functions, arrays, etc., as well as some auto-
matically defined items. The saved items include system variables, such as file_

232 Maxima 5.35.1 Manual

search_maxima or showtime, if they have been assigned new values by the user; see
myoptions.

save evaluates filename and quotes all other arguments.

Functionstringout
stringout (filename, expr 1, expr 2, expr 3, . . .)
stringout (filename, [m, n])
stringout (filename, input)
stringout (filename, functions)
stringout (filename, values)

stringout writes expressions to a file in the same form the expressions would be
typed for input. The file can then be used as input for the batch or demo commands,
and it may be edited for any purpose. stringout can be executed while writefile

is in progress.

The global flag file_output_append governs whether stringout appends or trun-
cates the output file. When file_output_append is true, stringout appends to
the output file. Otherwise, stringout truncates the output file. In either case,
stringout creates the file if it does not yet exist.

The general form of stringout writes the values of one or more expressions to the
output file. Note that if an expression is a variable, only the value of the variable is
written and not the name of the variable. As a useful special case, the expressions
may be input labels (%i1, %i2, %i3, . . .) or output labels (%o1, %o2, %o3, . . .).

If grind is true, stringout formats the output using the grind format. Otherwise
the string format is used. See grind and string.

The special form stringout (filename, [m, n]) writes the values of input labels m
through n, inclusive.

The special form stringout (filename, input) writes all input labels to the file.

The special form stringout (filename, functions) writes all user-defined functions
(named by the global list functions)) to the file.

The special form stringout (filename, values) writes all user-assigned variables
(named by the global list values)) to the file. Each variable is printed as an assign-
ment statement, with the name of the variable, a colon, and its value. Note that the
general form of stringout does not print variables as assignment statements.

Functionwith stdout
with_stdout (f, expr 1, expr 2, expr 3, . . .)
with_stdout (s, expr 1, expr 2, expr 3, . . .)

Evaluates expr 1, expr 2, expr 3, . . . and writes any output thus generated to a file f
or output stream s. The evaluated expressions are not written to the output. Output
may be generated by print, display, grind, among other functions.

The global flag file_output_append governs whether with_stdout appends or trun-
cates the output file f. When file_output_append is true, with_stdout appends
to the output file. Otherwise, with_stdout truncates the output file. In either case,
with_stdout creates the file if it does not yet exist.

Chapter 13: File Input and Output 233

with_stdout returns the value of its final argument.

See also writefile.

(%i1) with_stdout ("tmp.out", for i:5 thru 10 do
print (i, "! yields", i!))$

(%i2) printfile ("tmp.out")$
5 ! yields 120
6 ! yields 720
7 ! yields 5040
8 ! yields 40320
9 ! yields 362880
10 ! yields 3628800

Functionwritefile (filename)
Begins writing a transcript of the Maxima session to filename. All interaction between
the user and Maxima is then recorded in this file, just as it appears on the console.

As the transcript is printed in the console output format, it cannot be reloaded into
Maxima. To make a file containing expressions which can be reloaded, see save and
stringout. save stores expressions in Lisp form, while stringout stores expressions
in Maxima form.

The effect of executing writefile when filename already exists depends on the un-
derlying Lisp implementation; the transcript file may be clobbered, or the file may be
appended. appendfile always appends to the transcript file.

It may be convenient to execute playback after writefile to save the display of
previous interactions. As playback displays only the input and output variables
(%i1, %o1, etc.), any output generated by a print statement in a function (as opposed
to a return value) is not displayed by playback.

closefile closes the transcript file opened by writefile or appendfile.

13.4 Functions and Variables for TeX Output

Functiontex
tex (expr)
tex (expr, destination)
tex (expr, false)
tex (label)
tex (label, destination)
tex (label, false)

Prints a representation of an expression suitable for the TeX document preparation
system. The result is a fragment of a document, which can be copied into a larger
document but not processed by itself.

tex (expr) prints a TeX representation of expr on the console.

tex (label) prints a TeX representation of the expression named by label and assigns
it an equation label (to be displayed to the left of the expression). The TeX equation
label is the same as the Maxima label.

234 Maxima 5.35.1 Manual

destination may be an output stream or file name. When destination is a file name,
tex appends its output to the file. The functions openw and opena create output
streams.

tex (expr, false) and tex (label, false) return their TeX output as a string.

tex evaluates its first argument after testing it to see if it is a label. Quote-quote
’’ forces evaluation of the argument, thereby defeating the test and preventing the
label.

See also texput.

Examples:

(%i1) integrate (1/(1+x^3), x);
2 x - 1

2 atan(-------)
log(x - x + 1) sqrt(3) log(x + 1)

(%o1) - --------------- + ------------- + ----------
6 sqrt(3) 3

(%i2) tex (%o1);
$$-{{\log \left(x^2-x+1\right)}\over{6}}+{{\arctan \left({{2\,x-1
}\over{\sqrt{3}}}\right)}\over{\sqrt{3}}}+{{\log \left(x+1\right)
}\over{3}}\leqno{\tt (\%o1)}$$
(%o2) (\%o1)
(%i3) tex (integrate (sin(x), x));
$$-\cos x$$
(%o3) false
(%i4) tex (%o1, "foo.tex");
(%o4) (\%o1)

tex (expr, false) returns its TeX output as a string.

(%i1) S : tex (x * y * z, false);
(%o1) $$x\,y\,z$$
(%i2) S;
(%o2) $$x\,y\,z$$

Functiontex1 (e)
Returns a string which represents the TeX output for the expressions e. The TeX
output is not enclosed in delimiters for an equation or any other environment.

Examples:

(%i1) tex1 (sin(x) + cos(x));
(%o1) \sin x+\cos x

Functiontexput
texput (a, s)
texput (a, f)
texput (a, s, operator type)
texput (a, [s 1, s 2], matchfix)
texput (a, [s 1, s 2, s 3], matchfix)

Assign the TeX output for the atom a, which can be a symbol or the name of an
operator.

Chapter 13: File Input and Output 235

texput (a, s) causes the tex function to interpolate the string s into the TeX output
in place of a.

texput (a, f) causes the tex function to call the function f to generate TeX output.
f must accept one argument, which is an expression which has operator a, and must
return a string (the TeX output). f may call tex1 to generate TeX output for the
arguments of the input expression.

texput (a, s, operator type), where operator type is prefix, infix, postfix,
nary, or nofix, causes the tex function to interpolate s into the TeX output in place
of a, and to place the interpolated text in the appropriate position.

texput (a, [s 1, s 2], matchfix) causes the tex function to interpolate s 1 and s 2
into the TeX output on either side of the arguments of a. The arguments (if more
than one) are separated by commas.

texput (a, [s 1, s 2, s 3], matchfix) causes the tex function to interpolate s 1
and s 2 into the TeX output on either side of the arguments of a, with s 3 separating
the arguments.

Examples:

Assign TeX output for a variable.

(%i1) texput (me,"\\mu_e");
(%o1) \mu_e
(%i2) tex (me);
$$\mu_e$$
(%o2) false

Assign TeX output for an ordinary function (not an operator).

(%i1) texput (lcm, "\\mathrm{lcm}");
(%o1) \mathrm{lcm}
(%i2) tex (lcm (a, b));
$$\mathrm{lcm}\left(a , b\right)$$
(%o2) false

Call a function to generate TeX output.

(%i1) texfoo (e) := block ([a, b], [a, b] : args (e),
concat("\\left[\\stackrel{",tex1(b),"}{",tex1(a),"}\\right]"))$

(%i2) texput (foo, texfoo);
(%o2) texfoo
(%i3) tex (foo (2^x, %pi));
$$\left[\stackrel{\pi}{2^{x}}\right]$$
(%o3) false

Assign TeX output for a prefix operator.

(%i1) prefix ("grad");
(%o1) grad
(%i2) texput ("grad", " \\nabla ", prefix);
(%o2) \nabla
(%i3) tex (grad f);
$$ \nabla f$$
(%o3) false

Assign TeX output for an infix operator.

236 Maxima 5.35.1 Manual

(%i1) infix ("~");
(%o1) ~
(%i2) texput ("~", " \\times ", infix);
(%o2) \times
(%i3) tex (a ~ b);
$$a \times b$$
(%o3) false

Assign TeX output for a postfix operator.

(%i1) postfix ("##");
(%o1) ##
(%i2) texput ("##", "!!", postfix);
(%o2) !!
(%i3) tex (x ##);
$$x!!$$
(%o3) false

Assign TeX output for a nary operator.

(%i1) nary ("@@");
(%o1) @@
(%i2) texput ("@@", " \\circ ", nary);
(%o2) \circ
(%i3) tex (a @@ b @@ c @@ d);
$$a \circ b \circ c \circ d$$
(%o3) false

Assign TeX output for a nofix operator.

(%i1) nofix ("foo");
(%o1) foo
(%i2) texput ("foo", "\\mathsc{foo}", nofix);
(%o2) \mathsc{foo}
(%i3) tex (foo);
$$\mathsc{foo}$$
(%o3) false

Assign TeX output for a matchfix operator.

(%i1) matchfix ("<<", ">>");
(%o1) <<
(%i2) texput ("<<", [" \\langle ", " \\rangle "], matchfix);
(%o2) [\langle , \rangle]
(%i3) tex (<<a>>);
$$ \langle a \rangle $$
(%o3) false
(%i4) tex (<<a, b>>);
$$ \langle a , b \rangle $$
(%o4) false
(%i5) texput ("<<", [" \\langle ", " \\rangle ", " \\, | \\,"],

matchfix);
(%o5) [\langle , \rangle , \, | \,]
(%i6) tex (<<a>>);
$$ \langle a \rangle $$

Chapter 13: File Input and Output 237

(%o6) false
(%i7) tex (<<a, b>>);
$$ \langle a \, | \,b \rangle $$
(%o7) false

Functionget tex environment (op)
Functionset tex environment (op, before, after)

Customize the TeX environment output by tex. As maintained by these functions,
the TeX environment comprises two strings: one is printed before any other TeX
output, and the other is printed after.

Only the TeX environment of the top-level operator in an expression is output; TeX
environments associated with other operators are ignored.

get_tex_environment returns the TeX enviroment which is applied to the operator
op; returns the default if no other environment has been assigned.

set_tex_environment assigns the TeX environment for the operator op.

Examples:

(%i1) get_tex_environment (":=");
(%o1) [
\begin{verbatim}
, ;
\end{verbatim}
]
(%i2) tex (f (x) := 1 - x);

\begin{verbatim}
f(x):=1-x;
\end{verbatim}

(%o2) false
(%i3) set_tex_environment (":=", "$$", "$$");
(%o3) [$$, $$]
(%i4) tex (f (x) := 1 - x);
$$f(x):=1-x$$
(%o4) false

Functionget tex environment default ()
Functionset tex environment default (before, after)

Customize the TeX environment output by tex. As maintained by these functions,
the TeX environment comprises two strings: one is printed before any other TeX
output, and the other is printed after.

get_tex_environment_default returns the TeX environment which is applied to
expressions for which the top-level operator has no specific TeX environment (as
assigned by set_tex_environment).

set_tex_environment_default assigns the default TeX environment.

Examples:

238 Maxima 5.35.1 Manual

(%i1) get_tex_environment_default ();
(%o1) [$$, $$]
(%i2) tex (f(x) + g(x));
$$g\left(x\right)+f\left(x\right)$$
(%o2) false
(%i3) set_tex_environment_default ("\\begin{equation}
", "
\\end{equation}");
(%o3) [\begin{equation}
,
\end{equation}]
(%i4) tex (f(x) + g(x));
\begin{equation}
g\left(x\right)+f\left(x\right)
\end{equation}
(%o4) false

13.5 Functions and Variables for Fortran Output

Option variablefortindent
Default value: 0

fortindent controls the left margin indentation of expressions printed out by the
fortran command. 0 gives normal printout (i.e., 6 spaces), and positive values will
causes the expressions to be printed farther to the right.

Functionfortran (expr)
Prints expr as a Fortran statement. The output line is indented with spaces. If the
line is too long, fortran prints continuation lines. fortran prints the exponentiation
operator ^ as **, and prints a complex number a + b %i in the form (a,b).

expr may be an equation. If so, fortran prints an assignment statement, assigning the
right-hand side of the equation to the left-hand side. In particular, if the right-hand
side of expr is the name of a matrix, then fortran prints an assignment statement
for each element of the matrix.

If expr is not something recognized by fortran, the expression is printed in grind

format without complaint. fortran does not know about lists, arrays, or functions.

fortindent controls the left margin of the printed lines. 0 is the normal margin (i.e.,
indented 6 spaces). Increasing fortindent causes expressions to be printed further
to the right.

When fortspaces is true, fortran fills out each printed line with spaces to 80
columns.

fortran evaluates its arguments; quoting an argument defeats evaluation. fortran

always returns done.

See also the function f90 for printing one or more expressions as a Fortran 90 program.

Examples:

Chapter 13: File Input and Output 239

(%i1) expr: (a + b)^12$
(%i2) fortran (expr);

(b+a)**12
(%o2) done
(%i3) fortran (’x=expr);

x = (b+a)**12
(%o3) done
(%i4) fortran (’x=expand (expr));

x = b**12+12*a*b**11+66*a**2*b**10+220*a**3*b**9+495*a**4*b**8+792
1 *a**5*b**7+924*a**6*b**6+792*a**7*b**5+495*a**8*b**4+220*a**9*b
2 **3+66*a**10*b**2+12*a**11*b+a**12

(%o4) done
(%i5) fortran (’x=7+5*%i);

x = (7,5)
(%o5) done
(%i6) fortran (’x=[1,2,3,4]);

x = [1,2,3,4]
(%o6) done
(%i7) f(x) := x^2$
(%i8) fortran (f);

f
(%o8) done

Option variablefortspaces
Default value: false

When fortspaces is true, fortran fills out each printed line with spaces to 80
columns.

240 Maxima 5.35.1 Manual

Chapter 14: Polynomials 241

14 Polynomials

14.1 Introduction to Polynomials

Polynomials are stored in Maxima either in General Form or as Canonical Rational
Expressions (CRE) form. The latter is a standard form, and is used internally by operations
such as factor, ratsimp, and so on.

Canonical Rational Expressions constitute a kind of representation which is especially
suitable for expanded polynomials and rational functions (as well as for partially factored
polynomials and rational functions when RATFAC is set to true). In this CRE form an
ordering of variables (from most to least main) is assumed for each expression. Polynomials
are represented recursively by a list consisting of the main variable followed by a series of
pairs of expressions, one for each term of the polynomial. The first member of each pair is
the exponent of the main variable in that term and the second member is the coefficient of
that term which could be a number or a polynomial in another variable again represented
in this form. Thus the principal part of the CRE form of 3*X^2-1 is (X 2 3 0 -1) and that of
2*X*Y+X-3 is (Y 1 (X 1 2) 0 (X 1 1 0 -3)) assuming Y is the main variable, and is (X 1 (Y 1
2 0 1) 0 -3) assuming X is the main variable. "Main"-ness is usually determined by reverse
alphabetical order. The "variables" of a CRE expression needn’t be atomic. In fact any
subexpression whose main operator is not + - * / or ^ with integer power will be considered
a "variable" of the expression (in CRE form) in which it occurs. For example the CRE
variables of the expression X+SIN(X+1)+2*SQRT(X)+1 are X, SQRT(X), and SIN(X+1). If
the user does not specify an ordering of variables by using the RATVARS function Maxima
will choose an alphabetic one. In general, CRE’s represent rational expressions, that is,
ratios of polynomials, where the numerator and denominator have no common factors,
and the denominator is positive. The internal form is essentially a pair of polynomials
(the numerator and denominator) preceded by the variable ordering list. If an expression
to be displayed is in CRE form or if it contains any subexpressions in CRE form, the
symbol /R/ will follow the line label. See the RAT function for converting an expression
to CRE form. An extended CRE form is used for the representation of Taylor series. The
notion of a rational expression is extended so that the exponents of the variables can be
positive or negative rational numbers rather than just positive integers and the coefficients
can themselves be rational expressions as described above rather than just polynomials.
These are represented internally by a recursive polynomial form which is similar to and
is a generalization of CRE form, but carries additional information such as the degree of
truncation. As with CRE form, the symbol /T/ follows the line label of such expressions.

14.2 Functions and Variables for Polynomials

Option variablealgebraic
Default value: false

algebraic must be set to true in order for the simplification of algebraic integers to
take effect.

242 Maxima 5.35.1 Manual

Option variableberlefact
Default value: true

When berlefact is false then the Kronecker factoring algorithm will be used oth-
erwise the Berlekamp algorithm, which is the default, will be used.

Functionbezout (p1, p2, x)
an alternative to the resultant command. It returns a matrix. determinant of this
matrix is the desired resultant.

Examples:

(%i1) bezout(a*x+b, c*x^2+d, x);
[b c - a d]

(%o1) []
[a b]

(%i2) determinant(%);
2 2

(%o2) a d + b c
(%i3) resultant(a*x+b, c*x^2+d, x);

2 2
(%o3) a d + b c

Functionbothcoef (expr, x)
Returns a list whose first member is the coefficient of x in expr (as found by ratcoef if
expr is in CRE form otherwise by coeff) and whose second member is the remaining
part of expr. That is, [A, B] where expr = A*x + B.

Example:

(%i1) islinear (expr, x) := block ([c],
c: bothcoef (rat (expr, x), x),
is (freeof (x, c) and c[1] # 0))$

(%i2) islinear ((r^2 - (x - r)^2)/x, x);
(%o2) true

Functioncoeff
coeff (expr, x, n)
coeff (expr, x)

Returns the coefficient of x^n in expr, where expr is a polynomial or a monomial
term in x.

coeff(expr, x^n) is equivalent to coeff(expr, x, n). coeff(expr, x, 0) returns
the remainder of expr which is free of x. If omitted, n is assumed to be 1.

x may be a simple variable or a subscripted variable, or a subexpression of expr which
comprises an operator and all of its arguments.

It may be possible to compute coefficients of expressions which are equivalent to expr
by applying expand or factor. coeff itself does not apply expand or factor or any
other function.

coeff distributes over lists, matrices, and equations.

Examples:

coeff returns the coefficient x^n in expr.

Chapter 14: Polynomials 243

(%i1) coeff (b^3*a^3 + b^2*a^2 + b*a + 1, a^3);
3

(%o1) b

coeff(expr, x^n) is equivalent to coeff(expr, x, n).

(%i1) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z, 3);
(%o1) - c

3
(%i2) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z^3);
(%o2) - c

3

coeff(expr, x, 0) returns the remainder of expr which is free of x.

(%i1) coeff (a*u + b^2*u^2 + c^3*u^3, b, 0);
3 3

(%o1) c u + a u

x may be a simple variable or a subscripted variable, or a subexpression of expr which
comprises an operator and all of its arguments.

(%i1) coeff (h^4 - 2*%pi*h^2 + 1, h, 2);
(%o1) - 2 %pi
(%i2) coeff (v[1]^4 - 2*%pi*v[1]^2 + 1, v[1], 2);
(%o2) - 2 %pi
(%i3) coeff (sin(1+x)*sin(x) + sin(1+x)^3*sin(x)^3, sin(1+x)^3);

3
(%o3) sin (x)
(%i4) coeff ((d - a)^2*(b + c)^3 + (a + b)^4*(c - d), a + b, 4);
(%o4) c - d

coeff itself does not apply expand or factor or any other function.

(%i1) coeff (c*(a + b)^3, a);
(%o1) 0
(%i2) expand (c*(a + b)^3);

3 2 2 3
(%o2) b c + 3 a b c + 3 a b c + a c
(%i3) coeff (%, a);

2
(%o3) 3 b c
(%i4) coeff (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c, (a + b)^3);
(%o4) 0
(%i5) factor (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c);

3
(%o5) (b + a) c
(%i6) coeff (%, (a + b)^3);
(%o6) c

coeff distributes over lists, matrices, and equations.

(%i1) coeff ([4*a, -3*a, 2*a], a);
(%o1) [4, - 3, 2]
(%i2) coeff (matrix ([a*x, b*x], [-c*x, -d*x]), x);

244 Maxima 5.35.1 Manual

[a b]
(%o2) []

[- c - d]
(%i3) coeff (a*u - b*v = 7*u + 3*v, u);
(%o3) a = 7

Functioncontent (p 1, x 1, . . . , x n)
Returns a list whose first element is the greatest common divisor of the coefficients
of the terms of the polynomial p 1 in the variable x n (this is the content) and whose
second element is the polynomial p 1 divided by the content.

Examples:

(%i1) content (2*x*y + 4*x^2*y^2, y);
2

(%o1) [2 x, 2 x y + y]

Functiondenom (expr)
Returns the denominator of the rational expression expr.

Functiondivide (p 1, p 2, x 1, . . . , x n)
computes the quotient and remainder of the polynomial p 1 divided by the polynomial
p 2, in a main polynomial variable, x n. The other variables are as in the ratvars

function. The result is a list whose first element is the quotient and whose second
element is the remainder.

Examples:

(%i1) divide (x + y, x - y, x);
(%o1) [1, 2 y]
(%i2) divide (x + y, x - y);
(%o2) [- 1, 2 x]

Note that y is the main variable in the second example.

Functioneliminate ([eqn 1, . . . , eqn n], [x 1, . . . , x k])
Eliminates variables from equations (or expressions assumed equal to zero) by taking
successive resultants. This returns a list of n - k expressions with the k variables
x 1, . . . , x k eliminated. First x 1 is eliminated yielding n - 1 expressions, then x_2

is eliminated, etc. If k = n then a single expression in a list is returned free of the
variables x 1, . . . , x k. In this case solve is called to solve the last resultant for the
last variable.

Example:

(%i1) expr1: 2*x^2 + y*x + z;
2

(%o1) z + x y + 2 x
(%i2) expr2: 3*x + 5*y - z - 1;
(%o2) - z + 5 y + 3 x - 1
(%i3) expr3: z^2 + x - y^2 + 5;

2 2
(%o3) z - y + x + 5

Chapter 14: Polynomials 245

(%i4) eliminate ([expr3, expr2, expr1], [y, z]);
8 7 6 5 4

(%o4) [7425 x - 1170 x + 1299 x + 12076 x + 22887 x

3 2
- 5154 x - 1291 x + 7688 x + 15376]

Functionezgcd (p 1, p 2, p 3, . . .)
Returns a list whose first element is the greatest common divisor of the polynomials
p 1, p 2, p 3, . . . and whose remaining elements are the polynomials divided by the
greatest common divisor. This always uses the ezgcd algorithm.

See also gcd, gcdex, gcdivide, and poly_gcd.

Examples:

The three polynomials have the greatest common divisor 2*x-3. The gcd is first
calculated with the function gcd and then with the function ezgcd.

(%i1) p1 : 6*x^3-17*x^2+14*x-3;
3 2

(%o1) 6 x - 17 x + 14 x - 3
(%i2) p2 : 4*x^4-14*x^3+12*x^2+2*x-3;

4 3 2
(%o2) 4 x - 14 x + 12 x + 2 x - 3
(%i3) p3 : -8*x^3+14*x^2-x-3;

3 2
(%o3) - 8 x + 14 x - x - 3

(%i4) gcd(p1, gcd(p2, p3));
(%o4) 2 x - 3

(%i5) ezgcd(p1, p2, p3);
2 3 2 2

(%o5) [2 x - 3, 3 x - 4 x + 1, 2 x - 4 x + 1, - 4 x + x + 1]

Option variablefacexpand
Default value: true

facexpand controls whether the irreducible factors returned by factor are in ex-
panded (the default) or recursive (normal CRE) form.

Functionfactor
factor (expr)
factor (expr, p)

Factors the expression expr, containing any number of variables or functions, into
factors irreducible over the integers. factor (expr, p) factors expr over the field of
rationals with an element adjoined whose minimum polynomial is p.

factor uses ifactors function for factoring integers.

factorflag if false suppresses the factoring of integer factors of rational expressions.

246 Maxima 5.35.1 Manual

dontfactor may be set to a list of variables with respect to which factoring is not
to occur. (It is initially empty). Factoring also will not take place with respect to
any variables which are less important (using the variable ordering assumed for CRE
form) than those on the dontfactor list.

savefactors if true causes the factors of an expression which is a product of factors
to be saved by certain functions in order to speed up later factorizations of expressions
containing some of the same factors.

berlefact if false then the Kronecker factoring algorithm will be used otherwise
the Berlekamp algorithm, which is the default, will be used.

intfaclim if true maxima will give up factorization of integers if no factor is found
after trial divisions and Pollard’s rho method. If set to false (this is the case when the
user calls factor explicitly), complete factorization of the integer will be attempted.
The user’s setting of intfaclim is used for internal calls to factor. Thus, intfaclim
may be reset to prevent Maxima from taking an inordinately long time factoring large
integers.

Examples:

(%i1) factor (2^63 - 1);
2

(%o1) 7 73 127 337 92737 649657
(%i2) factor (-8*y - 4*x + z^2*(2*y + x));
(%o2) (2 y + x) (z - 2) (z + 2)
(%i3) -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2;

2 2 2 2 2
(%o3) x y + 2 x y + y - x - 2 x - 1
(%i4) block ([dontfactor: [x]], factor (%/36/(1 + 2*y + y^2)));

2
(x + 2 x + 1) (y - 1)

(%o4) ----------------------
36 (y + 1)

(%i5) factor (1 + %e^(3*x));
x 2 x x

(%o5) (%e + 1) (%e - %e + 1)
(%i6) factor (1 + x^4, a^2 - 2);

2 2
(%o6) (x - a x + 1) (x + a x + 1)
(%i7) factor (-y^2*z^2 - x*z^2 + x^2*y^2 + x^3);

2
(%o7) - (y + x) (z - x) (z + x)
(%i8) (2 + x)/(3 + x)/(b + x)/(c + x)^2;

x + 2
(%o8) ------------------------

2
(x + 3) (x + b) (x + c)

(%i9) ratsimp (%);

Chapter 14: Polynomials 247

4 3
(%o9) (x + 2)/(x + (2 c + b + 3) x

2 2 2 2
+ (c + (2 b + 6) c + 3 b) x + ((b + 3) c + 6 b c) x + 3 b c)
(%i10) partfrac (%, x);

2 4 3
(%o10) - (c - 4 c - b + 6)/((c + (- 2 b - 6) c

2 2 2 2
+ (b + 12 b + 9) c + (- 6 b - 18 b) c + 9 b) (x + c))

c - 2
- ---------------------------------

2 2
(c + (- b - 3) c + 3 b) (x + c)

b - 2
+ ---

2 2 3 2
((b - 3) c + (6 b - 2 b) c + b - 3 b) (x + b)

1
- --

2
((b - 3) c + (18 - 6 b) c + 9 b - 27) (x + 3)

(%i11) map (’factor, %);
2
c - 4 c - b + 6 c - 2

(%o11) - ------------------------- - ------------------------
2 2 2

(c - 3) (c - b) (x + c) (c - 3) (c - b) (x + c)

b - 2 1
+ ------------------------ - ------------------------

2 2
(b - 3) (c - b) (x + b) (b - 3) (c - 3) (x + 3)

(%i12) ratsimp ((x^5 - 1)/(x - 1));
4 3 2

(%o12) x + x + x + x + 1
(%i13) subst (a, x, %);

4 3 2
(%o13) a + a + a + a + 1
(%i14) factor (%th(2), %);

2 3 3 2
(%o14) (x - a) (x - a) (x - a) (x + a + a + a + 1)
(%i15) factor (1 + x^12);

4 8 4
(%o15) (x + 1) (x - x + 1)

248 Maxima 5.35.1 Manual

(%i16) factor (1 + x^99);
2 6 3

(%o16) (x + 1) (x - x + 1) (x - x + 1)

10 9 8 7 6 5 4 3 2
(x - x + x - x + x - x + x - x + x - x + 1)

20 19 17 16 14 13 11 10 9 7 6
(x + x - x - x + x + x - x - x - x + x + x

4 3 60 57 51 48 42 39 33
- x - x + x + 1) (x + x - x - x + x + x - x

30 27 21 18 12 9 3
- x - x + x + x - x - x + x + 1)

Option variablefactorflag
Default value: false

When factorflag is false, suppresses the factoring of integer factors of rational
expressions.

Functionfactorout (expr, x 1, x 2, . . .)
Rearranges the sum expr into a sum of terms of the form f (x 1, x 2, ...)*g where
g is a product of expressions not containing any x i and f is factored.

Note that the option variable keepfloat is ignored by factorout.

Example:

(%i1) expand (a*(x+1)*(x-1)*(u+1)^2);
2 2 2 2 2

(%o1) a u x + 2 a u x + a x - a u - 2 a u - a
(%i2) factorout(%,x);

2
(%o2) a u (x - 1) (x + 1) + 2 a u (x - 1) (x + 1)

+ a (x - 1) (x + 1)

Functionfactorsum (expr)
Tries to group terms in factors of expr which are sums into groups of terms such that
their sum is factorable. factorsum can recover the result of expand ((x + y)^2 + (z

+ w)^2) but it can’t recover expand ((x + 1)^2 + (x + y)^2) because the terms have
variables in common.

Example:

(%i1) expand ((x + 1)*((u + v)^2 + a*(w + z)^2));
2 2 2 2

(%o1) a x z + a z + 2 a w x z + 2 a w z + a w x + v x

2 2 2 2
+ 2 u v x + u x + a w + v + 2 u v + u

(%i2) factorsum (%);

Chapter 14: Polynomials 249

2 2
(%o2) (x + 1) (a (z + w) + (v + u))

Functionfasttimes (p 1, p 2)
Returns the product of the polynomials p 1 and p 2 by using a special algorithm for
multiplication of polynomials. p_1 and p_2 should be multivariate, dense, and nearly
the same size. Classical multiplication is of order n_1 n_2 where n_1 is the degree of
p_1 and n_2 is the degree of p_2. fasttimes is of order max (n_1, n_2)^1.585.

Functionfullratsimp (expr)
fullratsimp repeatedly applies ratsimp followed by non-rational simplification to
an expression until no further change occurs, and returns the result.

When non-rational expressions are involved, one call to ratsimp followed as is usual
by non-rational ("general") simplification may not be sufficient to return a simplified
result. Sometimes, more than one such call may be necessary. fullratsimp makes
this process convenient.

fullratsimp (expr, x 1, ..., x n) takes one or more arguments similar to ratsimp

and rat.

Example:

(%i1) expr: (x^(a/2) + 1)^2*(x^(a/2) - 1)^2/(x^a - 1);
a/2 2 a/2 2

(x - 1) (x + 1)
(%o1) -----------------------

a
x - 1

(%i2) ratsimp (expr);
2 a a
x - 2 x + 1

(%o2) ---------------
a
x - 1

(%i3) fullratsimp (expr);
a

(%o3) x - 1
(%i4) rat (expr);

a/2 4 a/2 2
(x) - 2 (x) + 1

(%o4)/R/ -----------------------
a
x - 1

Functionfullratsubst (a, b, c)
is the same as ratsubst except that it calls itself recursively on its result until that
result stops changing. This function is useful when the replacement expression and
the replaced expression have one or more variables in common.

fullratsubst will also accept its arguments in the format of lratsubst. That is,
the first argument may be a single substitution equation or a list of such equations,
while the second argument is the expression being processed.

250 Maxima 5.35.1 Manual

load ("lrats") loads fullratsubst and lratsubst.

Examples:

(%i1) load ("lrats")$

• subst can carry out multiple substitutions. lratsubst is analogous to subst.

(%i2) subst ([a = b, c = d], a + c);
(%o2) d + b
(%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(%o3) (d + a c) e + a d + b c

• If only one substitution is desired, then a single equation may be given as first
argument.

(%i4) lratsubst (a^2 = b, a^3);
(%o4) a b

• fullratsubst is equivalent to ratsubst except that it recurses until its result
stops changing.

(%i5) ratsubst (b*a, a^2, a^3);
2

(%o5) a b
(%i6) fullratsubst (b*a, a^2, a^3);

2
(%o6) a b

• fullratsubst also accepts a list of equations or a single equation as first argu-
ment.

(%i7) fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
(%o7) b
(%i8) fullratsubst (a^2 = b*a, a^3);

2
(%o8) a b

• fullratsubst may cause an indefinite recursion.

(%i9) errcatch (fullratsubst (b*a^2, a^2, a^3));

*** - Lisp stack overflow. RESET

Functiongcd (p 1, p 2, x 1, . . .)
Returns the greatest common divisor of p 1 and p 2. The flag gcd determines which
algorithm is employed. Setting gcd to ez, subres, red, or spmod selects the ezgcd,
subresultant prs, reduced, or modular algorithm, respectively. If gcd false then gcd

(p 1, p 2, x) always returns 1 for all x. Many functions (e.g. ratsimp, factor, etc.)
cause gcd’s to be taken implicitly. For homogeneous polynomials it is recommended
that gcd equal to subres be used. To take the gcd when an algebraic is present, e.g.,
gcd (x^2 - 2*sqrt(2)* x + 2, x - sqrt(2)), the option variable algebraic must
be true and gcd must not be ez.

The gcd flag, default: spmod, if false will also prevent the greatest common divisor
from being taken when expressions are converted to canonical rational expression
(CRE) form. This will sometimes speed the calculation if gcds are not required.

Chapter 14: Polynomials 251

See also ezgcd, gcdex, gcdivide, and poly_gcd.

Example:

(%i1) p1:6*x^3+19*x^2+19*x+6;
3 2

(%o1) 6 x + 19 x + 19 x + 6
(%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;

5 4 3 2
(%o2) 6 x + 13 x + 12 x + 13 x + 6 x
(%i3) gcd(p1, p2);

2
(%o3) 6 x + 13 x + 6
(%i4) p1/gcd(p1, p2), ratsimp;
(%o4) x + 1
(%i5) p2/gcd(p1, p2), ratsimp;

3
(%o5) x + x

ezgcd returns a list whose first element is the greatest common divisor of the poly-
nomials p 1 and p 2, and whose remaining elements are the polynomials divided by
the greatest common divisor.

(%i6) ezgcd(p1, p2);
2 3

(%o6) [6 x + 13 x + 6, x + 1, x + x]

Functiongcdex
gcdex (f, g)
gcdex (f, g, x)

Returns a list [a, b, u] where u is the greatest common divisor (gcd) of f and g, and
u is equal to a f + b g . The arguments f and g should be univariate polynomials,
or else polynomials in x a supplied main variable since we need to be in a principal
ideal domain for this to work. The gcd means the gcd regarding f and g as univariate
polynomials with coefficients being rational functions in the other variables.

gcdex implements the Euclidean algorithm, where we have a sequence of L[i]:

[a[i], b[i], r[i]] which are all perpendicular to [f, g, -1] and the next one
is built as if q = quotient(r[i]/r[i+1]) then L[i+2]: L[i] - q L[i+1], and it ter-
minates at L[i+1] when the remainder r[i+2] is zero.

The arguments f and g can be integers. For this case the function igcdex is called
by gcdex.

See also ezgcd, gcd, gcdivide, and poly_gcd.

Examples:

(%i1) gcdex (x^2 + 1, x^3 + 4);
2
x + 4 x - 1 x + 4

(%o1)/R/ [- ------------, -----, 1]
17 17

(%i2) % . [x^2 + 1, x^3 + 4, -1];
(%o2)/R/ 0

252 Maxima 5.35.1 Manual

Note that the gcd in the following is 1 since we work in k(y)[x], not the y+1 we
would expect in k[y, x].

(%i1) gcdex (x*(y + 1), y^2 - 1, x);
1

(%o1)/R/ [0, ------, 1]
2
y - 1

Functiongcfactor (n)
Factors the Gaussian integer n over the Gaussian integers, i.e., numbers of the form
a + b %i where a and b are rational integers (i.e., ordinary integers). Factors are
normalized by making a and b non-negative.

Functiongfactor (expr)
Factors the polynomial expr over the Gaussian integers (that is, the integers with the
imaginary unit %i adjoined). This is like factor (expr, a^2+1) where a is %i.

Example:

(%i1) gfactor (x^4 - 1);
(%o1) (x - 1) (x + 1) (x - %i) (x + %i)

Functiongfactorsum (expr)
is similar to factorsum but applies gfactor instead of factor.

Functionhipow (expr, x)
Returns the highest explicit exponent of x in expr. x may be a variable or a general
expression. If x does not appear in expr, hipow returns 0.

hipow does not consider expressions equivalent to expr. In particular, hipow does not
expand expr, so hipow (expr, x) and hipow (expand (expr, x)) may yield different
results.

Examples:

(%i1) hipow (y^3 * x^2 + x * y^4, x);
(%o1) 2
(%i2) hipow ((x + y)^5, x);
(%o2) 1
(%i3) hipow (expand ((x + y)^5), x);
(%o3) 5
(%i4) hipow ((x + y)^5, x + y);
(%o4) 5
(%i5) hipow (expand ((x + y)^5), x + y);
(%o5) 0

Option variableintfaclim
Default value: true

If true, maxima will give up factorization of integers if no factor is found after trial
divisions and Pollard’s rho method and factorization will not be complete.

Chapter 14: Polynomials 253

When intfaclim is false (this is the case when the user calls factor explicitly),
complete factorization will be attempted. intfaclim is set to false when factors are
computed in divisors, divsum and totient.

Internal calls to factor respect the user-specified value of intfaclim. Setting
intfaclim to true may reduce the time spent factoring large integers.

Option variablekeepfloat
Default value: false

When keepfloat is true, prevents floating point numbers from being rationalized
when expressions which contain them are converted to canonical rational expression
(CRE) form.

Note that the function solve and those functions calling it (eigenvalues, for exam-
ple) currently ignore this flag, converting floating point numbers anyway.

Examples:

(%i1) rat(x/2.0);

‘rat’ replaced 0.5 by 1/2 = 0.5
x

(%o1)/R/ -
2

(%i2) rat(x/2.0), keepfloat;

(%o2)/R/ 0.5 x

solve ignores keepfloat:

(%i3) solve(1.0-x,x), keepfloat;

‘rat’ replaced 1.0 by 1/1 = 1.0
(%o3) [x = 1]

Functionlopow (expr, x)
Returns the lowest exponent of x which explicitly appears in expr. Thus

(%i1) lopow ((x+y)^2 + (x+y)^a, x+y);
(%o1) min(a, 2)

Functionlratsubst (L, expr)
is analogous to subst (L, expr) except that it uses ratsubst instead of subst.

The first argument of lratsubst is an equation or a list of equations identical in
format to that accepted by subst. The substitutions are made in the order given by
the list of equations, that is, from left to right.

load ("lrats") loads fullratsubst and lratsubst.

Examples:

(%i1) load ("lrats")$

• subst can carry out multiple substitutions. lratsubst is analogous to subst.

254 Maxima 5.35.1 Manual

(%i2) subst ([a = b, c = d], a + c);
(%o2) d + b
(%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(%o3) (d + a c) e + a d + b c

• If only one substitution is desired, then a single equation may be given as first
argument.

(%i4) lratsubst (a^2 = b, a^3);
(%o4) a b

Option variablemodulus
Default value: false

When modulus is a positive number p, operations on rational numbers (as returned by
rat and related functions) are carried out modulo p, using the so-called "balanced"
modulus system in which n modulo p is defined as an integer k in [-(p-1)/2, ...,

0, ..., (p-1)/2] when p is odd, or [-(p/2 - 1), ..., 0,, p/2] when p is
even, such that a p + k equals n for some integer a.

If expr is already in canonical rational expression (CRE) form when modulus is reset,
then you may need to re-rat expr, e.g., expr: rat (ratdisrep (expr)), in order to
get correct results.

Typically modulus is set to a prime number. If modulus is set to a positive non-prime
integer, this setting is accepted, but a warning message is displayed. Maxima signals
an error, when zero or a negative integer is assigned to modulus.

Examples:

(%i1) modulus:7;
(%o1) 7
(%i2) polymod([0,1,2,3,4,5,6,7]);
(%o2) [0, 1, 2, 3, - 3, - 2, - 1, 0]
(%i3) modulus:false;
(%o3) false
(%i4) poly:x^6+x^2+1;

6 2
(%o4) x + x + 1
(%i5) factor(poly);

6 2
(%o5) x + x + 1
(%i6) modulus:13;
(%o6) 13
(%i7) factor(poly);

2 4 2
(%o7) (x + 6) (x - 6 x - 2)
(%i8) polymod(%);

6 2
(%o8) x + x + 1

Functionnum (expr)
Returns the numerator of expr if it is a ratio. If expr is not a ratio, expr is returned.

num evaluates its argument.

Chapter 14: Polynomials 255

Functionpolydecomp (p, x)
Decomposes the polynomial p in the variable x into the functional composition of
polynomials in x. polydecomp returns a list [p 1, ..., p n] such that

lambda ([x], p_1) (lambda ([x], p_2) (... (lambda ([x], p_n) (x))
...))

is equal to p. The degree of p i is greater than 1 for i less than n.

Such a decomposition is not unique.

Examples:

(%i1) polydecomp (x^210, x);
7 5 3 2

(%o1) [x , x , x , x]
(%i2) p : expand (subst (x^3 - x - 1, x, x^2 - a));

6 4 3 2
(%o2) x - 2 x - 2 x + x + 2 x - a + 1
(%i3) polydecomp (p, x);

2 3
(%o3) [x - a, x - x - 1]

The following function composes L = [e_1, ..., e_n] as functions in x; it is the
inverse of polydecomp:

compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, r), r) $

Re-express above example using compose:

(%i3) polydecomp (compose ([x^2 - a, x^3 - x - 1], x), x);
2 3

(%o3) [x - a, x - x - 1]

Note that though compose (polydecomp (p, x), x) always returns p (unexpanded),
polydecomp (compose ([p 1, ..., p n], x), x) does not necessarily return [p 1,
..., p n]:

(%i4) polydecomp (compose ([x^2 + 2*x + 3, x^2], x), x);
2 2

(%o4) [x + 2, x + 1]
(%i5) polydecomp (compose ([x^2 + x + 1, x^2 + x + 1], x), x);

2 2
x + 3 x + 5

(%o5) [------, ------, 2 x + 1]
4 2

Functionpolymod
polymod (p)
polymod (p, m)

Converts the polynomial p to a modular representation with respect to the current
modulus which is the value of the variable modulus.

polymod (p, m) specifies a modulus m to be used instead of the current value of
modulus.

See modulus.

256 Maxima 5.35.1 Manual

Functionquotient
quotient (p 1, p 2)
quotient (p 1, p 2, x 1, . . . , x n)

Returns the polynomial p 1 divided by the polynomial p 2. The arguments x 1, . . . ,
x n are interpreted as in ratvars.

quotient returns the first element of the two-element list returned by divide.

Functionrat
rat (expr)
rat (expr, x 1, . . . , x n)

Converts expr to canonical rational expression (CRE) form by expanding and com-
bining all terms over a common denominator and cancelling out the greatest common
divisor of the numerator and denominator, as well as converting floating point num-
bers to rational numbers within a tolerance of ratepsilon. The variables are ordered
according to the x 1, . . . , x n, if specified, as in ratvars.

rat does not generally simplify functions other than addition +, subtraction -, mul-
tiplication *, division /, and exponentiation to an integer power, whereas ratsimp

does handle those cases. Note that atoms (numbers and variables) in CRE form are
not the same as they are in the general form. For example, rat(x)- x yields rat(0)
which has a different internal representation than 0.

When ratfac is true, rat yields a partially factored form for CRE. During rational
operations the expression is maintained as fully factored as possible without an actual
call to the factor package. This should always save space and may save some time
in some computations. The numerator and denominator are still made relatively
prime (e.g., rat((x^2 - 1)^4/(x + 1)^2) yields (x - 1)^4 (x + 1)^2 when ratfac

is true), but the factors within each part may not be relatively prime.

ratprint if false suppresses the printout of the message informing the user of the
conversion of floating point numbers to rational numbers.

keepfloat if true prevents floating point numbers from being converted to rational
numbers.

See also ratexpand and ratsimp.

Examples:

(%i1) ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) /
(4*y^2 + x^2);

4
(x - 2 y)

(y + a) (2 y + x) (------------ + 1)
2 2 2

(x - 4 y)
(%o1) ------------------------------------

2 2
4 y + x

(%i2) rat (%, y, a, x);
2 a + 2 y

(%o2)/R/ ---------
x + 2 y

Chapter 14: Polynomials 257

Option variableratalgdenom
Default value: true

When ratalgdenom is true, allows rationalization of denominators with respect to
radicals to take effect. ratalgdenom has an effect only when canonical rational ex-
pressions (CRE) are used in algebraic mode.

Functionratcoef
ratcoef (expr, x, n)
ratcoef (expr, x)

Returns the coefficient of the expression x^n in the expression expr. If omitted, n is
assumed to be 1.

The return value is free (except possibly in a non-rational sense) of the variables in
x. If no coefficient of this type exists, 0 is returned.

ratcoef expands and rationally simplifies its first argument and thus it may produce
answers different from those of coeff which is purely syntactic. Thus ratcoef ((x +

1)/y + x, x) returns (y + 1)/y whereas coeff returns 1.

ratcoef (expr, x, 0), viewing expr as a sum, returns a sum of those terms which
do not contain x. Therefore if x occurs to any negative powers, ratcoef should not
be used.

Since expr is rationally simplified before it is examined, coefficients may not appear
quite the way they were envisioned.

Example:

(%i1) s: a*x + b*x + 5$
(%i2) ratcoef (s, a + b);
(%o2) x

Functionratdenom (expr)
Returns the denominator of expr, after coercing expr to a canonical rational expres-
sion (CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may
change the form of expr by putting all terms over a common denominator.

denom is similar, but returns an ordinary expression instead of a CRE. Also, denom
does not attempt to place all terms over a common denominator, and thus some
expressions which are considered ratios by ratdenom are not considered ratios by
denom.

Option variableratdenomdivide
Default value: true

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

Examples:

258 Maxima 5.35.1 Manual

(%i1) expr: (x^2 + x + 1)/(y^2 + 7);
2
x + x + 1

(%o1) ----------
2
y + 7

(%i2) ratdenomdivide: true$
(%i3) ratexpand (expr);

2
x x 1

(%o3) ------ + ------ + ------
2 2 2

y + 7 y + 7 y + 7
(%i4) ratdenomdivide: false$
(%i5) ratexpand (expr);

2
x + x + 1

(%o5) ----------
2
y + 7

(%i6) expr2: a^2/(b^2 + 3) + b/(b^2 + 3);
2

b a
(%o6) ------ + ------

2 2
b + 3 b + 3

(%i7) ratexpand (expr2);
2

b + a
(%o7) ------

2
b + 3

Functionratdiff (expr, x)
Differentiates the rational expression expr with respect to x. expr must be a ra-
tio of polynomials or a polynomial in x. The argument x may be a variable or a
subexpression of expr.

The result is equivalent to diff, although perhaps in a different form. ratdiff may
be faster than diff, for rational expressions.

ratdiff returns a canonical rational expression (CRE) if expr is a CRE. Otherwise,
ratdiff returns a general expression.

ratdiff considers only the dependence of expr on x, and ignores any dependencies
established by depends.

Example:

(%i1) expr: (4*x^3 + 10*x - 11)/(x^5 + 5);

Chapter 14: Polynomials 259

3
4 x + 10 x - 11

(%o1) ----------------
5
x + 5

(%i2) ratdiff (expr, x);
7 5 4 2

8 x + 40 x - 55 x - 60 x - 50
(%o2) - ---------------------------------

10 5
x + 10 x + 25

(%i3) expr: f(x)^3 - f(x)^2 + 7;
3 2

(%o3) f (x) - f (x) + 7
(%i4) ratdiff (expr, f(x));

2
(%o4) 3 f (x) - 2 f(x)
(%i5) expr: (a + b)^3 + (a + b)^2;

3 2
(%o5) (b + a) + (b + a)
(%i6) ratdiff (expr, a + b);

2 2
(%o6) 3 b + (6 a + 2) b + 3 a + 2 a

Functionratdisrep (expr)
Returns its argument as a general expression. If expr is a general expression, it is
returned unchanged.

Typically ratdisrep is called to convert a canonical rational expression (CRE) into
a general expression. This is sometimes convenient if one wishes to stop the "conta-
gion", or use rational functions in non-rational contexts.

See also totaldisrep.

Functionratexpand (expr)
Option variableratexpand

Expands expr by multiplying out products of sums and exponentiated sums, com-
bining fractions over a common denominator, cancelling the greatest common divisor
of the numerator and denominator, then splitting the numerator (if a sum) into its
respective terms divided by the denominator.

The return value of ratexpand is a general expression, even if expr is a canonical
rational expression (CRE).

The switch ratexpand if true will cause CRE expressions to be fully expanded when
they are converted back to general form or displayed, while if it is false then they
will be put into a recursive form. See also ratsimp.

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

260 Maxima 5.35.1 Manual

When keepfloat is true, prevents floating point numbers from being rationalized
when expressions which contain them are converted to canonical rational expression
(CRE) form.

Examples:

(%i1) ratexpand ((2*x - 3*y)^3);
3 2 2 3

(%o1) - 27 y + 54 x y - 36 x y + 8 x
(%i2) expr: (x - 1)/(x + 1)^2 + 1/(x - 1);

x - 1 1
(%o2) -------- + -----

2 x - 1
(x + 1)

(%i3) expand (expr);
x 1 1

(%o3) ------------ - ------------ + -----
2 2 x - 1
x + 2 x + 1 x + 2 x + 1

(%i4) ratexpand (expr);
2

2 x 2
(%o4) --------------- + ---------------

3 2 3 2
x + x - x - 1 x + x - x - 1

Option variableratfac
Default value: false

When ratfac is true, canonical rational expressions (CRE) are manipulated in a
partially factored form.

During rational operations the expression is maintained as fully factored as possible
without calling factor. This should always save space and may save time in some
computations. The numerator and denominator are made relatively prime, for ex-
ample factor ((x^2 - 1)^4/(x + 1)^2) yields (x - 1)^4 (x + 1)^2, but the factors
within each part may not be relatively prime.

In the ctensr (Component Tensor Manipulation) package, Ricci, Einstein, Riemann,
and Weyl tensors and the scalar curvature are factored automatically when ratfac is
true. ratfac should only be set for cases where the tensorial components are known
to consist of few terms.

The ratfac and ratweight schemes are incompatible and may not both be used at
the same time.

Functionratnumer (expr)
Returns the numerator of expr, after coercing expr to a canonical rational expression
(CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may
change the form of expr by putting all terms over a common denominator.

Chapter 14: Polynomials 261

num is similar, but returns an ordinary expression instead of a CRE. Also, num does not
attempt to place all terms over a common denominator, and thus some expressions
which are considered ratios by ratnumer are not considered ratios by num.

Functionratp (expr)
Returns true if expr is a canonical rational expression (CRE) or extended CRE,
otherwise false.

CRE are created by rat and related functions. Extended CRE are created by taylor

and related functions.

Option variableratprint
Default value: true

When ratprint is true, a message informing the user of the conversion of floating
point numbers to rational numbers is displayed.

Functionratsimp (expr)
Functionratsimp (expr, x 1, . . . , x n)

Simplifies the expression expr and all of its subexpressions, including the arguments
to non-rational functions. The result is returned as the quotient of two polynomials
in a recursive form, that is, the coefficients of the main variable are polynomials in
the other variables. Variables may include non-rational functions (e.g., sin (x^2 +

1)) and the arguments to any such functions are also rationally simplified.

ratsimp (expr, x 1, ..., x n) enables rational simplification with the specification
of variable ordering as in ratvars.

When ratsimpexpons is true, ratsimp is applied to the exponents of expressions
during simplification.

See also ratexpand. Note that ratsimp is affected by some of the flags which affect
ratexpand.

Examples:

(%i1) sin (x/(x^2 + x)) = exp ((log(x) + 1)^2 - log(x)^2);
2 2

x (log(x) + 1) - log (x)
(%o1) sin(------) = %e

2
x + x

(%i2) ratsimp (%);
1 2

(%o2) sin(-----) = %e x
x + 1

(%i3) ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1));
3/2

(x - 1) - sqrt(x - 1) (x + 1)
(%o3) --------------------------------

sqrt((x - 1) (x + 1))
(%i4) ratsimp (%);

262 Maxima 5.35.1 Manual

2 sqrt(x - 1)
(%o4) - -------------

2
sqrt(x - 1)

(%i5) x^(a + 1/a), ratsimpexpons: true;
2

a + 1

a

(%o5) x

Option variableratsimpexpons
Default value: false

When ratsimpexpons is true, ratsimp is applied to the exponents of expressions
during simplification.

Option variableradsubstflag
Default value: false

radsubstflag, if true, permits ratsubst to make substitutions such as u for sqrt

(x) in x.

Functionratsubst (a, b, c)
Substitutes a for b in c and returns the resulting expression. b may be a sum, product,
power, etc.

ratsubst knows something of the meaning of expressions whereas subst does a purely
syntactic substitution. Thus subst (a, x + y, x + y + z) returns x + y + z whereas
ratsubst returns z + a.

When radsubstflag is true, ratsubst makes substitutions for radicals in expressions
which don’t explicitly contain them.

ratsubst ignores the value true of the option variable keepfloat.

Examples:

(%i1) ratsubst (a, x*y^2, x^4*y^3 + x^4*y^8);
3 4

(%o1) a x y + a
(%i2) cos(x)^4 + cos(x)^3 + cos(x)^2 + cos(x) + 1;

4 3 2
(%o2) cos (x) + cos (x) + cos (x) + cos(x) + 1
(%i3) ratsubst (1 - sin(x)^2, cos(x)^2, %);

4 2 2
(%o3) sin (x) - 3 sin (x) + cos(x) (2 - sin (x)) + 3
(%i4) ratsubst (1 - cos(x)^2, sin(x)^2, sin(x)^4);

4 2
(%o4) cos (x) - 2 cos (x) + 1
(%i5) radsubstflag: false$
(%i6) ratsubst (u, sqrt(x), x);

Chapter 14: Polynomials 263

(%o6) x
(%i7) radsubstflag: true$
(%i8) ratsubst (u, sqrt(x), x);

2
(%o8) u

Functionratvars (x 1, . . . , x n)
Functionratvars ()

System variableratvars
Declares main variables x 1, . . . , x n for rational expressions. x n, if present in a
rational expression, is considered the main variable. Otherwise, x [n-1] is considered
the main variable if present, and so on through the preceding variables to x 1, which
is considered the main variable only if none of the succeeding variables are present.

If a variable in a rational expression is not present in the ratvars list, it is given a
lower priority than x 1.

The arguments to ratvars can be either variables or non-rational functions such as
sin(x).

The variable ratvars is a list of the arguments of the function ratvars when it was
called most recently. Each call to the function ratvars resets the list. ratvars ()

clears the list.

Option variableratvarswitch
Default value: true

Maxima keeps an internal list in the Lisp variable VARLIST of the main variables for
rational expressions. If ratvarswitch is true, every evaluation starts with a fresh list
VARLIST. This is the default behavior. Otherwise, the main variables from previous
evaluations are not removed from the internal list VARLIST.

The main variables, which are declared with the function ratvars are not affected
by the option variable ratvarswitch.

Examples:

If ratvarswitch is true, every evaluation starts with a fresh list VARLIST.

(%i1) ratvarswitch:true$

(%i2) rat(2*x+y^2);
2

(%o2)/R/ y + 2 x
(%i3) :lisp varlist
($X $Y)

(%i3) rat(2*a+b^2);
2

(%o3)/R/ b + 2 a

(%i4) :lisp varlist
($A $B)

If ratvarswitch is false, the main variables from the last evaluation are still present.

264 Maxima 5.35.1 Manual

(%i4) ratvarswitch:false$

(%i5) rat(2*x+y^2);
2

(%o5)/R/ y + 2 x
(%i6) :lisp varlist
($X $Y)

(%i6) rat(2*a+b^2);
2

(%o6)/R/ b + 2 a

(%i7) :lisp varlist
($A $B $X $Y)

Functionratweight
ratweight (x 1, w 1, . . . , x n, w n)
ratweight ()

Assigns a weight w i to the variable x i. This causes a term to be replaced by 0 if
its weight exceeds the value of the variable ratwtlvl (default yields no truncation).
The weight of a term is the sum of the products of the weight of a variable in the
term times its power. For example, the weight of 3 x_1^2 x_2 is 2 w_1 + w_2. Trun-
cation according to ratwtlvl is carried out only when multiplying or exponentiating
canonical rational expressions (CRE).

ratweight () returns the cumulative list of weight assignments.

Note: The ratfac and ratweight schemes are incompatible and may not both be
used at the same time.

Examples:

(%i1) ratweight (a, 1, b, 1);
(%o1) [a, 1, b, 1]
(%i2) expr1: rat(a + b + 1)$
(%i3) expr1^2;

2 2
(%o3)/R/ b + (2 a + 2) b + a + 2 a + 1
(%i4) ratwtlvl: 1$
(%i5) expr1^2;
(%o5)/R/ 2 b + 2 a + 1

System variableratweights
Default value: []

ratweights is the list of weights assigned by ratweight. The list is cumulative: each
call to ratweight places additional items in the list.

kill (ratweights) and save (ratweights) both work as expected.

Chapter 14: Polynomials 265

Option variableratwtlvl
Default value: false

ratwtlvl is used in combination with the ratweight function to control the trun-
cation of canonical rational expressions (CRE). For the default value of false, no
truncation occurs.

Functionremainder
remainder (p 1, p 2)
remainder (p 1, p 2, x 1, . . . , x n)

Returns the remainder of the polynomial p 1 divided by the polynomial p 2. The
arguments x 1, . . . , x n are interpreted as in ratvars.

remainder returns the second element of the two-element list returned by divide.

Functionresultant (p 1, p 2, x)
The function resultant computes the resultant of the two polynomials p 1 and p 2,
eliminating the variable x. The resultant is a determinant of the coefficients of x in
p 1 and p 2, which equals zero if and only if p 1 and p 2 have a non-constant factor
in common.

If p 1 or p 2 can be factored, it may be desirable to call factor before calling
resultant.

The option variable resultant controls which algorithm will be used to compute the
resultant. See the option variable resultant.

The function bezout takes the same arguments as resultant and returns a matrix.
The determinant of the return value is the desired resultant.

Examples:

(%i1) resultant(2*x^2+3*x+1, 2*x^2+x+1, x);
(%o1) 8
(%i2) resultant(x+1, x+1, x);
(%o2) 0
(%i3) resultant((x+1)*x, (x+1), x);
(%o3) 0
(%i4) resultant(a*x^2+b*x+1, c*x + 2, x);

2
(%o4) c - 2 b c + 4 a

(%i5) bezout(a*x^2+b*x+1, c*x+2, x);
[2 a 2 b - c]

(%o5) []
[c 2]

(%i6) determinant(%);
(%o6) 4 a - (2 b - c) c

Option variableresultant
Default value: subres

266 Maxima 5.35.1 Manual

The option variable resultant controls which algorithm will be used to compute the
resultant with the function resultant. The possible values are:

subres for the subresultant polynomial remainder sequence (PRS) algorithm,

mod for the modular resultant algorithm, and

red for the reduced polynomial remainder sequence (PRS) algorithm.

On most problems the default value subres should be best. On some large degree
univariate or bivariate problems mod may be better.

Option variablesavefactors
Default value: false

When savefactors is true, causes the factors of an expression which is a product
of factors to be saved by certain functions in order to speed up later factorizations of
expressions containing some of the same factors.

Functionshowratvars (expr)
Returns a list of the canonical rational expression (CRE) variables in expression expr.

See also ratvars.

Functionsqfr (expr)
is similar to factor except that the polynomial factors are "square-free." That is,
they have factors only of degree one. This algorithm, which is also used by the first
stage of factor, utilizes the fact that a polynomial has in common with its n’th
derivative all its factors of degree greater than n. Thus by taking greatest common
divisors with the polynomial of the derivatives with respect to each variable in the
polynomial, all factors of degree greater than 1 can be found.

Example:

(%i1) sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
2 2

(%o1) (2 x + 1) (x - 1)

Functiontellrat
tellrat (p 1, . . . , p n)
tellrat ()

Adds to the ring of algebraic integers known to Maxima the elements which are the
solutions of the polynomials p 1, . . . , p n. Each argument p i is a polynomial with
integer coefficients.

tellrat (x) effectively means substitute 0 for x in rational functions.

tellrat () returns a list of the current substitutions.

algebraic must be set to true in order for the simplification of algebraic integers to
take effect.

Maxima initially knows about the imaginary unit %i and all roots of integers.

There is a command untellrat which takes kernels and removes tellrat properties.

Chapter 14: Polynomials 267

When tellrat’ing a multivariate polynomial, e.g., tellrat (x^2 - y^2), there would
be an ambiguity as to whether to substitute y^2 for x^2 or vice versa. Maxima picks
a particular ordering, but if the user wants to specify which, e.g. tellrat (y^2 =

x^2) provides a syntax which says replace y^2 by x^2.

Examples:

(%i1) 10*(%i + 1)/(%i + 3^(1/3));
10 (%i + 1)

(%o1) -----------
1/3

%i + 3
(%i2) ev (ratdisrep (rat(%)), algebraic);

2/3 1/3 2/3 1/3
(%o2) (4 3 - 2 3 - 4) %i + 2 3 + 4 3 - 2
(%i3) tellrat (1 + a + a^2);

2
(%o3) [a + a + 1]
(%i4) 1/(a*sqrt(2) - 1) + a/(sqrt(3) + sqrt(2));

1 a
(%o4) ------------- + -----------------

sqrt(2) a - 1 sqrt(3) + sqrt(2)
(%i5) ev (ratdisrep (rat(%)), algebraic);

(7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1
(%o5) --

7
(%i6) tellrat (y^2 = x^2);

2 2 2
(%o6) [y - x , a + a + 1]

Functiontotaldisrep (expr)
Converts every subexpression of expr from canonical rational expressions (CRE) to
general form and returns the result. If expr is itself in CRE form then totaldisrep

is identical to ratdisrep.

totaldisrep may be useful for ratdisrepping expressions such as equations, lists,
matrices, etc., which have some subexpressions in CRE form.

Functionuntellrat (x 1, . . . , x n)
Removes tellrat properties from x 1, . . . , x n.

268 Maxima 5.35.1 Manual

Chapter 15: Special Functions 269

15 Special Functions

15.1 Introduction to Special Functions

Special function notation follows:

bessel_j (index, expr) Bessel function, 1st kind
bessel_y (index, expr) Bessel function, 2nd kind
bessel_i (index, expr) Modified Bessel function, 1st kind
bessel_k (index, expr) Modified Bessel function, 2nd kind

hankel_1 (v,z) Hankel function of the 1st kind
hankel_2 (v,z) Hankel function of the 2nd kind
struve_h (v,z) Struve H function
struve_l (v,z) Struve L function

assoc_legendre_p[v,u] (z) Legendre function of degree v and order u
assoc_legendre_q[v,u] (z) Legendre function, 2nd kind

%f[p,q] ([], [], expr) Generalized Hypergeometric function
gamma (z) Gamma function
gamma_greek (a,z) Incomplete gamma function
gamma_incomplete (a,z) Tail of incomplete gamma function
hypergeometric (l1, l2, z) Hypergeometric function
slommel
%m[u,k] (z) Whittaker function, 1st kind
%w[u,k] (z) Whittaker function, 2nd kind
erfc (z) Complement of the erf function

expintegral_e (v,z) Exponential integral E
expintegral_e1 (z) Exponential integral E1
expintegral_ei (z) Exponential integral Ei
expintegral_li (z) Logarithmic integral Li
expintegral_si (z) Exponential integral Si
expintegral_ci (z) Exponential integral Ci
expintegral_shi (z) Exponential integral Shi
expintegral_chi (z) Exponential integral Chi

kelliptic (z) Complete elliptic integral of the first
kind (K)

parabolic_cylinder_d (v,z) Parabolic cylinder D function

15.2 Bessel Functions

Functionbessel j (v, z)
The Bessel function of the first kind of order v and argument z.

bessel_j is defined as

270 Maxima 5.35.1 Manual

∞∑
k=0

(−1)
k (z

2

)v+2 k

k! Γ (v + k + 1)

although the infinite series is not used for computations.

Functionbessel y (v, z)
The Bessel function of the second kind of order v and argument z.

bessel_y is defined as

cos (π v) Jv(z)− J−v(z)
sin (π v)

when v is not an integer. When v is an integer n, the limit as v approaches n is taken.

Functionbessel i (v, z)
The modified Bessel function of the first kind of order v and argument z.

bessel_i is defined as

∞∑
k=0

1

k! Γ (v + k + 1)

(
z

2

)v+2 k

although the infinite series is not used for computations.

Functionbessel k (v, z)
The modified Bessel function of the second kind of order v and argument z.

bessel_k is defined as

π csc (π v) (I−v(z)− Iv(z))
2

when v is not an integer. If v is an integer n, then the limit as v approaches n is
taken.

Functionhankel 1 (v, z)
The Hankel function of the first kind of order v and argument z (A&S 9.1.3). hankel_
1 is defined as

bessel_j(v,z) + %i * bessel_y(v,z)

Maxima evaluates hankel_1 numerically for a complex order v and complex argument
z in float precision. The numerical evaluation in bigfloat precision is not supported.

When besselexpand is true, hankel_1 is expanded in terms of elementary functions
when the order v is half of an odd integer. See besselexpand.

Maxima knows the derivative of hankel_1 wrt the argument z.

Examples:

Numerical evaluation:

Chapter 15: Special Functions 271

(%i1) hankel_1(1,0.5);
(%o1) 0.24226845767487 - 1.471472392670243 %i

(%i2) hankel_1(1,0.5+%i);
(%o2) - 0.25582879948621 %i - 0.23957560188301

Expansion of hankel_1 when besselexpand is true:

(%i1) hankel_1(1/2,z),besselexpand:true;
sqrt(2) sin(z) - sqrt(2) %i cos(z)

(%o1) ----------------------------------
sqrt(%pi) sqrt(z)

Derivative of hankel_1 wrt the argument z. The derivative wrt the order v is not
supported. Maxima returns a noun form:

(%i1) diff(hankel_1(v,z),z);
hankel_1(v - 1, z) - hankel_1(v + 1, z)

(%o1) ---------------------------------------
2

(%i2) diff(hankel_1(v,z),v);
d

(%o2) -- (hankel_1(v, z))
dv

Functionhankel 2 (v, z)
The Hankel function of the second kind of order v and argument z (A&S 9.1.4).
hankel_2 is defined as

bessel_j(v,z) - %i * bessel_y(v,z)

Maxima evaluates hankel_2 numerically for a complex order v and complex argument
z in float precision. The numerical evaluation in bigfloat precision is not supported.

When besselexpand is true, hankel_2 is expanded in terms of elementary functions
when the order v is half of an odd integer. See besselexpand.

Maxima knows the derivative of hankel_2 wrt the argument z.

For examples see hankel_1.

Option variablebesselexpand
Default value: false

Controls expansion of the Bessel functions when the order is half of an odd integer. In
this case, the Bessel functions can be expanded in terms of other elementary functions.
When besselexpand is true, the Bessel function is expanded.

(%i1) besselexpand: false$
(%i2) bessel_j (3/2, z);

3
(%o2) bessel_j(-, z)

2
(%i3) besselexpand: true$
(%i4) bessel_j (3/2, z);

sin(z) cos(z)
sqrt(2) sqrt(z) (------ - ------)

272 Maxima 5.35.1 Manual

2 z
z

(%o4) ---------------------------------
sqrt(%pi)

Functionscaled bessel i (v, z)
The scaled modified Bessel function of the first kind of order v and argument z. That
is, scaledbesseli(v, z) = exp(−abs(z)) ∗ besseli(v, z). This function is particularly
useful for calculating besseli for large z, which is large. However, maxima does not
otherwise know much about this function. For symbolic work, it is probably preferable
to work with the expression exp(-abs(z))*bessel_i(v, z).

Functionscaled bessel i0 (z)
Identical to scaled_bessel_i(0,z).

Functionscaled bessel i1 (z)
Identical to scaled_bessel_i(1,z).

Function%s [u,v] (z)
Lommel’s little s[u,v](z) function. Probably Gradshteyn & Ryzhik 8.570.1.

15.3 Airy Functions

The Airy functions Ai(x) and Bi(x) are defined in Abramowitz and Stegun, Handbook
of Mathematical Functions, Section 10.4.

y = Ai(x) and y = Bi(x) are two linearly independent solutions of the Airy differential
equation diff (y(x), x, 2) - x y(x) = 0.

If the argument x is a real or complex floating point number, the numerical value of the
function is returned.

Functionairy ai (x)
The Airy function Ai(x). (A&S 10.4.2)

The derivative diff (airy_ai(x), x) is airy_dai(x).

See also airy_bi, airy_dai, airy_dbi.

Functionairy dai (x)
The derivative of the Airy function Ai airy_ai(x).

See airy_ai.

Functionairy bi (x)
The Airy function Bi(x). (A&S 10.4.3)

The derivative diff (airy_bi(x), x) is airy_dbi(x).

See airy_ai, airy_dbi.

Functionairy dbi (x)
The derivative of the Airy Bi function airy_bi(x).

See airy_ai and airy_bi.

Chapter 15: Special Functions 273

15.4 Gamma and factorial Functions

The gamma function and the related beta, psi and incomplete gamma functions are
defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapter 6.

Functionbffac (expr, n)
Bigfloat version of the factorial (shifted gamma) function. The second argument is
how many digits to retain and return, it’s a good idea to request a couple of extra.

Functionbfpsi (n, z, fpprec)
Functionbfpsi0 (z, fpprec)

bfpsi is the polygamma function of real argument z and integer order n. bfpsi0 is
the digamma function. bfpsi0 (z, fpprec) is equivalent to bfpsi (0, z, fpprec).

These functions return bigfloat values. fpprec is the bigfloat precision of the return
value.

Functioncbffac (z, fpprec)
Complex bigfloat factorial.

load ("bffac") loads this function.

Functiongamma (z)
The basic definition of the gamma function (A&S 6.1.1) is

Γ (z) =

∫ ∞
0

tz−1 e−t dt

Maxima simplifies gamma for positive integer and positive and negative rational num-
bers. For half integral values the result is a rational number times sqrt(%pi).
The simplification for integer values is controlled by factlim. For integers greater
than factlim the numerical result of the factorial function, which is used to calcu-
late gamma, will overflow. The simplification for rational numbers is controlled by
gammalim to avoid internal overflow. See factlim and gammalim.

For negative integers gamma is not defined.

Maxima can evalute gamma numerically for real and complex values in float and
bigfloat precision.

gamma has mirror symmetry.

When gamma_expand is true, Maxima expands gamma for arguments z+n and z-n

where n is an integer.

Maxima knows the derivate of gamma.

Examples:

Simplification for integer, half integral, and rational numbers:

274 Maxima 5.35.1 Manual

(%i1) map(’gamma,[1,2,3,4,5,6,7,8,9]);
(%o1) [1, 1, 2, 6, 24, 120, 720, 5040, 40320]
(%i2) map(’gamma,[1/2,3/2,5/2,7/2]);

sqrt(%pi) 3 sqrt(%pi) 15 sqrt(%pi)
(%o2) [sqrt(%pi), ---------, -----------, ------------]

2 4 8
(%i3) map(’gamma,[2/3,5/3,7/3]);

2 1
2 gamma(-) 4 gamma(-)

2 3 3
(%o3) [gamma(-), ----------, ----------]

3 3 9

Numerical evaluation for real and complex values:

(%i4) map(’gamma,[2.5,2.5b0]);
(%o4) [1.329340388179137, 1.3293403881791370205b0]
(%i5) map(’gamma,[1.0+%i,1.0b0+%i]);
(%o5) [0.498015668118356 - .1549498283018107 %i,

4.9801566811835604272b-1 - 1.5494982830181068513b-1 %i]

gamma has mirror symmetry:

(%i6) declare(z,complex)$
(%i7) conjugate(gamma(z));
(%o7) gamma(conjugate(z))

Maxima expands gamma(z+n) and gamma(z-n), when gamma_expand is true:

(%i8) gamma_expand:true$

(%i9) [gamma(z+1),gamma(z-1),gamma(z+2)/gamma(z+1)];
gamma(z)

(%o9) [z gamma(z), --------, z + 1]
z - 1

The deriviative of gamma:

(%i10) diff(gamma(z),z);
(%o10) psi (z) gamma(z)

0

See also makegamma.

The Euler-Mascheroni constant is %gamma.

Functionlog gamma (z)
The natural logarithm of the gamma function.

Functiongamma greek (a, z)
The lower incomplete gamma function (A&S 6.5.2):

γ (a, z) =

∫ z

0

ta−1 e−t dt

See also gamma_incomplete (upper incomplete gamma function).

Chapter 15: Special Functions 275

Functiongamma incomplete (a, z)
The incomplete upper gamma function A&S 6.5.3:

Γ (a, z) =

∫ ∞
z

ta−1 e−t dt

See also gamma_expand for controlling how gamma_incomplete is expressed in terms
of elementary functions and erfc.

Also see the related functions gamma_incomplete_regularized and gamma_

incomplete_generalized.

Functiongamma incomplete regularized (a, z)
The regularized incomplete upper gamma function A&S 6.5.1:

Q (a, z) =
Γ (a, z)

Γ (a)

See also gamma_expand for controlling how gamma_incomplete is expressed in terms
of elementary functions and erfc.

Also see gamma_incomplete.

Functiongamma incomplete generalized (a, z1, z1)
The generalized incomplete gamma function.

Γ (a, z1, z2) =

∫ z2

z1

ta−1 e−t dt

Also see gamma_incomplete and gamma_incomplete_regularized.

Option variablegamma expand
Default value: false

gamma_expand controls expansion of gamma_incomplete. When gamma_expand is
true, gamma_incomplete(v,z) is expanded in terms of z, exp(z), and erfc(z) when
possible.

(%i1) gamma_incomplete(2,z);
(%o1) gamma_incomplete(2, z)
(%i2) gamma_expand:true;
(%o2) true
(%i3) gamma_incomplete(2,z);

- z
(%o3) (z + 1) %e
(%i4) gamma_incomplete(3/2,z);

- z sqrt(%pi) erfc(sqrt(z))
(%o4) sqrt(z) %e + -----------------------

2

276 Maxima 5.35.1 Manual

Option variablegammalim
Default value: 10000

gammalim controls simplification of the gamma function for integral and rational num-
ber arguments. If the absolute value of the argument is not greater than gammalim,
then simplification will occur. Note that the factlim switch controls simplification
of the result of gamma of an integer argument as well.

Functionmakegamma (expr)
Transforms instances of binomial, factorial, and beta functions in expr into gamma
functions.

See also makefact.

Functionbeta (a, b)
The beta function is defined as gamma(a) gamma(b)/gamma(a+b) (A&S 6.2.1).

Maxima simplifies the beta function for positive integers and rational numbers, which
sum to an integer. When beta_args_sum_to_integer is true, Maxima simplifies also
general expressions which sum to an integer.

For a or b equal to zero the beta function is not defined.

In general the beta function is not defined for negative integers as an argument. The
exception is for a=-n, n a positive integer and b a positive integer with b<=n, it is
possible to define an analytic continuation. Maxima gives for this case a result.

When beta_expand is true, expressions like beta(a+n,b) and beta(a-n,b) or
beta(a,b+n) and beta(a,b-n) with n an integer are simplified.

Maxima can evaluate the beta function for real and complex values in float and
bigfloat precision. For numerical evaluation Maxima uses log_gamma:

- log_gamma(b + a) + log_gamma(b) + log_gamma(a)
%e

Maxima knows that the beta function is symmetric and has mirror symmetry.

Maxima knows the derivatives of the beta function with respect to a or b.

To express the beta function as a ratio of gamma functions see makegamma.

Examples:

Simplification, when one of the arguments is an integer:

(%i1) [beta(2,3),beta(2,1/3),beta(2,a)];
1 9 1

(%o1) [--, -, ---------]
12 4 a (a + 1)

Simplification for two rational numbers as arguments which sum to an integer:

(%i2) [beta(1/2,5/2),beta(1/3,2/3),beta(1/4,3/4)];
3 %pi 2 %pi

(%o2) [-----, -------, sqrt(2) %pi]
8 sqrt(3)

When setting beta_args_sum_to_integer to true more general expression are sim-
plified, when the sum of the arguments is an integer:

Chapter 15: Special Functions 277

(%i3) beta_args_sum_to_integer:true$
(%i4) beta(a+1,-a+2);

%pi (a - 1) a
(%o4) ------------------

2 sin(%pi (2 - a))

The possible results, when one of the arguments is a negative integer:

(%i5) [beta(-3,1),beta(-3,2),beta(-3,3)];
1 1 1

(%o5) [- -, -, - -]
3 6 3

beta(a+n,b) or beta(a-n) with n an integer simplifies when beta_expand is true:

(%i6) beta_expand:true$
(%i7) [beta(a+1,b),beta(a-1,b),beta(a+1,b)/beta(a,b+1)];

a beta(a, b) beta(a, b) (b + a - 1) a
(%o7) [------------, ----------------------, -]

b + a a - 1 b

Beta is not defined, when one of the arguments is zero:

(%i7) beta(0,b);
beta: expected nonzero arguments; found 0, b
-- an error. To debug this try debugmode(true);

Numercial evaluation for real and complex arguments in float or bigfloat precision:

(%i8) beta(2.5,2.3);
(%o8) .08694748611299981

(%i9) beta(2.5,1.4+%i);
(%o9) 0.0640144950796695 - .1502078053286415 %i

(%i10) beta(2.5b0,2.3b0);
(%o10) 8.694748611299969b-2

(%i11) beta(2.5b0,1.4b0+%i);
(%o11) 6.401449507966944b-2 - 1.502078053286415b-1 %i

Beta is symmetric and has mirror symmetry:

(%i14) beta(a,b)-beta(b,a);
(%o14) 0
(%i15) declare(a,complex,b,complex)$
(%i16) conjugate(beta(a,b));
(%o16) beta(conjugate(a), conjugate(b))

The derivative of the beta function wrt a:

(%i17) diff(beta(a,b),a);
(%o17) - beta(a, b) (psi (b + a) - psi (a))

0 0

Functionbeta incomplete (a, b, z)
The basic definition of the incomplete beta function (A&S 6.6.1) is

278 Maxima 5.35.1 Manual

z
/
[b - 1 a - 1
I (1 - t) t dt
]
/
0

This definition is possible for realpart(a) > 0 and realpart(b) > 0 and abs(z) < 1.
For other values the incomplete beta function can be defined through a generalized
hypergeometric function:

gamma(a) hypergeometric_generalized([a, 1 - b], [a + 1], z) z

(See functions.wolfram.com for a complete definition of the incomplete beta function.)

For negative integers a = −n and positive integers b = m with m <= n the incomplete
beta function is defined through

m - 1 k
==== (1 - m) z

n - 1 \ k
z > -----------

/ k! (n - k)
====
k = 0

Maxima uses this definition to simplify beta_incomplete for a a negative integer.

For a a positive integer, beta_incomplete simplifies for any argument b and z and
for b a positive integer for any argument a and z, with the exception of a a negative
integer.

For z = 0 and realpart(a) > 0, beta_incomplete has the specific value zero. For z=1
and realpart(b) > 0, beta_incomplete simplifies to the beta function beta(a,b).

Maxima evaluates beta_incomplete numerically for real and complex values in float
or bigfloat precision. For the numerical evaluation an expansion of the incomplete
beta function in continued fractions is used.

When the option variable beta_expand is true, Maxima expands expressions like
beta_incomplete(a+n,b,z) and beta_incomplete(a-n,b,z) where n is a positive
integer.

Maxima knows the derivatives of beta_incomplete with respect to the variables a,
b and z and the integral with respect to the variable z.

Examples:

Simplification for a a positive integer:

(%i1) beta_incomplete(2,b,z);
b

1 - (1 - z) (b z + 1)
(%o1) ----------------------

b (b + 1)

Simplification for b a positive integer:

Chapter 15: Special Functions 279

(%i2) beta_incomplete(a,2,z);
a

(a (1 - z) + 1) z
(%o2) ------------------

a (a + 1)

Simplification for a and b a positive integer:

(%i3) beta_incomplete(3,2,z);
3

(3 (1 - z) + 1) z
(%o3) ------------------

12

a is a negative integer and b <= (−a), Maxima simplifies:

(%i4) beta_incomplete(-3,1,z);
1

(%o4) - ----
3

3 z

For the specific values z = 0 and z = 1, Maxima simplifies:

(%i5) assume(a>0,b>0)$
(%i6) beta_incomplete(a,b,0);
(%o6) 0
(%i7) beta_incomplete(a,b,1);
(%o7) beta(a, b)

Numerical evaluation in float or bigfloat precision:

(%i8) beta_incomplete(0.25,0.50,0.9);
(%o8) 4.594959440269333
(%i9) fpprec:25$
(%i10) beta_incomplete(0.25,0.50,0.9b0);
(%o10) 4.594959440269324086971203b0

For abs(z) > 1 beta_incomplete returns a complex result:

(%i11) beta_incomplete(0.25,0.50,1.7);
(%o11) 5.244115108584249 - 1.45518047787844 %i

Results for more general complex arguments:

(%i14) beta_incomplete(0.25+%i,1.0+%i,1.7+%i);
(%o14) 2.726960675662536 - .3831175704269199 %i
(%i15) beta_incomplete(1/2,5/4*%i,2.8+%i);
(%o15) 13.04649635168716 %i - 5.802067956270001
(%i16)

Expansion, when beta_expand is true:

(%i23) beta_incomplete(a+1,b,z),beta_expand:true;
b a

a beta_incomplete(a, b, z) (1 - z) z
(%o23) -------------------------- - -----------

b + a b + a

(%i24) beta_incomplete(a-1,b,z),beta_expand:true;

280 Maxima 5.35.1 Manual

b a - 1
beta_incomplete(a, b, z) (- b - a + 1) (1 - z) z

(%o24) -------------------------------------- - ---------------
1 - a 1 - a

Derivative and integral for beta_incomplete:

(%i34) diff(beta_incomplete(a, b, z), z);
b - 1 a - 1

(%o34) (1 - z) z
(%i35) integrate(beta_incomplete(a, b, z), z);

b a
(1 - z) z

(%o35) ----------- + beta_incomplete(a, b, z) z
b + a

a beta_incomplete(a, b, z)
- --------------------------

b + a
(%i36) factor(diff(%, z));
(%o36) beta_incomplete(a, b, z)

Functionbeta incomplete regularized (a, b, z)
The regularized incomplete beta function A&S 6.6.2, defined as

beta_incomplete_regularized(a, b, z) =
beta_incomplete(a, b, z)

beta(a, b)

As for beta_incomplete this definition is not complete. See functions.wolfram.com
for a complete definition of beta_incomplete_regularized.

beta_incomplete_regularized simplifies a or b a positive integer.

For z = 0 and realpart(a) > 0, beta_incomplete_regularized has the specific value
0. For z=1 and realpart(b) > 0, beta_incomplete_regularized simplifies to 1.

Maxima can evaluate beta_incomplete_regularized for real and complex argu-
ments in float and bigfloat precision.

When beta_expand is true, Maxima expands beta_incomplete_regularized for
arguments a+ n or a− n, where n is an integer.

Maxima knows the derivatives of beta_incomplete_regularized with respect to the
variables a, b, and z and the integral with respect to the variable z.

Examples:

Simplification for a or b a positive integer:

(%i1) beta_incomplete_regularized(2,b,z);
b

(%o1) 1 - (1 - z) (b z + 1)

(%i2) beta_incomplete_regularized(a,2,z);
a

(%o2) (a (1 - z) + 1) z

Chapter 15: Special Functions 281

(%i3) beta_incomplete_regularized(3,2,z);
3

(%o3) (3 (1 - z) + 1) z

For the specific values z = 0 and z = 1, Maxima simplifies:

(%i4) assume(a>0,b>0)$
(%i5) beta_incomplete_regularized(a,b,0);
(%o5) 0
(%i6) beta_incomplete_regularized(a,b,1);
(%o6) 1

Numerical evaluation for real and complex arguments in float and bigfloat precision:

(%i7) beta_incomplete_regularized(0.12,0.43,0.9);
(%o7) .9114011367359802
(%i8) fpprec:32$
(%i9) beta_incomplete_regularized(0.12,0.43,0.9b0);
(%o9) 9.1140113673598075519946998779975b-1
(%i10) beta_incomplete_regularized(1+%i,3/3,1.5*%i);
(%o10) .2865367499935403 %i - 0.122995963334684
(%i11) fpprec:20$
(%i12) beta_incomplete_regularized(1+%i,3/3,1.5b0*%i);
(%o12) 2.8653674999354036142b-1 %i - 1.2299596333468400163b-1

Expansion, when beta_expand is true:

(%i13) beta_incomplete_regularized(a+1,b,z);
b a

(1 - z) z
(%o13) beta_incomplete_regularized(a, b, z) - ------------

a beta(a, b)
(%i14) beta_incomplete_regularized(a-1,b,z);
(%o14) beta_incomplete_regularized(a, b, z)

b a - 1
(1 - z) z

- ----------------------
beta(a, b) (b + a - 1)

The derivative and the integral wrt z:

(%i15) diff(beta_incomplete_regularized(a,b,z),z);
b - 1 a - 1

(1 - z) z
(%o15) -------------------

beta(a, b)
(%i16) integrate(beta_incomplete_regularized(a,b,z),z);
(%o16) beta_incomplete_regularized(a, b, z) z

b a
(1 - z) z

a (beta_incomplete_regularized(a, b, z) - ------------)
a beta(a, b)

- ---
b + a

282 Maxima 5.35.1 Manual

Functionbeta incomplete generalized (a, b, z1, z2)
The basic definition of the generalized incomplete beta function is

z2
/
[b - 1 a - 1
I (1 - t) t dt
]
/
z1

Maxima simplifies beta_incomplete_regularized for a and b a positive integer.

For realpart(a) > 0 and z1 = 0 or z2 = 0, Maxima simplifies beta_incomplete_

generalized to beta_incomplete. For realpart(b) > 0 and z1 = 1 or z2=1, Maxima
simplifies to an expression with beta and beta_incomplete.

Maxima evaluates beta_incomplete_regularized for real and complex values in
float and bigfloat precision.

When beta_expand is true, Maxima expands beta_incomplete_generalized for
a+ n and a− n, n a positive integer.

Maxima knows the derivative of beta_incomplete_generalized with respect to the
variables a, b, z1, and z2 and the integrals with respect to the variables z1 and z2.

Examples:

Maxima simplifies beta_incomplete_generalized for a and b a positive integer:

(%i1) beta_incomplete_generalized(2,b,z1,z2);
b b

(1 - z1) (b z1 + 1) - (1 - z2) (b z2 + 1)
(%o1) ---

b (b + 1)
(%i2) beta_incomplete_generalized(a,2,z1,z2);

a a
(a (1 - z2) + 1) z2 - (a (1 - z1) + 1) z1

(%o2) ---
a (a + 1)

(%i3) beta_incomplete_generalized(3,2,z1,z2);
2 2 2 2

(1 - z1) (3 z1 + 2 z1 + 1) - (1 - z2) (3 z2 + 2 z2 + 1)
(%o3) ---

12

Simplification for specific values z1 = 0, z2 = 0, z1 = 1, or z2 = 1:

(%i4) assume(a > 0, b > 0)$
(%i5) beta_incomplete_generalized(a,b,z1,0);
(%o5) - beta_incomplete(a, b, z1)

(%i6) beta_incomplete_generalized(a,b,0,z2);
(%o6) - beta_incomplete(a, b, z2)

(%i7) beta_incomplete_generalized(a,b,z1,1);
(%o7) beta(a, b) - beta_incomplete(a, b, z1)

Chapter 15: Special Functions 283

(%i8) beta_incomplete_generalized(a,b,1,z2);
(%o8) beta_incomplete(a, b, z2) - beta(a, b)

Numerical evaluation for real arguments in float or bigfloat precision:

(%i9) beta_incomplete_generalized(1/2,3/2,0.25,0.31);
(%o9) .09638178086368676

(%i10) fpprec:32$
(%i10) beta_incomplete_generalized(1/2,3/2,0.25,0.31b0);
(%o10) 9.6381780863686935309170054689964b-2

Numerical evaluation for complex arguments in float or bigfloat precision:

(%i11) beta_incomplete_generalized(1/2+%i,3/2+%i,0.25,0.31);
(%o11) - .09625463003205376 %i - .003323847735353769
(%i12) fpprec:20$
(%i13) beta_incomplete_generalized(1/2+%i,3/2+%i,0.25,0.31b0);
(%o13) - 9.6254630032054178691b-2 %i - 3.3238477353543591914b-3

Expansion for a+ n or a− n, n a positive integer, when beta_expand is true:

(%i14) beta_expand:true$

(%i15) beta_incomplete_generalized(a+1,b,z1,z2);

b a b a
(1 - z1) z1 - (1 - z2) z2

(%o15) -----------------------------
b + a

a beta_incomplete_generalized(a, b, z1, z2)
+ ---

b + a
(%i16) beta_incomplete_generalized(a-1,b,z1,z2);

beta_incomplete_generalized(a, b, z1, z2) (- b - a + 1)
(%o16) ---

1 - a
b a - 1 b a - 1

(1 - z2) z2 - (1 - z1) z1
- -------------------------------------

1 - a

Derivative wrt the variable z1 and integrals wrt z1 and z2:

(%i17) diff(beta_incomplete_generalized(a,b,z1,z2),z1);
b - 1 a - 1

(%o17) - (1 - z1) z1
(%i18) integrate(beta_incomplete_generalized(a,b,z1,z2),z1);
(%o18) beta_incomplete_generalized(a, b, z1, z2) z1

+ beta_incomplete(a + 1, b, z1)
(%i19) integrate(beta_incomplete_generalized(a,b,z1,z2),z2);
(%o19) beta_incomplete_generalized(a, b, z1, z2) z2

- beta_incomplete(a + 1, b, z2)

284 Maxima 5.35.1 Manual

Option variablebeta expand
Default value: false

When beta_expand is true, beta(a,b) and related functions are expanded for argu-
ments like a+ n or a− n, where n is an integer.

Option variablebeta args sum to integer
Default value: false

When beta_args_sum_to_integer is true, Maxima simplifies beta(a,b), when the
arguments a and b sum to an integer.

Functionpsi [n](x)
The derivative of log (gamma (x)) of order n+1. Thus, psi[0](x) is the first deriva-
tive, psi[1](x) is the second derivative, etc.

Maxima does not know how, in general, to compute a numerical value of psi, but
it can compute some exact values for rational args. Several variables control what
range of rational args psi will return an exact value, if possible. See maxpsiposint,
maxpsinegint, maxpsifracnum, and maxpsifracdenom. That is, x must lie between
maxpsinegint and maxpsiposint. If the absolute value of the fractional part of x is
rational and has a numerator less than maxpsifracnum and has a denominator less
than maxpsifracdenom, psi will return an exact value.

The function bfpsi in the bffac package can compute numerical values.

Option variablemaxpsiposint
Default value: 20

maxpsiposint is the largest positive value for which psi[n](x) will try to compute
an exact value.

Option variablemaxpsinegint
Default value: -10

maxpsinegint is the most negative value for which psi[n](x) will try to compute an
exact value. That is if x is less than maxnegint, psi[n](x) will not return simplified
answer, even if it could.

Option variablemaxpsifracnum
Default value: 6

Let x be a rational number less than one of the form p/q. If p is greater than
maxpsifracnum, then psi[n](x) will not try to return a simplified value.

Option variablemaxpsifracdenom
Default value: 6

Let x be a rational number less than one of the form p/q. If q is greater than
maxpsifracdenom, then psi[n](x) will not try to return a simplified value.

Functionmakefact (expr)
Transforms instances of binomial, gamma, and beta functions in expr into factorials.

See also makegamma.

Chapter 15: Special Functions 285

Functionnumfactor (expr)
Returns the numerical factor multiplying the expression expr, which should be a single
term.

content returns the greatest common divisor (gcd) of all terms in a sum.

(%i1) gamma (7/2);
15 sqrt(%pi)

(%o1) ------------
8

(%i2) numfactor (%);
15

(%o2) --
8

15.5 Exponential Integrals

The Exponential Integral and related funtions are defined in Abramowitz and Stegun,
Handbook of Mathematical Functions, Chapter 5

Functionexpintegral e1 (z)
The Exponential Integral E1(z) (A&S 5.1.1)

Functionexpintegral ei (z)
The Exponential Integral Ei(z) (A&S 5.1.2)

Functionexpintegral li (z)
The Exponential Integral Li(z) (A&S 5.1.3)

Functionexpintegral e (n,z)
The Exponential Integral En(z) (A&S 5.1.4)

Functionexpintegral si (z)
The Exponential Integral Si(z) (A&S 5.2.1)

Functionexpintegral ci (z)
The Exponential Integral Ci(z) (A&S 5.2.2)

Functionexpintegral shi (z)
The Exponential Integral Shi(z) (A&S 5.2.3)

Functionexpintegral chi (z)
The Exponential Integral Chi(z) (A&S 5.2.4)

Option variableexpintrep
Default value: false

Change the representation of the Exponential Integral to gamma incomplete, expin-
tegral e1, expintegral ei, expintegral li, expintegral trig, expintegral hyp

286 Maxima 5.35.1 Manual

Option variableexpintexpand
Default value: false

Expand the Exponential Integral E[n](z) for half integral values in terms of Erfc or
Erf and for positive integers in terms of Ei

15.6 Error Function

The Error function and related funtions are defined in Abramowitz and Stegun, Handbook
of Mathematical Functions, Chapter 7

Functionerf (z)
The Error Function erf(z) (A&S 7.1.1)

See also flag erfflag.

Functionerfc (z)
The Complementary Error Function erfc(z) (A&S 7.1.2)

erfc(z) = 1-erf(z)

Functionerfi (z)
The Imaginary Error Function.

erfi(z) = -%i*erf(%i*z)

Functionerf generalized (z1,z2)
Generalized Error function Erf(z1,z2)

Functionfresnel c (z)
The Fresnel Integral C(z) = integrate(cos((%pi/2)*t^2),t,0,z). (A&S 7.3.1)

The simplification fresnel c(-x) = -fresnel c(x) is applied when flag trigsign is true.

The simplification fresnel c(%i*x) = %i*fresnel c(x) is applied when flag %iargs is
true.

See flags erf_representation and hypergeometric_representation.

Functionfresnel s (z)
The Fresnel Integral S(z) = integrate(sin((%pi/2)*t^2),t,0,z). (A&S 7.3.2)

The simplification fresnel s(-x) = -fresnel s(x) is applied when flag trigsign is true.

The simplification fresnel s(%i*x) = -%i*fresnel s(x) is applied when flag %iargs is
true.

See flags erf_representation and hypergeometric_representation.

Option variableerf representation
Default value: false

When T erfc, erfi, erf generalized, fresnel s and fresnel c are transformed to erf.

Option variablehypergeometric representation
Default value: false

Enables transformation to a Hypergeometric representation for fresnel s and fresnel c

Chapter 15: Special Functions 287

15.7 Struve Functions

The Struve functions are defined in Abramowitz and Stegun, Handbook of Mathematical
Functions, Chapter 12.

Functionstruve h (v, z)
The Struve Function H of order v and argument z. (A&S 12.1.1)

Functionstruve l (v, z)
The Modified Struve Function L of order v and argument z. (A&S 12.2.1)

15.8 Hypergeometric Functions

The Hypergeometric Functions are defined in Abramowitz and Stegun, Handbook of
Mathematical Functions, Chapters 13 and 15.

Maxima has very limited knowledge of these functions. They can be returned from
function hgfred.

Function%m [k,u] (z)
Whittaker M function M[k,u](z) = exp(-z/2)*z^(1/2+u)*M(1/2+u-k,1+2*u,z).
(A&S 13.1.32)

Function%w [k,u] (z)
Whittaker W function. (A&S 13.1.33)

Function%f [p,q] ([a],[b],z)
The pFq(a1,a2,..ap;b1,b2,..bq;z) hypergeometric function, where a a list of length p

and b a list of length q.

Functionhypergeometric ([a1, ..., ap],[b1, ... ,bq], x)
The hypergeometric function. Unlike Maxima’s %f hypergeometric function, the func-
tion hypergeometric is a simplifying function; also, hypergeometric supports com-
plex double and big floating point evaluation. For the Gauss hypergeometric function,
that is p = 2 and q = 1, floating point evaluation outside the unit circle is supported,
but in general, it is not supported.

When the option variable expand_hypergeometric is true (default is false) and
one of the arguments a1 through ap is a negative integer (a polynomial case),
hypergeometric returns an expanded polynomial.

Examples:

(%i1) hypergeometric([],[],x);
(%o1) %e^x

Polynomial cases automatically expand when expand_hypergeometric is true:

288 Maxima 5.35.1 Manual

(%i2) hypergeometric([-3],[7],x);
(%o2) hypergeometric([-3],[7],x)

(%i3) hypergeometric([-3],[7],x), expand_hypergeometric : true;
(%o3) -x^3/504+3*x^2/56-3*x/7+1

Both double float and big float evaluation is supported:

(%i4) hypergeometric([5.1],[7.1 + %i],0.42);
(%o4) 1.346250786375334 - 0.0559061414208204 %i
(%i5) hypergeometric([5,6],[8], 5.7 - %i);
(%o5) .007375824009774946 - .001049813688578674 %i
(%i6) hypergeometric([5,6],[8], 5.7b0 - %i), fpprec : 30;
(%o6) 7.37582400977494674506442010824b-3

- 1.04981368857867315858055393376b-3 %i

15.9 Parabolic Cylinder Functions

The Parabolic Cylinder Functions are defined in Abramowitz and Stegun, Handbook of
Mathematical Functions, Chapter 19.

Maxima has very limited knowledge of these functions. They can be returned from
function hgfred.

Functionparabolic cylinder d (v, z)
The parabolic cylinder function parabolic_cylinder_d(v,z). (A&S 19.3.1)

15.10 Functions and Variables for Special Functions

Functionspecint (exp(- s*t) * expr, t)
Compute the Laplace transform of expr with respect to the variable t. The integrand
expr may contain special functions.

The following special functions are handled by specint: incomplete gamma function,
error functions (but not the error function erfi, it is easy to transform erfi e.g. to
the error function erf), exponential integrals, bessel functions (including products of
bessel functions), hankel functions, hermite and the laguerre polynomials.

Furthermore, specint can handle the hypergeometric function %f[p,q]([],[],z),
the whittaker function of the first kind %m[u,k](z) and of the second kind
%w[u,k](z).

The result may be in terms of special functions and can include unsimplified hyper-
geometric functions.

When laplace fails to find a Laplace transform, specint is called. Because laplace

knows more general rules for Laplace transforms, it is preferable to use laplace and
not specint.

demo(hypgeo) displays several examples of Laplace transforms computed by specint.

Examples:

Chapter 15: Special Functions 289

(%i1) assume (p > 0, a > 0)$
(%i2) specint (t^(1/2) * exp(-a*t/4) * exp(-p*t), t);

sqrt(%pi)
(%o2) ------------

a 3/2
2 (p + -)

4

(%i3) specint (t^(1/2) * bessel_j(1, 2 * a^(1/2) * t^(1/2))
* exp(-p*t), t);

- a/p
sqrt(a) %e

(%o3) ---------------
2
p

Examples for exponential integrals:

(%i4) assume(s>0,a>0,s-a>0)$
(%i5) ratsimp(specint(%e^(a*t)

*(log(a)+expintegral_e1(a*t))*%e^(-s*t),t));
log(s)

(%o5) ------
s - a

(%i6) logarc:true$

(%i7) gamma_expand:true$

radcan(specint((cos(t)*expintegral_si(t)
-sin(t)*expintegral_ci(t))*%e^(-s*t),t));

log(s)
(%o8) ------

2
s + 1

ratsimp(specint((2*t*log(a)+2/a*sin(a*t)
-2*t*expintegral_ci(a*t))*%e^(-s*t),t));

2 2
log(s + a)

(%o9) ------------
2
s

Results when using the expansion of gamma_incomplete and when changing the rep-
resentation to expintegral_e1:

(%i10) assume(s>0)$
(%i11) specint(1/sqrt(%pi*t)*unit_step(t-k)*%e^(-s*t),t);

1
gamma_incomplete(-, k s)

2
(%o11) ------------------------

sqrt(%pi) sqrt(s)

290 Maxima 5.35.1 Manual

(%i12) gamma_expand:true$
(%i13) specint(1/sqrt(%pi*t)*unit_step(t-k)*%e^(-s*t),t);

erfc(sqrt(k) sqrt(s))
(%o13) ---------------------

sqrt(s)

(%i14) expintrep:expintegral_e1$
(%i15) ratsimp(specint(1/(t+a)^2*%e^(-s*t),t));

a s
a s %e expintegral_e1(a s) - 1

(%o15) - ---------------------------------
a

Functionhgfred (a, b, t)
Simplify the generalized hypergeometric function in terms of other, simpler, forms. a
is a list of numerator parameters and b is a list of the denominator parameters.

If hgfred cannot simplify the hypergeometric function, it returns an expression of
the form %f[p,q]([a], [b], x) where p is the number of elements in a, and q is the
number of elements in b. This is the usual pFq generalized hypergeometric function.

(%i1) assume(not(equal(z,0)));
(%o1) [notequal(z, 0)]
(%i2) hgfred([v+1/2],[2*v+1],2*%i*z);

v/2 %i z
4 bessel_j(v, z) gamma(v + 1) %e

(%o2) ---------------------------------------
v
z

(%i3) hgfred([1,1],[2],z);

log(1 - z)
(%o3) - ----------

z
(%i4) hgfred([a,a+1/2],[3/2],z^2);

1 - 2 a 1 - 2 a
(z + 1) - (1 - z)

(%o4) -------------------------------
2 (1 - 2 a) z

It can be beneficial to load orthopoly too as the following example shows. Note that
L is the generalized Laguerre polynomial.

(%i5) load(orthopoly)$
(%i6) hgfred([-2],[a],z);

Chapter 15: Special Functions 291

(a - 1)
2 L (z)

2
(%o6) -------------

a (a + 1)
(%i7) ev(%);

2
z 2 z

(%o7) --------- - --- + 1
a (a + 1) a

Functionlambert w (z)
The principal branch of Lambert’s W function W(z), the solution of z = W(z) *

exp(W(z)). (DLMF 4.13)

Functiongeneralized lambert w (k, z)
The k-th branch of Lambert’s W function W(z), the solution of z = W(z) *

exp(W(z)). (DLMF 4.13)

The principal branch, denoted Wp(z) in DLMF, is lambert_w(z) = generalized_

lambert_w(0,z).

The other branch with real values, denoted Wm(z) in DLMF, is generalized_

lambert_w(-1,z).

Functionnzeta (z)
The Plasma Dispersion Function nzeta(z) = %i*sqrt(%pi)*exp(-z^2)*(1-erf(-

%i*z))

Functionnzetar (z)
Returns realpart(nzeta(z)).

Functionnzetai (z)
Returns imagpart(nzeta(z)).

292 Maxima 5.35.1 Manual

Chapter 16: Elliptic Functions 293

16 Elliptic Functions

16.1 Introduction to Elliptic Functions and Integrals

Maxima includes support for Jacobian elliptic functions and for complete and incomplete
elliptic integrals. This includes symbolic manipulation of these functions and numerical
evaluation as well. Definitions of these functions and many of their properties can by found
in Abramowitz and Stegun, Chapter 16–17. As much as possible, we use the definitions and
relationships given there.

In particular, all elliptic functions and integrals use the parameter m instead of the
modulus k or the modular angle α. This is one area where we differ from Abramowitz and
Stegun who use the modular angle for the elliptic functions. The following relationships are
true:

m = k2

and
k = sinα

The elliptic functions and integrals are primarily intended to support symbolic compu-
tation. Therefore, most of derivatives of the functions and integrals are known. However,
if floating-point values are given, a floating-point result is returned.

Support for most of the other properties of elliptic functions and integrals other than
derivatives has not yet been written.

Some examples of elliptic functions:

(%i1) jacobi_sn (u, m);
(%o1) jacobi_sn(u, m)
(%i2) jacobi_sn (u, 1);
(%o2) tanh(u)
(%i3) jacobi_sn (u, 0);
(%o3) sin(u)
(%i4) diff (jacobi_sn (u, m), u);
(%o4) jacobi_cn(u, m) jacobi_dn(u, m)
(%i5) diff (jacobi_sn (u, m), m);
(%o5) jacobi_cn(u, m) jacobi_dn(u, m)

elliptic_e(asin(jacobi_sn(u, m)), m)
(u - ------------------------------------)/(2 m)

1 - m

2
jacobi_cn (u, m) jacobi_sn(u, m)

+ --------------------------------
2 (1 - m)

Some examples of elliptic integrals:

(%i1) elliptic_f (phi, m);
(%o1) elliptic_f(phi, m)

294 Maxima 5.35.1 Manual

(%i2) elliptic_f (phi, 0);
(%o2) phi
(%i3) elliptic_f (phi, 1);

phi %pi
(%o3) log(tan(--- + ---))

2 4
(%i4) elliptic_e (phi, 1);
(%o4) sin(phi)
(%i5) elliptic_e (phi, 0);
(%o5) phi
(%i6) elliptic_kc (1/2);

1
(%o6) elliptic_kc(-)

2
(%i7) makegamma (%);

2 1
gamma (-)

4
(%o7) -----------

4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);

1
(%o8) ---------------------

2
sqrt(1 - m sin (phi))

(%i9) diff (elliptic_f (phi, m), m);
elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)

(%o9) (---
m

cos(phi) sin(phi)
- ---------------------)/(2 (1 - m))

2
sqrt(1 - m sin (phi))

Support for elliptic functions and integrals was written by Raymond Toy. It is placed
under the terms of the General Public License (GPL) that governs the distribution of
Maxima.

16.2 Functions and Variables for Elliptic Functions

Functionjacobi sn (u, m)
The Jacobian elliptic function sn(u,m).

Functionjacobi cn (u, m)
The Jacobian elliptic function cn(u,m).

Functionjacobi dn (u, m)
The Jacobian elliptic function dn(u,m).

Chapter 16: Elliptic Functions 295

Functionjacobi ns (u, m)
The Jacobian elliptic function ns(u,m) = 1/sn(u,m).

Functionjacobi sc (u, m)
The Jacobian elliptic function sc(u,m) = sn(u,m)/cn(u,m).

Functionjacobi sd (u, m)
The Jacobian elliptic function sd(u,m) = sn(u,m)/dn(u,m).

Functionjacobi nc (u, m)
The Jacobian elliptic function nc(u,m) = 1/cn(u,m).

Functionjacobi cs (u, m)
The Jacobian elliptic function cs(u,m) = cn(u,m)/sn(u,m).

Functionjacobi cd (u, m)
The Jacobian elliptic function cd(u,m) = cn(u,m)/dn(u,m).

Functionjacobi nd (u, m)
The Jacobian elliptic function nd(u,m) = 1/dn(u,m).

Functionjacobi ds (u, m)
The Jacobian elliptic function ds(u,m) = dn(u,m)/sn(u,m).

Functionjacobi dc (u, m)
The Jacobian elliptic function dc(u,m) = dn(u,m)/cn(u,m).

Functioninverse jacobi sn (u, m)
The inverse of the Jacobian elliptic function sn(u,m).

Functioninverse jacobi cn (u, m)
The inverse of the Jacobian elliptic function cn(u,m).

Functioninverse jacobi dn (u, m)
The inverse of the Jacobian elliptic function dn(u,m).

Functioninverse jacobi ns (u, m)
The inverse of the Jacobian elliptic function ns(u,m).

Functioninverse jacobi sc (u, m)
The inverse of the Jacobian elliptic function sc(u,m).

Functioninverse jacobi sd (u, m)
The inverse of the Jacobian elliptic function sd(u,m).

296 Maxima 5.35.1 Manual

Functioninverse jacobi nc (u, m)
The inverse of the Jacobian elliptic function nc(u,m).

Functioninverse jacobi cs (u, m)
The inverse of the Jacobian elliptic function cs(u,m).

Functioninverse jacobi cd (u, m)
The inverse of the Jacobian elliptic function cd(u,m).

Functioninverse jacobi nd (u, m)
The inverse of the Jacobian elliptic function nd(u,m).

Functioninverse jacobi ds (u, m)
The inverse of the Jacobian elliptic function ds(u,m).

Functioninverse jacobi dc (u, m)
The inverse of the Jacobian elliptic function dc(u,m).

16.3 Functions and Variables for Elliptic Integrals

Functionelliptic f (phi, m)
The incomplete elliptic integral of the first kind, defined as

∫ φ

0

dθ√
1−m sin2 θ

See also [elliptic e], page 296 and [elliptic kc], page 297.

Functionelliptic e (phi, m)
The incomplete elliptic integral of the second kind, defined as

∫ φ

0

√
1−m sin2 θdθ

See also [elliptic f], page 296 and [elliptic ec], page 297.

Functionelliptic eu (u, m)
The incomplete elliptic integral of the second kind, defined as

∫ u

0

dn(v,m)dv =

∫ τ

0

√
1−mt2
1− t2

dt

where τ = sn(u,m).

This is related to elliptice by

E(u,m) = E(φ,m)

where φ = sin−1 sn(u,m).

See also [elliptic e], page 296.

Chapter 16: Elliptic Functions 297

Functionelliptic pi (n, phi, m)
The incomplete elliptic integral of the third kind, defined as

∫ φ

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ

Only the derivative with respect to phi is known by Maxima.

Functionelliptic kc (m)
The complete elliptic integral of the first kind, defined as

∫ π
2

0

dθ√
1−m sin2 θ

For certain values of m, the value of the integral is known in terms of Gamma func-
tions. Use makegamma to evaluate them.

Functionelliptic ec (m)
The complete elliptic integral of the second kind, defined as

∫ π
2

0

√
1−m sin2 θdθ

For certain values of m, the value of the integral is known in terms of Gamma func-
tions. Use makegamma to evaluate them.

298 Maxima 5.35.1 Manual

Chapter 17: Limits 299

17 Limits

17.1 Functions and Variables for Limits

Option variablelhospitallim
Default value: 4

lhospitallim is the maximum number of times L’Hospital’s rule is used in limit.
This prevents infinite looping in cases like limit (cot(x)/csc(x), x, 0).

Functionlimit
limit (expr, x, val, dir)
limit (expr, x, val)
limit (expr)

Computes the limit of expr as the real variable x approaches the value val from the
direction dir. dir may have the value plus for a limit from above, minus for a limit
from below, or may be omitted (implying a two-sided limit is to be computed).

limit uses the following special symbols: inf (positive infinity) and minf (negative
infinity). On output it may also use und (undefined), ind (indefinite but bounded)
and infinity (complex infinity).

infinity (complex infinity) is returned when the limit of the absolute value of the ex-
pression is positive infinity, but the limit of the expression itself is not positive infinity
or negative infinity. This includes cases where the limit of the complex argument is
a constant, as in limit(log(x), x, minf), cases where the complex argument oscil-
lates, as in limit((-2)^x, x, inf), and cases where the complex argument is differ-
ent for either side of a two-sided limit, as in limit(1/x, x, 0) and limit(log(x),

x, 0).

lhospitallim is the maximum number of times L’Hospital’s rule is used in limit.
This prevents infinite looping in cases like limit (cot(x)/csc(x), x, 0).

tlimswitch when true will allow the limit command to use Taylor series expansion
when necessary.

limsubst prevents limit from attempting substitutions on unknown forms. This is
to avoid bugs like limit (f(n)/f(n+1), n, inf) giving 1. Setting limsubst to true

will allow such substitutions.

limit with one argument is often called upon to simplify constant expressions, for
example, limit (inf-1).

example (limit) displays some examples.

For the method see Wang, P., "Evaluation of Definite Integrals by Symbolic Manip-
ulation", Ph.D. thesis, MAC TR-92, October 1971.

Option variablelimsubst
Default value: false

prevents limit from attempting substitutions on unknown forms. This is to avoid
bugs like limit (f(n)/f(n+1), n, inf) giving 1. Setting limsubst to true will
allow such substitutions.

300 Maxima 5.35.1 Manual

Functiontlimit
tlimit (expr, x, val, dir)
tlimit (expr, x, val)
tlimit (expr)

Take the limit of the Taylor series expansion of expr in x at val from direction dir.

Option variabletlimswitch
Default value: true

When tlimswitch is true, the limit command will use a Taylor series expansion if
the limit of the input expression cannot be computed directly. This allows evaluation
of limits such as limit(x/(x-1)-1/log(x),x,1,plus). When tlimswitch is false
and the limit of input expression cannot be computed directly, limit will return an
unevaluated limit expression.

Chapter 18: Differentiation 301

18 Differentiation

18.1 Functions and Variables for Differentiation

Functionantid (expr, x, u(x))
Returns a two-element list, such that an antiderivative of expr with respect to x can
be constructed from the list. The expression expr may contain an unknown function
u and its derivatives.

Let L, a list of two elements, be the return value of antid. Then L[1] + ’integrate

(L[2], x) is an antiderivative of expr with respect to x.

When antid succeeds entirely, the second element of the return value is zero. Other-
wise, the second element is nonzero, and the first element is nonzero or zero. If antid
cannot make any progress, the first element is zero and the second nonzero.

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antid is related to antidiff as follows. Let L, a list of two elements, be the return
value of antid. Then the return value of antidiff is equal to L[1] + ’integrate

(L[2], x) where x is the variable of integration.

Examples:

(%i1) load ("antid")$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%o2) y(x) %e (-- (z(x)))

dx
(%i3) a1: antid (expr, x, z(x));

z(x) z(x) d
(%o3) [y(x) %e , - %e (-- (y(x)))]

dx
(%i4) a2: antidiff (expr, x, z(x));

/
z(x) [z(x) d

(%o4) y(x) %e - I %e (-- (y(x))) dx
] dx
/

(%i5) a2 - (first (a1) + ’integrate (second (a1), x));
(%o5) 0
(%i6) antid (expr, x, y(x));

z(x) d
(%o6) [0, y(x) %e (-- (z(x)))]

dx
(%i7) antidiff (expr, x, y(x));

/
[z(x) d

(%o7) I y(x) %e (-- (z(x))) dx
] dx
/

302 Maxima 5.35.1 Manual

Functionantidiff (expr, x, u(x))
Returns an antiderivative of expr with respect to x. The expression expr may contain
an unknown function u and its derivatives.

When antidiff succeeds entirely, the resulting expression is free of integral signs
(that is, free of the integrate noun). Otherwise, antidiff returns an expression
which is partly or entirely within an integral sign. If antidiff cannot make any
progress, the return value is entirely within an integral sign.

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antidiff is related to antid as follows. Let L, a list of two elements, be the return
value of antid. Then the return value of antidiff is equal to L[1] + ’integrate

(L[2], x) where x is the variable of integration.

Examples:

(%i1) load ("antid")$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%o2) y(x) %e (-- (z(x)))

dx
(%i3) a1: antid (expr, x, z(x));

z(x) z(x) d
(%o3) [y(x) %e , - %e (-- (y(x)))]

dx
(%i4) a2: antidiff (expr, x, z(x));

/
z(x) [z(x) d

(%o4) y(x) %e - I %e (-- (y(x))) dx
] dx
/

(%i5) a2 - (first (a1) + ’integrate (second (a1), x));
(%o5) 0
(%i6) antid (expr, x, y(x));

z(x) d
(%o6) [0, y(x) %e (-- (z(x)))]

dx
(%i7) antidiff (expr, x, y(x));

/
[z(x) d

(%o7) I y(x) %e (-- (z(x))) dx
] dx
/

Functionat
at (expr, [eqn 1, . . . , eqn n])
at (expr, eqn)

Evaluates the expression expr with the variables assuming the values as specified for
them in the list of equations [eqn 1, ..., eqn n] or the single equation eqn.

Chapter 18: Differentiation 303

If a subexpression depends on any of the variables for which a value is specified but
there is no atvalue specified and it can’t be otherwise evaluated, then a noun form
of the at is returned which displays in a two-dimensional form.

at carries out multiple substitutions in parallel.

See also atvalue. For other functions which carry out substitutions, see also subst

and ev.

Examples:

(%i1) atvalue (f(x,y), [x = 0, y = 1], a^2);
2

(%o1) a
(%i2) atvalue (’diff (f(x,y), x), x = 0, 1 + y);
(%o2) @2 + 1
(%i3) printprops (all, atvalue);

!
d !
--- (f(@1, @2))! = @2 + 1
d@1 !

!@1 = 0

2
f(0, 1) = a

(%o3) done
(%i4) diff (4*f(x, y)^2 - u(x, y)^2, x);

d d
(%o4) 8 f(x, y) (-- (f(x, y))) - 2 u(x, y) (-- (u(x, y)))

dx dx
(%i5) at (%, [x = 0, y = 1]);

!
2 d !

(%o5) 16 a - 2 u(0, 1) (-- (u(x, y))!)
dx !

!x = 0, y = 1

Propertyatomgrad
atomgrad is the atomic gradient property of an expression. This property is assigned
by gradef.

Functionatvalue
atvalue (expr, [x 1 = a 1, . . . , x m = a m], c)
atvalue (expr, x 1 = a 1, c)

Assigns the value c to expr at the point x = a. Typically boundary values are estab-
lished by this mechanism.

expr is a function evaluation, f (x 1, ..., x m), or a derivative, diff (f (x 1, ...,

x m), x 1, n 1, ..., x n, n m) in which the function arguments explicitly appear.
n i is the order of differentiation with respect to x i.

304 Maxima 5.35.1 Manual

The point at which the atvalue is established is given by the list of equations [x 1
= a 1, ..., x m = a m]. If there is a single variable x 1, the sole equation may be
given without enclosing it in a list.

printprops ([f 1, f 2, ...], atvalue) displays the atvalues of the functions f 1,
f 2, ... as specified by calls to atvalue. printprops (f, atvalue) displays the
atvalues of one function f. printprops (all, atvalue) displays the atvalues of all
functions for which atvalues are defined.

The symbols @1, @2, . . . represent the variables x 1, x 2, . . . when atvalues are
displayed.

atvalue evaluates its arguments. atvalue returns c, the atvalue.

Examples:

(%i1) atvalue (f(x,y), [x = 0, y = 1], a^2);
2

(%o1) a
(%i2) atvalue (’diff (f(x,y), x), x = 0, 1 + y);
(%o2) @2 + 1
(%i3) printprops (all, atvalue);

!
d !
--- (f(@1, @2))! = @2 + 1
d@1 !

!@1 = 0

2
f(0, 1) = a

(%o3) done
(%i4) diff (4*f(x,y)^2 - u(x,y)^2, x);

d d
(%o4) 8 f(x, y) (-- (f(x, y))) - 2 u(x, y) (-- (u(x, y)))

dx dx
(%i5) at (%, [x = 0, y = 1]);

!
2 d !

(%o5) 16 a - 2 u(0, 1) (-- (u(x, y))!)
dx !

!x = 0, y = 1

Functioncartan
The exterior calculus of differential forms is a basic tool of differential geometry
developed by Elie Cartan and has important applications in the theory of partial
differential equations. The cartan package implements the functions ext_diff and
lie_diff, along with the operators ~ (wedge product) and | (contraction of a form
with a vector.) Type demo (tensor) to see a brief description of these commands
along with examples.

cartan was implemented by F.B. Estabrook and H.D. Wahlquist.

Chapter 18: Differentiation 305

Functiondel (x)
del (x) represents the differential of the variable x.

diff returns an expression containing del if an independent variable is not specified.
In this case, the return value is the so-called "total differential".

Examples:

(%i1) diff (log (x));
del(x)

(%o1) ------
x

(%i2) diff (exp (x*y));
x y x y

(%o2) x %e del(y) + y %e del(x)
(%i3) diff (x*y*z);
(%o3) x y del(z) + x z del(y) + y z del(x)

Functiondelta (t)
The Dirac Delta function.

Currently only laplace knows about the delta function.

Example:

(%i1) laplace (delta (t - a) * sin(b*t), t, s);
Is a positive, negative, or zero?

p;
- a s

(%o1) sin(a b) %e

System variabledependencies
Functiondependencies (f 1, . . . , f n)

The variable dependencies is the list of atoms which have functional dependencies,
assigned by depends, the function dependencies, or gradef. The dependencies list
is cumulative: each call to depends, dependencies, or gradef appends additional
items. The default value of dependencies is [].

The function dependencies(f 1, ..., f n) appends f 1, . . . , f n, to the
dependencies list, where f 1, . . . , f n are expressions of the form f (x 1, ..., x m),
and x 1, . . . , x m are any number of arguments.

dependencies(f (x 1, ..., x m)) is equivalent to depends(f, [x 1, ..., x m]).

See also depends and gradef.

(%i1) dependencies;
(%o1) []
(%i2) depends (foo, [bar, baz]);
(%o2) [foo(bar, baz)]
(%i3) depends ([g, h], [a, b, c]);
(%o3) [g(a, b, c), h(a, b, c)]
(%i4) dependencies;
(%o4) [foo(bar, baz), g(a, b, c), h(a, b, c)]

306 Maxima 5.35.1 Manual

(%i5) dependencies (quux (x, y), mumble (u));
(%o5) [quux(x, y), mumble(u)]
(%i6) dependencies;
(%o6) [foo(bar, baz), g(a, b, c), h(a, b, c), quux(x, y),

mumble(u)]
(%i7) remove (quux, dependency);
(%o7) done
(%i8) dependencies;
(%o8) [foo(bar, baz), g(a, b, c), h(a, b, c), mumble(u)]

Functiondepends (f 1, x 1, . . . , f n, x n)
Declares functional dependencies among variables for the purpose of computing
derivatives. In the absence of declared dependence, diff (f, x) yields zero. If
depends (f, x) is declared, diff (f, x) yields a symbolic derivative (that is, a
diff noun).

Each argument f 1, x 1, etc., can be the name of a variable or array, or a list of names.
Every element of f i (perhaps just a single element) is declared to depend on every
element of x i (perhaps just a single element). If some f i is the name of an array or
contains the name of an array, all elements of the array depend on x i.

diff recognizes indirect dependencies established by depends and applies the chain
rule in these cases.

remove (f, dependency) removes all dependencies declared for f.

depends returns a list of the dependencies established. The dependencies are ap-
pended to the global variable dependencies. depends evaluates its arguments.

diff is the only Maxima command which recognizes dependencies established by
depends. Other functions (integrate, laplace, etc.) only recognize dependencies
explicitly represented by their arguments. For example, integrate does not recognize
the dependence of f on x unless explicitly represented as integrate (f(x), x).

depends(f, [x 1, ..., x n]) is equivalent to dependencies(f (x 1, ..., x n)).

(%i1) depends ([f, g], x);
(%o1) [f(x), g(x)]
(%i2) depends ([r, s], [u, v, w]);
(%o2) [r(u, v, w), s(u, v, w)]
(%i3) depends (u, t);
(%o3) [u(t)]
(%i4) dependencies;
(%o4) [f(x), g(x), r(u, v, w), s(u, v, w), u(t)]
(%i5) diff (r.s, u);

dr ds
(%o5) -- . s + r . --

du du

(%i6) diff (r.s, t);
dr du ds du

(%o6) -- -- . s + r . -- --
du dt du dt

Chapter 18: Differentiation 307

(%i7) remove (r, dependency);
(%o7) done
(%i8) diff (r.s, t);

ds du
(%o8) r . -- --

du dt

Option variablederivabbrev
Default value: false

When derivabbrev is true, symbolic derivatives (that is, diff nouns) are displayed
as subscripts. Otherwise, derivatives are displayed in the Leibniz notation dy/dx.

Functionderivdegree (expr, y, x)
Returns the highest degree of the derivative of the dependent variable y with respect
to the independent variable x occuring in expr.

Example:

(%i1) ’diff (y, x, 2) + ’diff (y, z, 3) + ’diff (y, x) * x^2;
3 2
d y d y 2 dy

(%o1) --- + --- + x --
3 2 dx

dz dx
(%i2) derivdegree (%, y, x);
(%o2) 2

Functionderivlist (var 1, . . . , var k)
Causes only differentiations with respect to the indicated variables, within the ev

command.

Option variablederivsubst
Default value: false

When derivsubst is true, a non-syntactic substitution such as subst (x, ’diff (y,

t), ’diff (y, t, 2)) yields ’diff (x, t).

Functiondiff
diff (expr, x 1, n 1, . . . , x m, n m)
diff (expr, x, n)
diff (expr, x)
diff (expr)

Returns the derivative or differential of expr with respect to some or all variables in
expr.

diff (expr, x, n) returns the n’th derivative of expr with respect to x.

308 Maxima 5.35.1 Manual

diff (expr, x 1, n 1, ..., x m, n m) returns the mixed partial derivative of expr
with respect to x 1, . . . , x m. It is equivalent to diff (... (diff (expr, x m, n m)

...), x 1, n 1).

diff (expr, x) returns the first derivative of expr with respect to the variable x.

diff (expr) returns the total differential of expr, that is, the sum of the derivatives
of expr with respect to each its variables times the differential del of each variable.
No further simplification of del is offered.

The noun form of diff is required in some contexts, such as stating a differential
equation. In these cases, diff may be quoted (as ’diff) to yield the noun form
instead of carrying out the differentiation.

When derivabbrev is true, derivatives are displayed as subscripts. Otherwise,
derivatives are displayed in the Leibniz notation, dy/dx.

Examples:

(%i1) diff (exp (f(x)), x, 2);
2

f(x) d f(x) d 2
(%o1) %e (--- (f(x))) + %e (-- (f(x)))

2 dx
dx

(%i2) derivabbrev: true$
(%i3) ’integrate (f(x, y), y, g(x), h(x));

h(x)
/
[

(%o3) I f(x, y) dy
]
/
g(x)

(%i4) diff (%, x);
h(x)

/
[

(%o4) I f(x, y) dy + f(x, h(x)) h(x) - f(x, g(x)) g(x)
] x x x
/
g(x)

For the tensor package, the following modifications have been incorporated:

(1) The derivatives of any indexed objects in expr will have the variables x i appended
as additional arguments. Then all the derivative indices will be sorted.

(2) The x i may be integers from 1 up to the value of the variable dimension [default
value: 4]. This will cause the differentiation to be carried out with respect to the
x i’th member of the list coordinates which should be set to a list of the names of
the coordinates, e.g., [x, y, z, t]. If coordinates is bound to an atomic variable,
then that variable subscripted by x i will be used for the variable of differentiation.
This permits an array of coordinate names or subscripted names like X[1], X[2], . . .

Chapter 18: Differentiation 309

to be used. If coordinates has not been assigned a value, then the variables will be
treated as in (1) above.

Special symboldiff
When diff is present as an evflag in call to ev, all differentiations indicated in expr

are carried out.

Functiondscalar (f)
Applies the scalar d’Alembertian to the scalar function f.

load ("ctensor") loads this function.

Functionexpress (expr)
Expands differential operator nouns into expressions in terms of partial derivatives.
express recognizes the operators grad, div, curl, laplacian. express also expands
the cross product ~.

Symbolic derivatives (that is, diff nouns) in the return value of express may be
evaluated by including diff in the ev function call or command line. In this context,
diff acts as an evfun.

load ("vect") loads this function.

Examples:

(%i1) load ("vect")$
(%i2) grad (x^2 + y^2 + z^2);

2 2 2
(%o2) grad (z + y + x)
(%i3) express (%);

d 2 2 2 d 2 2 2 d 2 2 2
(%o3) [-- (z + y + x), -- (z + y + x), -- (z + y + x)]

dx dy dz
(%i4) ev (%, diff);
(%o4) [2 x, 2 y, 2 z]
(%i5) div ([x^2, y^2, z^2]);

2 2 2
(%o5) div [x , y , z]
(%i6) express (%);

d 2 d 2 d 2
(%o6) -- (z) + -- (y) + -- (x)

dz dy dx
(%i7) ev (%, diff);
(%o7) 2 z + 2 y + 2 x
(%i8) curl ([x^2, y^2, z^2]);

2 2 2
(%o8) curl [x , y , z]
(%i9) express (%);

d 2 d 2 d 2 d 2 d 2 d 2
(%o9) [-- (z) - -- (y), -- (x) - -- (z), -- (y) - -- (x)]

310 Maxima 5.35.1 Manual

dy dz dz dx dx dy
(%i10) ev (%, diff);
(%o10) [0, 0, 0]
(%i11) laplacian (x^2 * y^2 * z^2);

2 2 2
(%o11) laplacian (x y z)
(%i12) express (%);

2 2 2
d 2 2 2 d 2 2 2 d 2 2 2

(%o12) --- (x y z) + --- (x y z) + --- (x y z)
2 2 2

dz dy dx
(%i13) ev (%, diff);

2 2 2 2 2 2
(%o13) 2 y z + 2 x z + 2 x y
(%i14) [a, b, c] ~ [x, y, z];
(%o14) [a, b, c] ~ [x, y, z]
(%i15) express (%);
(%o15) [b z - c y, c x - a z, a y - b x]

Functiongradef
gradef (f (x 1, . . . , x n), g 1, . . . , g m)
gradef (a, x, expr)

Defines the partial derivatives (i.e., the components of the gradient) of the function f
or variable a.

gradef (f (x 1, ..., x n), g 1, ..., g m) defines df /dx i as g i, where g i is an
expression; g i may be a function call, but not the name of a function. The number
of partial derivatives m may be less than the number of arguments n, in which case
derivatives are defined with respect to x 1 through x m only.

gradef (a, x, expr) defines the derivative of variable a with respect to x as expr.
This also establishes the dependence of a on x (via depends (a, x)).

The first argument f (x 1, ..., x n) or a is quoted, but the remaining arguments
g 1, ..., g m are evaluated. gradef returns the function or variable for which the
partial derivatives are defined.

gradef can redefine the derivatives of Maxima’s built-in functions. For example,
gradef (sin(x), sqrt (1 - sin(x)^2)) redefines the derivative of sin.

gradef cannot define partial derivatives for a subscripted function.

printprops ([f 1, ..., f n], gradef) displays the partial derivatives of the func-
tions f 1, ..., f n, as defined by gradef.

printprops ([a n, ..., a n], atomgrad) displays the partial derivatives of the
variables a n, ..., a n, as defined by gradef.

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have
been defined by gradef.

Gradients are needed when, for example, a function is not known explicitly but its
first derivatives are and it is desired to obtain higher order derivatives.

Chapter 18: Differentiation 311

System variablegradefs
Default value: []

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have
been defined by gradef.

Functionlaplace (expr, t, s)
Attempts to compute the Laplace transform of expr with respect to the variable t
and transform parameter s.

laplace recognizes in expr the functions delta, exp, log, sin, cos, sinh, cosh,
and erf, as well as derivative, integrate, sum, and ilt. If laplace fails to find a
transform the function specint is called. specint can find the laplace transform for
expressions with special functions like the bessel functions bessel_j, bessel_i, . . .
and can handle the unit_step function. See also specint.

If specint cannot find a solution too, a noun laplace is returned.

expr may also be a linear, constant coefficient differential equation in which case
atvalue of the dependent variable is used. The required atvalue may be supplied
either before or after the transform is computed. Since the initial conditions must
be specified at zero, if one has boundary conditions imposed elsewhere he can im-
pose these on the general solution and eliminate the constants by solving the general
solution for them and substituting their values back.

laplace recognizes convolution integrals of the form integrate (f(x) * g(t - x),

x, 0, t); other kinds of convolutions are not recognized.

Functional relations must be explicitly represented in expr; implicit relations, estab-
lished by depends, are not recognized. That is, if f depends on x and y, f (x, y)

must appear in expr.

See also ilt, the inverse Laplace transform.

Examples:

(%i1) laplace (exp (2*t + a) * sin(t) * t, t, s);
a

%e (2 s - 4)
(%o1) ---------------

2 2
(s - 4 s + 5)

(%i2) laplace (’diff (f (x), x), x, s);
(%o2) s laplace(f(x), x, s) - f(0)
(%i3) diff (diff (delta (t), t), t);

2
d

(%o3) --- (delta(t))
2

dt
(%i4) laplace (%, t, s);

!
d ! 2

312 Maxima 5.35.1 Manual

(%o4) - -- (delta(t))! + s - delta(0) s
dt !

!t = 0
(%i5) assume(a>0)$
(%i6) laplace(gamma_incomplete(a,t),t,s),gamma_expand:true;

- a - 1
gamma(a) gamma(a) s

(%o6) -------- - -----------------
s 1 a

(- + 1)
s

(%i7) factor(laplace(gamma_incomplete(1/2,t),t,s));
s + 1

sqrt(%pi) (sqrt(s) sqrt(-----) - 1)
s

(%o7) -----------------------------------
3/2 s + 1
s sqrt(-----)

s
(%i8) assume(exp(%pi*s)>1)$
(%i9) laplace(sum((-1)^n*unit_step(t-n*%pi)*sin(t),n,0,inf),t,s),

simpsum;
%i %i

------------------------ - ------------------------
- %pi s - %pi s

(s + %i) (1 - %e) (s - %i) (1 - %e)
(%o9) ---

2
(%i9) factor(%);

%pi s
%e

(%o9) -------------------------------
%pi s

(s - %i) (s + %i) (%e - 1)

Chapter 19: Integration 313

19 Integration

19.1 Introduction to Integration

Maxima has several routines for handling integration. The integrate function makes
use of most of them. There is also the antid package, which handles an unspecified func-
tion (and its derivatives, of course). For numerical uses, there is a set of adaptive inte-
grators from QUADPACK, named quad_qag, quad_qags, etc., which are described under
the heading QUADPACK. Hypergeometric functions are being worked on, see specint for
details. Generally speaking, Maxima only handles integrals which are integrable in terms of
the "elementary functions" (rational functions, trigonometrics, logs, exponentials, radicals,
etc.) and a few extensions (error function, dilogarithm). It does not handle integrals in
terms of unknown functions such as g(x) and h(x).

19.2 Functions and Variables for Integration

Functionchangevar (expr, f(x,y), y, x)
Makes the change of variable given by f(x,y) = 0 in all integrals occurring in expr with
integration with respect to x. The new variable is y.

(%i1) assume(a > 0)$
(%i2) ’integrate (%e**sqrt(a*y), y, 0, 4);

4
/
[sqrt(a) sqrt(y)

(%o2) I %e dy
]
/
0

(%i3) changevar (%, y-z^2/a, z, y);
0
/
[abs(z)

2 I z %e dz
]
/
- 2 sqrt(a)

(%o3) - ----------------------------
a

An expression containing a noun form, such as the instances of ’integrate above,
may be evaluated by ev with the nouns flag. For example, the expression returned
by changevar above may be evaluated by ev (%o3, nouns).

changevar may also be used to changes in the indices of a sum or product. However,
it must be realized that when a change is made in a sum or product, this change must
be a shift, i.e., i = j+ ..., not a higher degree function. E.g.,

314 Maxima 5.35.1 Manual

(%i4) sum (a[i]*x^(i-2), i, 0, inf);
inf
====
\ i - 2

(%o4) > a x
/ i
====
i = 0

(%i5) changevar (%, i-2-n, n, i);
inf
====
\ n

(%o5) > a x
/ n + 2
====
n = - 2

Functiondblint (f, r, s, a, b)
A double-integral routine which was written in top-level Maxima and then translated
and compiled to machine code. Use load (dblint) to access this package. It uses
the Simpson’s rule method in both the x and y directions to calculate

∫ b

a

∫ s(x)

r(x)

f (x, y) dy dx.

The function f must be a translated or compiled function of two variables, and r and
s must each be a translated or compiled function of one variable, while a and b must
be floating point numbers. The routine has two global variables which determine
the number of divisions of the x and y intervals: dblint_x and dblint_y, both of
which are initially 10, and can be changed independently to other integer values (there
are 2*dblint_x+1 points computed in the x direction, and 2*dblint_y+1 in the y
direction). The routine subdivides the X axis and then for each value of X it first
computes r(x) and s(x); then the Y axis between r(x) and s(x) is subdivided and
the integral along the Y axis is performed using Simpson’s rule; then the integral
along the X axis is done using Simpson’s rule with the function values being the Y-
integrals. This procedure may be numerically unstable for a great variety of reasons,
but is reasonably fast: avoid using it on highly oscillatory functions and functions
with singularities (poles or branch points in the region). The Y integrals depend on
how far apart r(x) and s(x) are, so if the distance s(x) - r(x) varies rapidly with
X, there may be substantial errors arising from truncation with different step-sizes
in the various Y integrals. One can increase dblint_x and dblint_y in an effort to
improve the coverage of the region, at the expense of computation time. The function
values are not saved, so if the function is very time-consuming, you will have to wait
for re-computation if you change anything (sorry). It is required that the functions
f, r, and s be either translated or compiled prior to calling dblint. This will result
in orders of magnitude speed improvement over interpreted code in many cases!

demo (dblint) executes a demonstration of dblint applied to an example problem.

Chapter 19: Integration 315

Functiondefint (expr, x, a, b)
Attempts to compute a definite integral. defint is called by integrate when limits
of integration are specified, i.e., when integrate is called as integrate (expr, x,
a, b). Thus from the user’s point of view, it is sufficient to call integrate.

defint returns a symbolic expression, either the computed integral or the noun form
of the integral. See quad_qag and related functions for numerical approximation of
definite integrals.

Option variableerfflag
Default value: true

When erfflag is false, prevents risch from introducing the erf function in the
answer if there were none in the integrand to begin with.

Functionilt (expr, s, t)
Computes the inverse Laplace transform of expr with respect to s and parameter t.
expr must be a ratio of polynomials whose denominator has only linear and quadratic
factors. By using the functions laplace and ilt together with the solve or linsolve
functions the user can solve a single differential or convolution integral equation or a
set of them.

(%i1) ’integrate (sinh(a*x)*f(t-x), x, 0, t) + b*f(t) = t**2;
t
/
[2

(%o1) I f(t - x) sinh(a x) dx + b f(t) = t
]
/
0

(%i2) laplace (%, t, s);
a laplace(f(t), t, s) 2

(%o2) b laplace(f(t), t, s) + --------------------- = --
2 2 3
s - a s

(%i3) linsolve ([%], [’laplace(f(t), t, s)]);
2 2

2 s - 2 a
(%o3) [laplace(f(t), t, s) = --------------------]

5 2 3
b s + (a - a b) s

316 Maxima 5.35.1 Manual

(%i4) ilt (rhs (first (%)), s, t);
Is a b (a b - 1) positive, negative, or zero?

pos;
sqrt(a b (a b - 1)) t

2 cosh(---------------------) 2
b a t

(%o4) - ----------------------------- + -------
3 2 2 a b - 1
a b - 2 a b + a

2
+ ------------------

3 2 2
a b - 2 a b + a

Option variableintanalysis
Default value: true

When true, definite integration tries to find poles in the integrand in the interval of
integration. If there are, then the integral is evaluated appropriately as a principal
value integral. If intanalysis is false, this check is not performed and integration is
done assuming there are no poles.

See also ldefint.

Examples:

Maxima can solve the following integrals, when intanalysis is set to false:

(%i1) integrate(1/(sqrt(x)+1),x,0,1);
1
/
[1

(%o1) I ----------- dx
] sqrt(x) + 1
/
0

(%i2) integrate(1/(sqrt(x)+1),x,0,1),intanalysis:false;
(%o2) 2 - 2 log(2)

(%i3) integrate(cos(a)/sqrt((tan(a))^2 +1),a,-%pi/2,%pi/2);
The number 1 isn’t in the domain of atanh
-- an error. To debug this try: debugmode(true);

(%i4) intanalysis:false$
(%i5) integrate(cos(a)/sqrt((tan(a))^2+1),a,-%pi/2,%pi/2);

%pi
(%o5) ---

2

Chapter 19: Integration 317

Functionintegrate
integrate (expr, x)
integrate (expr, x, a, b)

Attempts to symbolically compute the integral of expr with respect to x. integrate
(expr, x) is an indefinite integral, while integrate (expr, x, a, b) is a definite
integral, with limits of integration a and b. The limits should not contain x, although
integrate does not enforce this restriction. a need not be less than b. If b is equal
to a, integrate returns zero.

See quad_qag and related functions for numerical approximation of definite integrals.
See residue for computation of residues (complex integration). See antid for an
alternative means of computing indefinite integrals.

The integral (an expression free of integrate) is returned if integrate succeeds.
Otherwise the return value is the noun form of the integral (the quoted operator
’integrate) or an expression containing one or more noun forms. The noun form of
integrate is displayed with an integral sign.

In some circumstances it is useful to construct a noun form by hand, by quoting
integrate with a single quote, e.g., ’integrate (expr, x). For example, the integral
may depend on some parameters which are not yet computed. The noun may be
applied to its arguments by ev (i, nouns) where i is the noun form of interest.

integrate handles definite integrals separately from indefinite, and employs a range
of heuristics to handle each case. Special cases of definite integrals include limits of
integration equal to zero or infinity (inf or minf), trigonometric functions with limits
of integration equal to zero and %pi or 2 %pi, rational functions, integrals related to
the definitions of the beta and psi functions, and some logarithmic and trigonometric
integrals. Processing rational functions may include computation of residues. If an
applicable special case is not found, an attempt will be made to compute the indefinite
integral and evaluate it at the limits of integration. This may include taking a limit
as a limit of integration goes to infinity or negative infinity; see also ldefint.

Special cases of indefinite integrals include trigonometric functions, exponential and
logarithmic functions, and rational functions. integrate may also make use of a
short table of elementary integrals.

integrate may carry out a change of variable if the integrand has the form f(g(x))

* diff(g(x), x). integrate attempts to find a subexpression g(x) such that the
derivative of g(x) divides the integrand. This search may make use of derivatives
defined by the gradef function. See also changevar and antid.

If none of the preceding heuristics find the indefinite integral, the Risch algorithm is
executed. The flag risch may be set as an evflag, in a call to ev or on the com-
mand line, e.g., ev (integrate (expr, x), risch) or integrate (expr, x), risch.
If risch is present, integrate calls the risch function without attempting heuristics
first. See also risch.

integrate works only with functional relations represented explicitly with the f(x)

notation. integrate does not respect implicit dependencies established by the
depends function.

integrate may need to know some property of a parameter in the integrand.
integrate will first consult the assume database, and, if the variable of interest

318 Maxima 5.35.1 Manual

is not there, integrate will ask the user. Depending on the question, suitable
responses are yes; or no;, or pos;, zero;, or neg;.

integrate is not, by default, declared to be linear. See declare and linear.

integrate attempts integration by parts only in a few special cases.

Examples:

• Elementary indefinite and definite integrals.

(%i1) integrate (sin(x)^3, x);
3

cos (x)
(%o1) ------- - cos(x)

3

(%i2) integrate (x/ sqrt (b^2 - x^2), x);
2 2

(%o2) - sqrt(b - x)

(%i3) integrate (cos(x)^2 * exp(x), x, 0, %pi);
%pi

3 %e 3
(%o3) ------- - -

5 5

(%i4) integrate (x^2 * exp(-x^2), x, minf, inf);
sqrt(%pi)

(%o4) ---------
2

• Use of assume and interactive query.

(%i1) assume (a > 1)$
(%i2) integrate (x**a/(x+1)**(5/2), x, 0, inf);

2 a + 2
Is ------- an integer?

5

no;
Is 2 a - 3 positive, negative, or zero?

neg;
3

(%o2) beta(a + 1, - - a)
2

• Change of variable. There are two changes of variable in this example: one using
a derivative established by gradef, and one using the derivation diff(r(x)) of
an unspecified function r(x).

(%i3) gradef (q(x), sin(x**2));
(%o3) q(x)

Chapter 19: Integration 319

(%i4) diff (log (q (r (x))), x);
d 2
(-- (r(x))) sin(r (x))
dx

(%o4) ----------------------
q(r(x))

(%i5) integrate (%, x);
(%o5) log(q(r(x)))

• Return value contains the ’integrate noun form. In this example, Maxima can
extract one factor of the denominator of a rational function, but cannot factor the
remainder or otherwise find its integral. grind shows the noun form ’integrate

in the result. See also integrate_use_rootsof for more on integrals of rational
functions.

(%i1) expand ((x-4) * (x^3+2*x+1));
4 3 2

(%o1) x - 4 x + 2 x - 7 x - 4

(%i2) integrate (1/%, x);
/ 2
[x + 4 x + 18
I ------------- dx
] 3

log(x - 4) / x + 2 x + 1
(%o2) ---------- - ------------------

73 73

(%i3) grind (%);
log(x-4)/73-(’integrate((x^2+4*x+18)/(x^3+2*x+1),x))/73$

• Defining a function in terms of an integral. The body of a function is not evalu-
ated when the function is defined. Thus the body of f_1 in this example contains
the noun form of integrate. The quote-quote operator ’’ causes the integral
to be evaluated, and the result becomes the body of f_2.

(%i1) f_1 (a) := integrate (x^3, x, 1, a);
3

(%o1) f_1(a) := integrate(x , x, 1, a)

(%i2) ev (f_1 (7), nouns);
(%o2) 600

(%i3) /* Note parentheses around integrate(...) here */
f_2 (a) := ’’(integrate (x^3, x, 1, a));

4
a 1

(%o3) f_2(a) := -- - -
4 4

(%i4) f_2 (7);
(%o4) 600

System variableintegration constant
Default value: %c

320 Maxima 5.35.1 Manual

When a constant of integration is introduced by indefinite integration of an equation,
the name of the constant is constructed by concatenating integration_constant

and integration_constant_counter.

integration_constant may be assigned any symbol.

Examples:

(%i1) integrate (x^2 = 1, x);
3
x

(%o1) -- = x + %c1
3

(%i2) integration_constant : ’k;
(%o2) k

(%i3) integrate (x^2 = 1, x);
3
x

(%o3) -- = x + k2
3

System variableintegration constant counter
Default value: 0

When a constant of integration is introduced by indefinite integration of an equation,
the name of the constant is constructed by concatenating integration_constant

and integration_constant_counter.

integration_constant_counter is incremented before constructing the next inte-
gration constant.

Examples:

(%i1) integrate (x^2 = 1, x);
3
x

(%o1) -- = x + %c1
3

(%i2) integrate (x^2 = 1, x);
3
x

(%o2) -- = x + %c2
3

(%i3) integrate (x^2 = 1, x);
3
x

(%o3) -- = x + %c3
3

(%i4) reset (integration_constant_counter);
(%o4) [integration_constant_counter]

Chapter 19: Integration 321

(%i5) integrate (x^2 = 1, x);
3
x

(%o5) -- = x + %c1
3

Option variableintegrate use rootsof
Default value: false

When integrate_use_rootsof is true and the denominator of a rational function
cannot be factored, integrate returns the integral in a form which is a sum over the
roots (not yet known) of the denominator.

For example, with integrate_use_rootsof set to false, integrate returns an un-
solved integral of a rational function in noun form:

(%i1) integrate_use_rootsof: false$
(%i2) integrate (1/(1+x+x^5), x);

/ 2
[x - 4 x + 5
I ------------ dx 2 x + 1
] 3 2 2 5 atan(-------)
/ x - x + 1 log(x + x + 1) sqrt(3)

(%o2) ----------------- - --------------- + ---------------
7 14 7 sqrt(3)

Now we set the flag to be true and the unsolved part of the integral will be expressed
as a summation over the roots of the denominator of the rational function:

(%i3) integrate_use_rootsof: true$
(%i4) integrate (1/(1+x+x^5), x);

==== 2
\ (%r4 - 4 %r4 + 5) log(x - %r4)
> -------------------------------

/ 2
==== 3 %r4 - 2 %r4

3 2
%r4 in rootsof(x - x + 1)

(%o4) --
7

2 x + 1
2 5 atan(-------)

log(x + x + 1) sqrt(3)
- --------------- + ---------------

14 7 sqrt(3)

Alternatively the user may compute the roots of the denominator separately, and
then express the integrand in terms of these roots, e.g., 1/((x - a)*(x - b)*(x -

c)) or 1/((x^2 - (a+b)*x + a*b)*(x - c)) if the denominator is a cubic polynomial.
Sometimes this will help Maxima obtain a more useful result.

322 Maxima 5.35.1 Manual

Functionldefint (expr, x, a, b)
Attempts to compute the definite integral of expr by using limit to evaluate the
indefinite integral of expr with respect to x at the upper limit b and at the lower
limit a. If it fails to compute the definite integral, ldefint returns an expression
containing limits as noun forms.

ldefint is not called from integrate, so executing ldefint (expr, x, a, b) may
yield a different result than integrate (expr, x, a, b). ldefint always uses the
same method to evaluate the definite integral, while integrate may employ various
heuristics and may recognize some special cases.

Functionpotential (givengradient)
The calculation makes use of the global variable potentialzeroloc[0] which must
be nonlist or of the form

[indeterminatej=expressionj, indeterminatek=expressionk, ...]

the former being equivalent to the nonlist expression for all right-hand sides in the lat-
ter. The indicated right-hand sides are used as the lower limit of integration. The suc-
cess of the integrations may depend upon their values and order. potentialzeroloc
is initially set to 0.

Functionresidue (expr, z, z 0)
Computes the residue in the complex plane of the expression expr when the variable z
assumes the value z 0. The residue is the coefficient of (z - z 0)^(-1) in the Laurent
series for expr.

(%i1) residue (s/(s**2+a**2), s, a*%i);
1

(%o1) -
2

(%i2) residue (sin(a*x)/x**4, x, 0);
3
a

(%o2) - --
6

Functionrisch (expr, x)
Integrates expr with respect to x using the transcendental case of the Risch algo-
rithm. (The algebraic case of the Risch algorithm has not been implemented.) This
currently handles the cases of nested exponentials and logarithms which the main
part of integrate can’t do. integrate will automatically apply risch if given these
cases.

erfflag, if false, prevents risch from introducing the erf function in the answer
if there were none in the integrand to begin with.

Chapter 19: Integration 323

(%i1) risch (x^2*erf(x), x);
2

3 2 - x
%pi x erf(x) + (sqrt(%pi) x + sqrt(%pi)) %e

(%o1) ---
3 %pi

(%i2) diff(%, x), ratsimp;
2

(%o2) x erf(x)

Functiontldefint (expr, x, a, b)
Equivalent to ldefint with tlimswitch set to true.

19.3 Introduction to QUADPACK

QUADPACK is a collection of functions for the numerical computation of one-
dimensional definite integrals. It originated from a joint project of R. Piessens1, E. de
Doncker2, C. Ueberhuber3, and D. Kahaner4.

The QUADPACK library included in Maxima is an automatic translation (via the pro-
gram f2cl) of the Fortran source code of QUADPACK as it appears in the SLATEC
Common Mathematical Library, Version 4.15. The SLATEC library is dated July 1993, but
the QUADPACK functions were written some years before. There is another version of
QUADPACK at Netlib6; it is not clear how that version differs from the SLATEC version.

The QUADPACK functions included in Maxima are all automatic, in the sense that
these functions attempt to compute a result to a specified accuracy, requiring an unspecified
number of function evaluations. Maxima’s Lisp translation of QUADPACK also includes
some non-automatic functions, but they are not exposed at the Maxima level.

Further information about QUADPACK can be found in the QUADPACK book7.

19.3.1 Overview

quad_qag Integration of a general function over a finite interval. quad_qag implements a
simple globally adaptive integrator using the strategy of Aind (Piessens, 1973).
The caller may choose among 6 pairs of Gauss-Kronrod quadrature formulae for
the rule evaluation component. The high-degree rules are suitable for strongly
oscillating integrands.

1 Applied Mathematics and Programming Division, K.U. Leuven
2 Applied Mathematics and Programming Division, K.U. Leuven
3 Institut für Mathematik, T.U. Wien
4 National Bureau of Standards, Washington, D.C., U.S.A
5 http://www.netlib.org/slatec
6 http://www.netlib.org/quadpack
7 R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner. QUADPACK: A Subroutine

Package for Automatic Integration. Berlin: Springer-Verlag, 1983, ISBN 0387125531.

324 Maxima 5.35.1 Manual

quad_qags

Integration of a general function over a finite interval. quad_qags implements
globally adaptive interval subdivision with extrapolation (de Doncker, 1978) by
the Epsilon algorithm (Wynn, 1956).

quad_qagi

Integration of a general function over an infinite or semi-infinite interval. The
interval is mapped onto a finite interval and then the same strategy as in quad_

qags is applied.

quad_qawo

Integration of cos (ω x) f (x) or sin (ω x) f (x) over a finite interval, where ω is
a constant. The rule evaluation component is based on the modified Clenshaw-
Curtis technique. quad_qawo applies adaptive subdivision with extrapolation,
similar to quad_qags.

quad_qawf

Calculates a Fourier cosine or Fourier sine transform on a semi-infinite interval.
The same approach as in quad_qawo is applied on successive finite intervals,
and convergence acceleration by means of the Epsilon algorithm (Wynn, 1956)
is applied to the series of the integral contributions.

quad_qaws

Integration of w (x) f (x) over a finite interval [a, b], where w is a function of

the form (x− a)
α

(b− x)
β
v (x) and v (x) is 1 or log (x− a) or log (b− x) or

log (x− a) log (b− x), and α > −1 and β > −1.

A globally adaptive subdivision strategy is applied, with modified Clenshaw-
Curtis integration on the subintervals which contain a or b.

quad_qawc

Computes the Cauchy principal value of f(x)/(x−c) over a finite interval (a, b)
and specified c. The strategy is globally adaptive, and modified Clenshaw-
Curtis integration is used on the subranges which contain the point x = c.

quad_qagp

Basically the same as quad_qags but points of singularity or discontinuity of the
integrand must be supplied. This makes it easier for the integrator to produce
a good solution.

19.4 Functions and Variables for QUADPACK

Functionquad qag
quad_qag (f(x), x, a, b, key, [epsrel, epsabs, limit])
quad_qag (f, x, a, b, key, [epsrel, epsabs, limit])

Integration of a general function over a finite interval. quad_qag implements a simple
globally adaptive integrator using the strategy of Aind (Piessens, 1973). The caller
may choose among 6 pairs of Gauss-Kronrod quadrature formulae for the rule evalua-
tion component. The high-degree rules are suitable for strongly oscillating integrands.

quad_qag computes the integral

Chapter 19: Integration 325

∫ b

a

f(x) dx

The function to be integrated is f(x), with dependent variable x, and the function is to
be integrated between the limits a and b. key is the integrator to be used and should
be an integer between 1 and 6, inclusive. The value of key selects the order of the
Gauss-Kronrod integration rule. High-order rules are suitable for strongly oscillating
integrands.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The numerical integration is done adaptively by subdividing the integration region
into sub-intervals until the desired accuracy is achieved.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limit is the maximum number of subintervals
to use. Default is 200.

quad_qag returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 if no problems were encountered;

1 if too many sub-intervals were done;

2 if excessive roundoff error is detected;

3 if extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:

(%i1) quad_qag (x^(1/2)*log(1/x), x, 0, 1, 3, ’epsrel=5d-8);
(%o1) [.4444444444492108, 3.1700968502883E-9, 961, 0]

(%i2) integrate (x^(1/2)*log(1/x), x, 0, 1);
4

(%o2) -
9

326 Maxima 5.35.1 Manual

Functionquad qags
quad_qags (f(x), x, a, b, [epsrel, epsabs, limit])
quad_qags (f, x, a, b, [epsrel, epsabs, limit])

Integration of a general function over a finite interval. quad_qags implements globally
adaptive interval subdivision with extrapolation (de Doncker, 1978) by the Epsilon
algorithm (Wynn, 1956).

quad_qags computes the integral

∫ b

a

f(x) dx

The function to be integrated is f(x), with dependent variable x, and the function is
to be integrated between the limits a and b.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limit is the maximum number of subintervals
to use. Default is 200.

quad_qags returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

4 failed to converge

5 integral is probably divergent or slowly convergent

6 if the input is invalid.

Examples:

(%i1) quad_qags (x^(1/2)*log(1/x), x, 0, 1, ’epsrel=1d-10);
(%o1) [.4444444444444448, 1.11022302462516E-15, 315, 0]

Note that quad_qags is more accurate and efficient than quad_qag for this integrand.

Chapter 19: Integration 327

Functionquad qagi
quad_qagi (f(x), x, a, b, [epsrel, epsabs, limit])
quad_qagi (f, x, a, b, [epsrel, epsabs, limit])

Integration of a general function over an infinite or semi-infinite interval. The interval
is mapped onto a finite interval and then the same strategy as in quad_qags is applied.

quad_qagi evaluates one of the following integrals∫ ∞
a

f(x) dx

∫ a

∞
f(x) dx

∫ ∞
−∞

f(x) dx

using the Quadpack QAGI routine. The function to be integrated is f(x), with de-
pendent variable x, and the function is to be integrated over an infinite range.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

One of the limits of integration must be infinity. If not, then quad_qagi will just
return the noun form.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limit is the maximum number of subintervals
to use. Default is 200.

quad_qagi returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

4 failed to converge

5 integral is probably divergent or slowly convergent

328 Maxima 5.35.1 Manual

6 if the input is invalid.

Examples:

(%i1) quad_qagi (x^2*exp(-4*x), x, 0, inf, ’epsrel=1d-8);
(%o1) [0.03125, 2.95916102995002E-11, 105, 0]

(%i2) integrate (x^2*exp(-4*x), x, 0, inf);
1

(%o2) --
32

Functionquad qawc
quad_qawc (f(x), x, c, a, b, [epsrel, epsabs, limit])
quad_qawc (f, x, c, a, b, [epsrel, epsabs, limit])

Computes the Cauchy principal value of f(x)/(x − c) over a finite interval. The
strategy is globally adaptive, and modified Clenshaw-Curtis integration is used on
the subranges which contain the point x = c.

quad_qawc computes the Cauchy principal value of

∫ b

a

f (x)

x− c
dx

using the Quadpack QAWC routine. The function to be integrated is f(x)/(x - c),
with dependent variable x, and the function is to be integrated over the interval a to
b.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limit is the maximum number of subintervals
to use. Default is 200.

quad_qawc returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

Chapter 19: Integration 329

6 if the input is invalid.

Examples:

(%i1) quad_qawc (2^(-5)*((x-1)^2+4^(-5))^(-1), x, 2, 0, 5,
’epsrel=1d-7);

(%o1) [- 3.130120337415925, 1.306830140249558E-8, 495, 0]

(%i2) integrate (2^(-alpha)*(((x-1)^2 + 4^(-alpha))*(x-2))^(-1),
x, 0, 5);

Principal Value
alpha

alpha 9 4 9
4 log(------------- + -------------)

alpha alpha
64 4 + 4 64 4 + 4

(%o2) (---
alpha

2 4 + 2

3 alpha 3 alpha
------- -------

2 alpha/2 2 alpha/2
2 4 atan(4 4) 2 4 atan(4) alpha

- --------------------------- - -------------------------)/2
alpha alpha

2 4 + 2 2 4 + 2

(%i3) ev (%, alpha=5, numer);
(%o3) - 3.130120337415917

Functionquad qawf
quad_qawf (f(x), x, a, omega, trig, [epsabs, limit, maxp1, limlst])
quad_qawf (f, x, a, omega, trig, [epsabs, limit, maxp1, limlst])

Calculates a Fourier cosine or Fourier sine transform on a semi-infinite interval us-
ing the Quadpack QAWF function. The same approach as in quad_qawo is applied
on successive finite intervals, and convergence acceleration by means of the Epsilon
algorithm (Wynn, 1956) is applied to the series of the integral contributions.

quad_qawf computes the integral∫ ∞
a

f(x)w(x) dx

The weight function w is selected by trig :

cos w(x) = cos(omegax)

sin w(x) = sin(omegax)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

330 Maxima 5.35.1 Manual

epsabs Desired absolute error of approximation. Default is 1d-10.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

maxp1 Maximum number of Chebyshev moments. Must be greater than 0. De-
fault is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to
3. Default is 10.

quad_qawf returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:

(%i1) quad_qawf (exp(-x^2), x, 0, 1, ’cos, ’epsabs=1d-9);
(%o1) [.6901942235215714, 2.84846300257552E-11, 215, 0]

(%i2) integrate (exp(-x^2)*cos(x), x, 0, inf);
- 1/4

%e sqrt(%pi)
(%o2) -----------------

2

(%i3) ev (%, numer);
(%o3) .6901942235215714

Functionquad qawo
quad_qawo (f(x), x, a, b, omega, trig, [epsrel, epsabs, limit, maxp1, limlst])
quad_qawo (f, x, a, b, omega, trig, [epsrel, epsabs, limit, maxp1, limlst])

Integration of cos (ω x) f (x) or sin (ω x) f (x) over a finite interval, where ω is a
constant. The rule evaluation component is based on the modified Clenshaw-Curtis
technique. quad_qawo applies adaptive subdivision with extrapolation, similar to
quad_qags.

quad_qawo computes the integral using the Quadpack QAWO routine:

∫ b

a

f(x)w(x) dx

The weight function w is selected by trig :

Chapter 19: Integration 331

cos w (x) = cos (ω x)

sin w (x) = sin (ω x)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limit/2 is the maximum number of subinter-
vals to use. Default is 200.

maxp1 Maximum number of Chebyshev moments. Must be greater than 0. De-
fault is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to
3. Default is 10.

quad_qawo returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:

(%i1) quad_qawo (x^(-1/2)*exp(-2^(-2)*x), x, 1d-8, 20*2^2, 1, cos);
(%o1) [1.376043389877692, 4.72710759424899E-11, 765, 0]

(%i2) rectform (integrate (x^(-1/2)*exp(-2^(-alpha)*x) * cos(x),
x, 0, inf));

alpha/2 - 1/2 2 alpha
sqrt(%pi) 2 sqrt(sqrt(2 + 1) + 1)

(%o2) ---
2 alpha

sqrt(2 + 1)

(%i3) ev (%, alpha=2, numer);
(%o3) 1.376043390090716

332 Maxima 5.35.1 Manual

Functionquad qaws
quad_qaws (f(x), x, a, b, alpha, beta, wfun, [epsrel, epsabs, limit])
quad_qaws (f, x, a, b, alpha, beta, wfun, [epsrel, epsabs, limit])

Integration of w(x)f(x) over a finite interval, where w(x) is a certain algebraic or log-
arithmic function. A globally adaptive subdivision strategy is applied, with modified
Clenshaw-Curtis integration on the subintervals which contain the endpoints of the
interval of integration.

quad_qaws computes the integral using the Quadpack QAWS routine:

∫ b

a

f(x)w(x) dx

The weight function w is selected by wfun:

1 w (x) = (x− a)
α

(b− x)
β

2 w (x) = (x− a)
α

(b− x)
β

log (x− a)

3 w (x) = (x− a)
α

(b− x)
β

log (b− x)

4 w (x) = (x− a)
α

(b− x)
β

log (x− a) log (b− x)

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limitis the maximum number of subintervals
to use. Default is 200.

quad_qaws returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:

Chapter 19: Integration 333

(%i1) quad_qaws (1/(x+1+2^(-4)), x, -1, 1, -0.5, -0.5, 1,
’epsabs=1d-9);

(%o1) [8.750097361672832, 1.24321522715422E-10, 170, 0]

(%i2) integrate ((1-x*x)^(-1/2)/(x+1+2^(-alpha)), x, -1, 1);
alpha

Is 4 2 - 1 positive, negative, or zero?

pos;
alpha alpha

2 %pi 2 sqrt(2 2 + 1)
(%o2) -------------------------------

alpha
4 2 + 2

(%i3) ev (%, alpha=4, numer);
(%o3) 8.750097361672829

Functionquad qagp
quad_qagp (f(x), x, a, b, points, [epsrel, epsabs, limit])
quad_qagp (f, x, a, b, points, [epsrel, epsabs, limit])

Integration of a general function over a finite interval. quad_qagp implements globally
adaptive interval subdivision with extrapolation (de Doncker, 1978) by the Epsilon
algorithm (Wynn, 1956).

quad_qagp computes the integral

∫ b

a

f(x) dx

The function to be integrated is f(x), with dependent variable x, and the function is
to be integrated between the limits a and b.

The integrand may be specified as the name of a Maxima or Lisp function or operator,
a Maxima lambda expression, or a general Maxima expression.

To help the integrator, the user must supply a list of points where the integrand is
singular or discontinous.

The keyword arguments are optional and may be specified in any order. They all
take the form key=val. The keyword arguments are:

epsrel Desired relative error of approximation. Default is 1d-8.

epsabs Desired absolute error of approximation. Default is 0.

limit Size of internal work array. limit is the maximum number of subintervals
to use. Default is 200.

quad_qagp returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

334 Maxima 5.35.1 Manual

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

4 failed to converge

5 integral is probably divergent or slowly convergent

6 if the input is invalid.

Examples:

(%i1) quad_qagp(x^3*log(abs((x^2-1)*(x^2-2))),x,0,3,[1,sqrt(2)]);
(%o1) [52.74074838347143, 2.6247632689546663e-7, 1029, 0]

(%i2) quad_qags(x^3*log(abs((x^2-1)*(x^2-2))), x, 0, 3);
(%o2) [52.74074847951494, 4.088443219529836e-7, 1869, 0]

The integrand has singularities at 1 and sqrt(2) so we supply these points to quad_

qagp. We also note that quad_qagp is more accurate and more efficient that quad_

qags.

Functionquad control (parameter, [value])
Control error handling for quadpack. The parameter should be one of the following
symbols:

current_error

The current error number

control Controls if messages are printed or not. If it is set to zero or less, messages
are suppressed.

max_message

The maximum number of times any message is to be printed.

If value is not given, then the current value of the parameter is returned. If value is
given, the value of parameter is set to the given value.

Chapter 20: Equations 335

20 Equations

20.1 Functions and Variables for Equations

System variable%rnum list
Default value: []

%rnum_list is the list of variables introduced in solutions by solve and algsys. %r

variables are added to %rnum_list in the order they are created. This is convenient
for doing substitutions into the solution later on. It’s recommended to use this list
rather than doing concat (’%r, j).

(%i1) solve ([x + y = 3], [x,y]);
(%o1) [[x = 3 - %r1, y = %r1]]

(%i2) %rnum_list;
(%o2) [%r1]

(%i3) sol : solve ([x + 2*y + 3*z = 4], [x,y,z]);
(%o3) [[x = - 2 %r3 - 3 %r2 + 4, y = %r3, z = %r2]]

(%i4) %rnum_list;
(%o4) [%r2, %r3]

(%i5) for i : 1 thru length (%rnum_list) do
sol : subst (t[i], %rnum_list[i], sol)$

(%i6) sol;
(%o6) [[x = - 2 t - 3 t + 4, y = t , z = t]]

2 1 2 1

Option variablealgepsilon
Default value: 10^8

algepsilon is used by algsys.

Option variablealgexact
Default value: false

algexact affects the behavior of algsys as follows:

If algexact is true, algsys always calls solve and then uses realroots on solve’s
failures.

If algexact is false, solve is called only if the eliminant was not univariate, or if it
was a quadratic or biquadratic.

Thus algexact: true does not guarantee only exact solutions, just that algsys will
first try as hard as it can to give exact solutions, and only yield approximations when
all else fails.

336 Maxima 5.35.1 Manual

Functionalgsys
algsys ([expr 1, . . . , expr m], [x 1, . . . , x n])
algsys ([eqn 1, . . . , eqn m], [x 1, . . . , x n])

Solves the simultaneous polynomials expr 1, . . . , expr m or polynomial equations
eqn 1, . . . , eqn m for the variables x 1, . . . , x n. An expression expr is equivalent to
an equation expr = 0. There may be more equations than variables or vice versa.

algsys returns a list of solutions, with each solution given as a list of equations stating
values of the variables x 1, . . . , x n which satisfy the system of equations. If algsys
cannot find a solution, an empty list [] is returned.

The symbols %r1, %r2, . . . , are introduced as needed to represent arbitrary parame-
ters in the solution; these variables are also appended to the list %rnum_list.

The method is as follows:

1. First the equations are factored and split into subsystems.

2. For each subsystem S i, an equation E and a variable x are selected. The variable
is chosen to have lowest nonzero degree. Then the resultant of E and E j with
respect to x is computed for each of the remaining equations E j in the subsystem
S i. This yields a new subsystem S i’ in one fewer variables, as x has been
eliminated. The process now returns to (1).

3. Eventually, a subsystem consisting of a single equation is obtained. If the equa-
tion is multivariate and no approximations in the form of floating point numbers
have been introduced, then solve is called to find an exact solution.

In some cases, solve is not be able to find a solution, or if it does the solution
may be a very large expression.

If the equation is univariate and is either linear, quadratic, or biquadratic, then
again solve is called if no approximations have been introduced. If approxima-
tions have been introduced or the equation is not univariate and neither linear,
quadratic, or biquadratic, then if the switch realonly is true, the function
realroots is called to find the real-valued solutions. If realonly is false, then
allroots is called which looks for real and complex-valued solutions.

If algsys produces a solution which has fewer significant digits than required,
the user can change the value of algepsilon to a higher value.

If algexact is set to true, solve will always be called.

4. Finally, the solutions obtained in step (3) are substituted into previous levels and
the solution process returns to (1).

When algsys encounters a multivariate equation which contains floating point ap-
proximations (usually due to its failing to find exact solutions at an earlier stage),
then it does not attempt to apply exact methods to such equations and instead prints
the message: "algsys cannot solve - system too complicated."

Interactions with radcan can produce large or complicated expressions. In that case,
it may be possible to isolate parts of the result with pickapart or reveal.

Occasionally, radcan may introduce an imaginary unit %i into a solution which is
actually real-valued.

Examples:

Chapter 20: Equations 337

(%i1) e1: 2*x*(1 - a1) - 2*(x - 1)*a2;
(%o1) 2 (1 - a1) x - 2 a2 (x - 1)
(%i2) e2: a2 - a1;
(%o2) a2 - a1
(%i3) e3: a1*(-y - x^2 + 1);

2
(%o3) a1 (- y - x + 1)
(%i4) e4: a2*(y - (x - 1)^2);

2
(%o4) a2 (y - (x - 1))
(%i5) algsys ([e1, e2, e3, e4], [x, y, a1, a2]);
(%o5) [[x = 0, y = %r1, a1 = 0, a2 = 0],

[x = 1, y = 0, a1 = 1, a2 = 1]]
(%i6) e1: x^2 - y^2;

2 2
(%o6) x - y
(%i7) e2: -1 - y + 2*y^2 - x + x^2;

2 2
(%o7) 2 y - y + x - x - 1
(%i8) algsys ([e1, e2], [x, y]);

1 1
(%o8) [[x = - -------, y = -------],

sqrt(3) sqrt(3)

1 1 1 1
[x = -------, y = - -------], [x = - -, y = - -], [x = 1, y = 1]]

sqrt(3) sqrt(3) 3 3

Functionallroots
allroots (expr)
allroots (eqn)

Computes numerical approximations of the real and complex roots of the polynomial
expr or polynomial equation eqn of one variable.

The flag polyfactor when true causes allroots to factor the polynomial over the
real numbers if the polynomial is real, or over the complex numbers, if the polynomial
is complex.

allroots may give inaccurate results in case of multiple roots. If the polynomial is
real, allroots (%i*p) may yield more accurate approximations than allroots (p),
as allroots invokes a different algorithm in that case.

allroots rejects non-polynomials. It requires that the numerator after rat’ing should
be a polynomial, and it requires that the denominator be at most a complex number.
As a result of this allroots will always return an equivalent (but factored) expression,
if polyfactor is true.

For complex polynomials an algorithm by Jenkins and Traub is used (Algorithm 419,
Comm. ACM, vol. 15, (1972), p. 97). For real polynomials the algorithm used is due
to Jenkins (Algorithm 493, ACM TOMS, vol. 1, (1975), p.178).

338 Maxima 5.35.1 Manual

Examples:

(%i1) eqn: (1 + 2*x)^3 = 13.5*(1 + x^5);
3 5

(%o1) (2 x + 1) = 13.5 (x + 1)
(%i2) soln: allroots (eqn);
(%o2) [x = .8296749902129361, x = - 1.015755543828121,

x = .9659625152196369 %i - .4069597231924075,

x = - .9659625152196369 %i - .4069597231924075, x = 1.0]
(%i3) for e in soln

do (e2: subst (e, eqn), disp (expand (lhs(e2) - rhs(e2))));
- 3.5527136788005E-15

- 5.32907051820075E-15

4.44089209850063E-15 %i - 4.88498130835069E-15

- 4.44089209850063E-15 %i - 4.88498130835069E-15

3.5527136788005E-15

(%o3) done
(%i4) polyfactor: true$
(%i5) allroots (eqn);
(%o5) - 13.5 (x - 1.0) (x - .8296749902129361)

2
(x + 1.015755543828121) (x + .8139194463848151 x

+ 1.098699797110288)

Functionbfallroots
bfallroots (expr)
bfallroots (eqn)

Computes numerical approximations of the real and complex roots of the polynomial
expr or polynomial equation eqn of one variable.

In all respects, bfallroots is identical to allroots except that bfallroots computes
the roots using bigfloats. See allroots for more information.

Option variablebacksubst
Default value: true

When backsubst is false, prevents back substitution in linsolve after the equations
have been triangularized. This may be helpful in very big problems where back
substitution would cause the generation of extremely large expressions.

(%i1) eq1 : x + y + z = 6$
(%i2) eq2 : x - y + z = 2$

Chapter 20: Equations 339

(%i3) eq3 : x + y - z = 0$
(%i4) backsubst : false$
(%i5) linsolve ([eq1, eq2, eq3], [x,y,z]);
(%o5) [x = z - y, y = 2, z = 3]
(%i6) backsubst : true$
(%i7) linsolve ([eq1, eq2, eq3], [x,y,z]);
(%o7) [x = 1, y = 2, z = 3]

Option variablebreakup
Default value: true

When breakup is true, solve expresses solutions of cubic and quartic equations in
terms of common subexpressions, which are assigned to intermediate expression labels
(%t1, %t2, etc.). Otherwise, common subexpressions are not identified.

breakup: true has an effect only when programmode is false.

Examples:

(%i1) programmode: false$
(%i2) breakup: true$
(%i3) solve (x^3 + x^2 - 1);

sqrt(23) 25 1/3
(%t3) (--------- + --)

6 sqrt(3) 54
Solution:

sqrt(3) %i 1
---------- - -

sqrt(3) %i 1 2 2 1
(%t4) x = (- ---------- - -) %t3 + -------------- - -

2 2 9 %t3 3

sqrt(3) %i 1
- ---------- - -

sqrt(3) %i 1 2 2 1
(%t5) x = (---------- - -) %t3 + ---------------- - -

2 2 9 %t3 3

1 1
(%t6) x = %t3 + ----- - -

9 %t3 3
(%o6) [%t4, %t5, %t6]
(%i6) breakup: false$
(%i7) solve (x^3 + x^2 - 1);
Solution:

sqrt(3) %i 1
---------- - -

2 2 sqrt(23) 25 1/3

340 Maxima 5.35.1 Manual

(%t7) x = --------------------- + (--------- + --)
sqrt(23) 25 1/3 6 sqrt(3) 54

9 (--------- + --)
6 sqrt(3) 54

sqrt(3) %i 1 1
(- ---------- - -) - -

2 2 3
sqrt(23) 25 1/3 sqrt(3) %i 1

(%t8) x = (--------- + --) (---------- - -)
6 sqrt(3) 54 2 2

sqrt(3) %i 1
- ---------- - -

2 2 1
+ --------------------- - -

sqrt(23) 25 1/3 3
9 (--------- + --)

6 sqrt(3) 54
sqrt(23) 25 1/3 1 1

(%t9) x = (--------- + --) + --------------------- - -
6 sqrt(3) 54 sqrt(23) 25 1/3 3

9 (--------- + --)
6 sqrt(3) 54

(%o9) [%t7, %t8, %t9]

Functiondimension
dimension (eqn)
dimension (eqn 1, . . . , eqn n)

dimen is a package for dimensional analysis. load ("dimen") loads this package.
demo ("dimen") displays a short demonstration.

Option variabledispflag
Default value: true

If set to false within a block will inhibit the display of output generated by the
solve functions called from within the block. Termination of the block with a dollar
sign, $, sets dispflag to false.

Functionfuncsolve (eqn, g(t))
Returns [g(t) = ...] or [], depending on whether or not there exists a rational
function g(t) satisfying eqn, which must be a first order, linear polynomial in (for
this case) g(t) and g(t+1)

(%i1) eqn: (n + 1)*f(n) - (n + 3)*f(n + 1)/(n + 1) =
(n - 1)/(n + 2);

(n + 3) f(n + 1) n - 1
(%o1) (n + 1) f(n) - ---------------- = -----

Chapter 20: Equations 341

n + 1 n + 2
(%i2) funcsolve (eqn, f(n));

Dependent equations eliminated: (4 3)
n

(%o2) f(n) = ---------------
(n + 1) (n + 2)

Warning: this is a very rudimentary implementation – many safety checks and obvious
generalizations are missing.

Option variableglobalsolve
Default value: false

When globalsolve is true, solved-for variables are assigned the solution values found
by linsolve, and by solve when solving two or more linear equations.

When globalsolve is false, solutions found by linsolve and by solve when solving
two or more linear equations are expressed as equations, and the solved-for variables
are not assigned.

When solving anything other than two or more linear equations, solve ignores
globalsolve. Other functions which solve equations (e.g., algsys) always ignore
globalsolve.

Examples:

(%i1) globalsolve: true$
(%i2) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

17
(%t2) x : --

7

1
(%t3) y : - -

7
(%o3) [[%t2, %t3]]
(%i3) x;

17
(%o3) --

7
(%i4) y;

1
(%o4) - -

7
(%i5) globalsolve: false$
(%i6) kill (x, y)$
(%i7) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

17

342 Maxima 5.35.1 Manual

(%t7) x = --
7

1
(%t8) y = - -

7
(%o8) [[%t7, %t8]]
(%i8) x;
(%o8) x
(%i9) y;
(%o9) y

Functionieqn (ie, unk, tech, n, guess)
inteqn is a package for solving integral equations. load ("inteqn") loads this pack-
age.

ie is the integral equation; unk is the unknown function; tech is the technique to
be tried from those given above (tech = first means: try the first technique which
finds a solution; tech = all means: try all applicable techniques); n is the maximum
number of terms to take for taylor, neumann, firstkindseries, or fredseries (it
is also the maximum depth of recursion for the differentiation method); guess is the
initial guess for neumann or firstkindseries.

Default values for the 2nd thru 5th parameters are:

unk: p(x), where p is the first function encountered in an integrand which is unknown
to Maxima and x is the variable which occurs as an argument to the first occurrence of
p found outside of an integral in the case of secondkind equations, or is the only other
variable besides the variable of integration in firstkind equations. If the attempt
to search for x fails, the user will be asked to supply the independent variable.

tech: first

n: 1

guess: none which will cause neumann and firstkindseries to use f (x) as an initial
guess.

Option variableieqnprint
Default value: true

ieqnprint governs the behavior of the result returned by the ieqn command. When
ieqnprint is false, the lists returned by the ieqn function are of the form

[solution, technique used, nterms, flag]

where flag is absent if the solution is exact.

Otherwise, it is the word approximate or incomplete corresponding to an inexact
or non-closed form solution, respectively. If a series method was used, nterms gives
the number of terms taken (which could be less than the n given to ieqn if an error
prevented generation of further terms).

Chapter 20: Equations 343

Functionlhs (expr)
Returns the left-hand side (that is, the first argument) of the expression expr, when
the operator of expr is one of the relational operators < <= = # equal notequal >= >,
one of the assignment operators := ::= : ::, or a user-defined binary infix operator,
as declared by infix.

When expr is an atom or its operator is something other than the ones listed above,
lhs returns expr.

See also rhs.

Examples:

(%i1) e: aa + bb = cc;
(%o1) bb + aa = cc
(%i2) lhs (e);
(%o2) bb + aa
(%i3) rhs (e);
(%o3) cc
(%i4) [lhs (aa < bb), lhs (aa <= bb), lhs (aa >= bb),

lhs (aa > bb)];
(%o4) [aa, aa, aa, aa]
(%i5) [lhs (aa = bb), lhs (aa # bb), lhs (equal (aa, bb)),

lhs (notequal (aa, bb))];
(%o5) [aa, aa, aa, aa]
(%i6) e1: ’(foo(x) := 2*x);
(%o6) foo(x) := 2 x
(%i7) e2: ’(bar(y) ::= 3*y);
(%o7) bar(y) ::= 3 y
(%i8) e3: ’(x : y);
(%o8) x : y
(%i9) e4: ’(x :: y);
(%o9) x :: y
(%i10) [lhs (e1), lhs (e2), lhs (e3), lhs (e4)];
(%o10) [foo(x), bar(y), x, x]
(%i11) infix ("][");
(%o11)][
(%i12) lhs (aa][bb);
(%o12) aa

Functionlinsolve ([expr 1, . . . , expr m], [x 1, . . . , x n])
Solves the list of simultaneous linear equations for the list of variables. The expressions
must each be polynomials in the variables and may be equations.

When globalsolve is true, each solved-for variable is bound to its value in the
solution of the equations.

When backsubst is false, linsolve does not carry out back substitution after the
equations have been triangularized. This may be necessary in very big problems
where back substitution would cause the generation of extremely large expressions.

When linsolve_params is true, linsolve also generates the %r symbols used to
represent arbitrary parameters described in the manual under algsys. Otherwise,

344 Maxima 5.35.1 Manual

linsolve solves an under-determined system of equations with some variables ex-
pressed in terms of others.

When programmode is false, linsolve displays the solution with intermediate ex-
pression (%t) labels, and returns the list of labels.

(%i1) e1: x + z = y;
(%o1) z + x = y
(%i2) e2: 2*a*x - y = 2*a^2;

2
(%o2) 2 a x - y = 2 a
(%i3) e3: y - 2*z = 2;
(%o3) y - 2 z = 2
(%i4) [globalsolve: false, programmode: true];
(%o4) [false, true]
(%i5) linsolve ([e1, e2, e3], [x, y, z]);
(%o5) [x = a + 1, y = 2 a, z = a - 1]
(%i6) [globalsolve: false, programmode: false];
(%o6) [false, false]
(%i7) linsolve ([e1, e2, e3], [x, y, z]);
Solution

(%t7) z = a - 1

(%t8) y = 2 a

(%t9) x = a + 1
(%o9) [%t7, %t8, %t9]
(%i9) ’’%;
(%o9) [z = a - 1, y = 2 a, x = a + 1]
(%i10) [globalsolve: true, programmode: false];
(%o10) [true, false]
(%i11) linsolve ([e1, e2, e3], [x, y, z]);
Solution

(%t11) z : a - 1

(%t12) y : 2 a

(%t13) x : a + 1
(%o13) [%t11, %t12, %t13]
(%i13) ’’%;
(%o13) [z : a - 1, y : 2 a, x : a + 1]
(%i14) [x, y, z];
(%o14) [a + 1, 2 a, a - 1]
(%i15) [globalsolve: true, programmode: true];
(%o15) [true, true]
(%i16) linsolve ([e1, e2, e3], ’[x, y, z]);
(%o16) [x : a + 1, y : 2 a, z : a - 1]
(%i17) [x, y, z];
(%o17) [a + 1, 2 a, a - 1]

Chapter 20: Equations 345

Option variablelinsolvewarn
Default value: true

When linsolvewarn is true, linsolve prints a message "Dependent equations elim-
inated".

Option variablelinsolve params
Default value: true

When linsolve_params is true, linsolve also generates the %r symbols used to
represent arbitrary parameters described in the manual under algsys. Otherwise,
linsolve solves an under-determined system of equations with some variables ex-
pressed in terms of others.

System variablemultiplicities
Default value: not_set_yet

multiplicities is set to a list of the multiplicities of the individual solutions returned
by solve or realroots.

Functionnroots (p, low, high)
Returns the number of real roots of the real univariate polynomial p in the half-open
interval (low, high]. The endpoints of the interval may be minf or inf.

nroots uses the method of Sturm sequences.

(%i1) p: x^10 - 2*x^4 + 1/2$
(%i2) nroots (p, -6, 9.1);
(%o2) 4

Functionnthroot (p, n)
where p is a polynomial with integer coefficients and n is a positive integer returns q, a
polynomial over the integers, such that q^n = p or prints an error message indicating
that p is not a perfect nth power. This routine is much faster than factor or even
sqfr.

Option variablepolyfactor
Default value: false

The option variable polyfactor when true causes allroots and bfallroots to
factor the polynomial over the real numbers if the polynomial is real, or over the
complex numbers, if the polynomial is complex.

See allroots for an example.

Option variableprogrammode
Default value: true

When programmode is true, solve, realroots, allroots, and linsolve return
solutions as elements in a list. (Except when backsubst is set to false, in which
case programmode: false is assumed.)

When programmode is false, solve, etc. create intermediate expression labels %t1,
t2, etc., and assign the solutions to them.

346 Maxima 5.35.1 Manual

Option variablerealonly
Default value: false

When realonly is true, algsys returns only those solutions which are free of %i.

Functionrealroots
realroots (expr, bound)
realroots (eqn, bound)
realroots (expr)
realroots (eqn)

Computes rational approximations of the real roots of the polynomial expr or poly-
nomial equation eqn of one variable, to within a tolerance of bound. Coefficients of
expr or eqn must be literal numbers; symbol constants such as %pi are rejected.

realroots assigns the multiplicities of the roots it finds to the global variable
multiplicities.

realroots constructs a Sturm sequence to bracket each root, and then applies bisec-
tion to refine the approximations. All coefficients are converted to rational equivalents
before searching for roots, and computations are carried out by exact rational arith-
metic. Even if some coefficients are floating-point numbers, the results are rational
(unless coerced to floats by the float or numer flags).

When bound is less than 1, all integer roots are found exactly. When bound is
unspecified, it is assumed equal to the global variable rootsepsilon.

When the global variable programmode is true, realroots returns a list of the form [x

= x 1, x = x 2, ...]. When programmode is false, realroots creates intermediate
expression labels %t1, %t2, . . . , assigns the results to them, and returns the list of
labels.

Examples:

(%i1) realroots (-1 - x + x^5, 5e-6);
612003

(%o1) [x = ------]
524288

(%i2) ev (%[1], float);
(%o2) x = 1.167303085327148
(%i3) ev (-1 - x + x^5, %);
(%o3) - 7.396496210176905E-6

(%i1) realroots (expand ((1 - x)^5 * (2 - x)^3 * (3 - x)), 1e-20);
(%o1) [x = 1, x = 2, x = 3]
(%i2) multiplicities;
(%o2) [5, 3, 1]

Functionrhs (expr)
Returns the right-hand side (that is, the second argument) of the expression expr,
when the operator of expr is one of the relational operators < <= = # equal notequal

>= >, one of the assignment operators := ::= : ::, or a user-defined binary infix
operator, as declared by infix.

Chapter 20: Equations 347

When expr is an atom or its operator is something other than the ones listed above,
rhs returns 0.

See also lhs.

Examples:

(%i1) e: aa + bb = cc;
(%o1) bb + aa = cc
(%i2) lhs (e);
(%o2) bb + aa
(%i3) rhs (e);
(%o3) cc
(%i4) [rhs (aa < bb), rhs (aa <= bb), rhs (aa >= bb),

rhs (aa > bb)];
(%o4) [bb, bb, bb, bb]
(%i5) [rhs (aa = bb), rhs (aa # bb), rhs (equal (aa, bb)),

rhs (notequal (aa, bb))];
(%o5) [bb, bb, bb, bb]
(%i6) e1: ’(foo(x) := 2*x);
(%o6) foo(x) := 2 x
(%i7) e2: ’(bar(y) ::= 3*y);
(%o7) bar(y) ::= 3 y
(%i8) e3: ’(x : y);
(%o8) x : y
(%i9) e4: ’(x :: y);
(%o9) x :: y
(%i10) [rhs (e1), rhs (e2), rhs (e3), rhs (e4)];
(%o10) [2 x, 3 y, y, y]
(%i11) infix ("][");
(%o11)][
(%i12) rhs (aa][bb);
(%o12) bb

Option variablerootsconmode
Default value: true

rootsconmode governs the behavior of the rootscontract command. See
rootscontract for details.

Functionrootscontract (expr)
Converts products of roots into roots of products. For example, rootscontract

(sqrt(x)*y^(3/2)) yields sqrt(x*y^3).

When radexpand is true and domain is real, rootscontract converts abs into sqrt,
e.g., rootscontract (abs(x)*sqrt(y)) yields sqrt(x^2*y).

There is an option rootsconmode affecting rootscontract as follows:

Problem Value of Result of applying
rootsconmode rootscontract

x^(1/2)*y^(3/2) false (x*y^3)^(1/2)

348 Maxima 5.35.1 Manual

x^(1/2)*y^(1/4) false x^(1/2)*y^(1/4)
x^(1/2)*y^(1/4) true (x*y^(1/2))^(1/2)
x^(1/2)*y^(1/3) true x^(1/2)*y^(1/3)
x^(1/2)*y^(1/4) all (x^2*y)^(1/4)
x^(1/2)*y^(1/3) all (x^3*y^2)^(1/6)

When rootsconmode is false, rootscontract contracts only with respect to rational
number exponents whose denominators are the same. The key to the rootsconmode:

true examples is simply that 2 divides into 4 but not into 3. rootsconmode: all

involves taking the least common multiple of the denominators of the exponents.

rootscontract uses ratsimp in a manner similar to logcontract.

Examples:

(%i1) rootsconmode: false$
(%i2) rootscontract (x^(1/2)*y^(3/2));

3
(%o2) sqrt(x y)
(%i3) rootscontract (x^(1/2)*y^(1/4));

1/4
(%o3) sqrt(x) y
(%i4) rootsconmode: true$
(%i5) rootscontract (x^(1/2)*y^(1/4));
(%o5) sqrt(x sqrt(y))
(%i6) rootscontract (x^(1/2)*y^(1/3));

1/3
(%o6) sqrt(x) y
(%i7) rootsconmode: all$
(%i8) rootscontract (x^(1/2)*y^(1/4));

2 1/4
(%o8) (x y)
(%i9) rootscontract (x^(1/2)*y^(1/3));

3 2 1/6
(%o9) (x y)
(%i10) rootsconmode: false$
(%i11) rootscontract (sqrt(sqrt(x) + sqrt(1 + x))

*sqrt(sqrt(1 + x) - sqrt(x)));
(%o11) 1
(%i12) rootsconmode: true$
(%i13) rootscontract (sqrt(5+sqrt(5)) - 5^(1/4)*sqrt(1+sqrt(5)));
(%o13) 0

Option variablerootsepsilon
Default value: 1.0e-7

rootsepsilon is the tolerance which establishes the confidence interval for the roots
found by the realroots function.

Chapter 20: Equations 349

Functionsolve
solve (expr, x)
solve (expr)
solve ([eqn 1, . . . , eqn n], [x 1, . . . , x n])

Solves the algebraic equation expr for the variable x and returns a list of solution
equations in x. If expr is not an equation, the equation expr = 0 is assumed in its
place. x may be a function (e.g. f(x)), or other non-atomic expression except a sum
or product. x may be omitted if expr contains only one variable. expr may be a
rational expression, and may contain trigonometric functions, exponentials, etc.

The following method is used:

Let E be the expression and X be the variable. If E is linear in X then it is trivially
solved for X. Otherwise if E is of the form A*X^N + B then the result is (-B/A)^1/N)
times the N’th roots of unity.

If E is not linear in X then the gcd of the exponents of X in E (say N) is divided
into the exponents and the multiplicity of the roots is multiplied by N. Then solve

is called again on the result. If E factors then solve is called on each of the factors.
Finally solve will use the quadratic, cubic, or quartic formulas where necessary.

In the case where E is a polynomial in some function of the variable to be solved for,
say F(X), then it is first solved for F(X) (call the result C), then the equation F(X)=C

can be solved for X provided the inverse of the function F is known.

breakup if false will cause solve to express the solutions of cubic or quartic equa-
tions as single expressions rather than as made up of several common subexpressions
which is the default.

multiplicities - will be set to a list of the multiplicities of the individual solutions
returned by solve, realroots, or allroots. Try apropos (solve) for the switches
which affect solve. describe may then by used on the individual switch names if
their purpose is not clear.

solve ([eqn 1, ..., eqn n], [x 1, ..., x n]) solves a system of simultaneous (lin-
ear or non-linear) polynomial equations by calling linsolve or algsys and returns a
list of the solution lists in the variables. In the case of linsolve this list would con-
tain a single list of solutions. It takes two lists as arguments. The first list represents
the equations to be solved; the second list is a list of the unknowns to be determined.
If the total number of variables in the equations is equal to the number of equations,
the second argument-list may be omitted.

When programmode is false, solve displays solutions with intermediate expression
(%t) labels, and returns the list of labels.

When globalsolve is true and the problem is to solve two or more linear equations,
each solved-for variable is bound to its value in the solution of the equations.

Examples:

(%i1) solve (asin (cos (3*x))*(f(x) - 1), x);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o1) [x = ---, f(x) = 1]

350 Maxima 5.35.1 Manual

6
(%i2) ev (solve (5^f(x) = 125, f(x)), solveradcan);

log(125)
(%o2) [f(x) = --------]

log(5)
(%i3) [4*x^2 - y^2 = 12, x*y - x = 2];

2 2
(%o3) [4 x - y = 12, x y - x = 2]

(%i4) solve (%, [x, y]);
(%o4) [[x = 2, y = 2], [x = .5202594388652008 %i
- .1331240357358706, y = .07678378523787788
- 3.608003221870287 %i], [x = - .5202594388652008 %i
- .1331240357358706, y = 3.608003221870287 %i
+ .07678378523787788], [x = - 1.733751846381093,
y = - .1535675710019696]]

(%i5) solve (1 + a*x + x^3, x);

3
sqrt(3) %i 1 sqrt(4 a + 27) 1 1/3

(%o5) [x = (- ---------- - -) (--------------- - -)
2 2 6 sqrt(3) 2

sqrt(3) %i 1
(---------- - -) a

2 2
- --------------------------, x =

3
sqrt(4 a + 27) 1 1/3

3 (--------------- - -)
6 sqrt(3) 2

3
sqrt(3) %i 1 sqrt(4 a + 27) 1 1/3
(---------- - -) (--------------- - -)

2 2 6 sqrt(3) 2

sqrt(3) %i 1
(- ---------- - -) a

2 2
- --------------------------, x =

3
sqrt(4 a + 27) 1 1/3

3 (--------------- - -)
6 sqrt(3) 2

3
sqrt(4 a + 27) 1 1/3 a

Chapter 20: Equations 351

(--------------- - -) - --------------------------]
6 sqrt(3) 2 3

sqrt(4 a + 27) 1 1/3
3 (--------------- - -)

6 sqrt(3) 2
(%i6) solve (x^3 - 1);

sqrt(3) %i - 1 sqrt(3) %i + 1
(%o6) [x = --------------, x = - --------------, x = 1]

2 2
(%i7) solve (x^6 - 1);

sqrt(3) %i + 1 sqrt(3) %i - 1
(%o7) [x = --------------, x = --------------, x = - 1,

2 2

sqrt(3) %i + 1 sqrt(3) %i - 1
x = - --------------, x = - --------------, x = 1]

2 2
(%i8) ev (x^6 - 1, %[1]);

6
(sqrt(3) %i + 1)

(%o8) ----------------- - 1
64

(%i9) expand (%);
(%o9) 0
(%i10) x^2 - 1;

2
(%o10) x - 1
(%i11) solve (%, x);
(%o11) [x = - 1, x = 1]
(%i12) ev (%th(2), %[1]);
(%o12) 0

The symbols %r are used to denote arbitrary constants in a solution.

(%i1) solve([x+y=1,2*x+2*y=2],[x,y]);

solve: dependent equations eliminated: (2)
(%o1) [[x = 1 - %r1, y = %r1]]

See algsys and %rnum_list for more information.

Option variablesolvedecomposes
Default value: true

When solvedecomposes is true, solve calls polydecomp if asked to solve polynomi-
als.

Option variablesolveexplicit
Default value: false

When solveexplicit is true, inhibits solve from returning implicit solutions, that
is, solutions of the form F(x) = 0 where F is some function.

352 Maxima 5.35.1 Manual

Option variablesolvefactors
Default value: true

When solvefactors is false, solve does not try to factor the expression. The
false setting may be desired in some cases where factoring is not necessary.

Option variablesolvenullwarn
Default value: true

When solvenullwarn is true, solve prints a warning message if called with either
a null equation list or a null variable list. For example, solve ([], []) would print
two warning messages and return [].

Option variablesolveradcan
Default value: false

When solveradcan is true, solve calls radcan which makes solve slower but will
allow certain problems containing exponentials and logarithms to be solved.

Option variablesolvetrigwarn
Default value: true

When solvetrigwarn is true, solve may print a message saying that it is using
inverse trigonometric functions to solve the equation, and thereby losing solutions.

Chapter 21: Differential Equations 353

21 Differential Equations

21.1 Introduction to Differential Equations

This section describes the functions available in Maxima to obtain analytic solutions
for some specific types of first and second-order equations. To obtain a numerical solution
for a system of differential equations, see the additional package dynamics. For graphical
representations in phase space, see the additional package plotdf.

21.2 Functions and Variables for Differential Equations

Functionbc2 (solution, xval1, yval1, xval2, yval2)
Solves a boundary value problem for a second order differential equation. Here:
solution is a general solution to the equation, as found by ode2; xval1 specifies the
value of the independent variable in a first point, in the form x = x1, and yval1 gives
the value of the dependent variable in that point, in the form y = y1. The expressions
xval2 and yval2 give the values for these variables at a second point, using the same
form.

See ode2 for an example of its usage.

Functiondesolve
desolve (eqn, x)
desolve ([eqn 1, ..., eqn n], [x 1, ..., x n])

The function desolve solves systems of linear ordinary differential equations using
Laplace transform. Here the eqn’s are differential equations in the dependent variables
x 1, ..., x n. The functional dependence of x 1, ..., x n on an independent variable,
for instance x, must be explicitly indicated in the variables and its derivatives. For
example, this would not be the correct way to define two equations:

eqn_1: ’diff(f,x,2) = sin(x) + ’diff(g,x);
eqn_2: ’diff(f,x) + x^2 - f = 2*’diff(g,x,2);

The correct way would be:

eqn_1: ’diff(f(x),x,2) = sin(x) + ’diff(g(x),x);
eqn_2: ’diff(f(x),x) + x^2 - f(x) = 2*’diff(g(x),x,2);

The call to the function desolve would then be

desolve([eqn_1, eqn_2], [f(x),g(x)]);

If initial conditions at x=0 are known, they can be supplied before calling desolve

by using atvalue.

(%i1) ’diff(f(x),x)=’diff(g(x),x)+sin(x);
d d

(%o1) -- (f(x)) = -- (g(x)) + sin(x)
dx dx

(%i2) ’diff(g(x),x,2)=’diff(f(x),x)-cos(x);

354 Maxima 5.35.1 Manual

2
d d

(%o2) --- (g(x)) = -- (f(x)) - cos(x)
2 dx

dx
(%i3) atvalue(’diff(g(x),x),x=0,a);
(%o3) a
(%i4) atvalue(f(x),x=0,1);
(%o4) 1
(%i5) desolve([%o1,%o2],[f(x),g(x)]);

x
(%o5) [f(x) = a %e - a + 1, g(x) =

x
cos(x) + a %e - a + g(0) - 1]

(%i6) [%o1,%o2],%o5,diff;
x x x x

(%o6) [a %e = a %e , a %e - cos(x) = a %e - cos(x)]

If desolve cannot obtain a solution, it returns false.

Functionic1 (solution, xval, yval)
Solves initial value problems for first order differential equations. Here solution is
a general solution to the equation, as found by ode2, xval gives an initial value for
the independent variable in the form x = x0, and yval gives the initial value for the
dependent variable in the form y = y0.

See ode2 for an example of its usage.

Functionic2 (solution, xval, yval, dval)
Solves initial value problems for second-order differential equations. Here solution is a
general solution to the equation, as found by ode2, xval gives the initial value for the
independent variable in the form x = x0, yval gives the initial value of the dependent
variable in the form y = y0, and dval gives the initial value for the first derivative of
the dependent variable with respect to independent variable, in the form diff(y,x)
= dy0 (diff does not have to be quoted).

See ode2 for an example of its usage.

Functionode2 (eqn, dvar, ivar)
The function ode2 solves an ordinary differential equation (ODE) of first or second
order. It takes three arguments: an ODE given by eqn, the dependent variable dvar,
and the independent variable ivar. When successful, it returns either an explicit or
implicit solution for the dependent variable. %c is used to represent the integra-
tion constant in the case of first-order equations, and %k1 and %k2 the constants for
second-order equations. The dependence of the dependent variable on the indepen-
dent variable does not have to be written explicitly, as in the case of desolve, but
the independent variable must always be given as the third argument.

Chapter 21: Differential Equations 355

If ode2 cannot obtain a solution for whatever reason, it returns false, after perhaps
printing out an error message. The methods implemented for first order equations in
the order in which they are tested are: linear, separable, exact - perhaps requiring
an integrating factor, homogeneous, Bernoulli’s equation, and a generalized homoge-
neous method. The types of second-order equations which can be solved are: constant
coefficients, exact, linear homogeneous with non-constant coefficients which can be
transformed to constant coefficients, the Euler or equi-dimensional equation, equa-
tions solvable by the method of variation of parameters, and equations which are free
of either the independent or of the dependent variable so that they can be reduced to
two first order linear equations to be solved sequentially.

In the course of solving ODE’s, several variables are set purely for informational pur-
poses: method denotes the method of solution used (e.g., linear), intfactor denotes
any integrating factor used, odeindex denotes the index for Bernoulli’s method or for
the generalized homogeneous method, and yp denotes the particular solution for the
variation of parameters technique.

In order to solve initial value problems (IVP) functions ic1 and ic2 are available for
first and second order equations, and to solve second-order boundary value problems
(BVP) the function bc2 can be used.

Example:

(%i1) x^2*’diff(y,x) + 3*y*x = sin(x)/x;
2 dy sin(x)

(%o1) x -- + 3 x y = ------
dx x

(%i2) ode2(%,y,x);
%c - cos(x)

(%o2) y = -----------
3
x

(%i3) ic1(%o2,x=%pi,y=0);
cos(x) + 1

(%o3) y = - ----------
3
x

(%i4) ’diff(y,x,2) + y*’diff(y,x)^3 = 0;
2
d y dy 3

(%o4) --- + y (--) = 0
2 dx

dx
(%i5) ode2(%,y,x);

3
y + 6 %k1 y

(%o5) ------------ = x + %k2
6

(%i6) ratsimp(ic2(%o5,x=0,y=0,’diff(y,x)=2));

356 Maxima 5.35.1 Manual

3
2 y - 3 y

(%o6) - ---------- = x
6

(%i7) bc2(%o5,x=0,y=1,x=1,y=3);
3
y - 10 y 3

(%o7) --------- = x - -
6 2

Chapter 22: Numerical 357

22 Numerical

22.1 Introduction to fast Fourier transform

The fft package comprises functions for the numerical (not symbolic) computation of
the fast Fourier transform.

22.2 Functions and Variables for fast Fourier transform

Functionpolartorect (r, t)
Translates complex values of the form r %e^(%i t) to the form a + b %i, where r is
the magnitude and t is the phase. r and t are 1-dimensional arrays of the same size.
The array size need not be a power of 2.

The original values of the input arrays are replaced by the real and imaginary parts,
a and b, on return. The outputs are calculated as

a = r cos(t)
b = r sin(t)

polartorect is the inverse function of recttopolar.

load(fft) loads this function. See also fft.

Functionrecttopolar (a, b)
Translates complex values of the form a + b %i to the form r %e^(%i t), where a is
the real part and b is the imaginary part. a and b are 1-dimensional arrays of the
same size. The array size need not be a power of 2.

The original values of the input arrays are replaced by the magnitude and angle, r
and t, on return. The outputs are calculated as

r = sqrt(a^2 + b^2)
t = atan2(b, a)

The computed angle is in the range -%pi to %pi.

recttopolar is the inverse function of polartorect.

load(fft) loads this function. See also fft.

Functioninverse fft (y)
Computes the inverse complex fast Fourier transform. y is a list or array (named
or unnamed) which contains the data to transform. The number of elements must
be a power of 2. The elements must be literal numbers (integers, rationals, floats,
or bigfloats) or symbolic constants, or expressions a + b*%i where a and b are literal
numbers or symbolic constants.

inverse_fft returns a new object of the same type as y, which is not modified.
Results are always computed as floats or expressions a + b*%i where a and b are
floats.

The inverse discrete Fourier transform is defined as follows. Let x be the output of
the inverse transform. Then for j from 0 through n - 1,

358 Maxima 5.35.1 Manual

x[j] = sum(y[k] exp(-2 %i %pi j k / n), k, 0, n - 1)

As there are various sign and normalization conventions possible, this definition of
the transform may differ from that used by other mathematical software.

load(fft) loads this function.

See also fft (forward transform), recttopolar, and polartorect.

Examples:

Real data.

(%i1) load (fft) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, -1, -2, -3, -4] $
(%i4) L1 : inverse_fft (L);
(%o4) [0.0, 14.49 %i - .8284, 0.0, 2.485 %i + 4.828, 0.0,

4.828 - 2.485 %i, 0.0, - 14.49 %i - .8284]
(%i5) L2 : fft (L1);
(%o5) [1.0, 2.0 - 2.168L-19 %i, 3.0 - 7.525L-20 %i,
4.0 - 4.256L-19 %i, - 1.0, 2.168L-19 %i - 2.0,
7.525L-20 %i - 3.0, 4.256L-19 %i - 4.0]
(%i6) lmax (abs (L2 - L));
(%o6) 3.545L-16

Complex data.

(%i1) load (fft) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 1 + %i, 1 - %i, -1, -1, 1 - %i, 1 + %i, 1] $
(%i4) L1 : inverse_fft (L);
(%o4) [4.0, 2.711L-19 %i + 4.0, 2.0 %i - 2.0,
- 2.828 %i - 2.828, 0.0, 5.421L-20 %i + 4.0, - 2.0 %i - 2.0,
2.828 %i + 2.828]
(%i5) L2 : fft (L1);
(%o5) [4.066E-20 %i + 1.0, 1.0 %i + 1.0, 1.0 - 1.0 %i,
1.55L-19 %i - 1.0, - 4.066E-20 %i - 1.0, 1.0 - 1.0 %i,
1.0 %i + 1.0, 1.0 - 7.368L-20 %i]
(%i6) lmax (abs (L2 - L));
(%o6) 6.841L-17

Functionfft (x)
Computes the complex fast Fourier transform. x is a list or array (named or unnamed)
which contains the data to transform. The number of elements must be a power of
2. The elements must be literal numbers (integers, rationals, floats, or bigfloats) or
symbolic constants, or expressions a + b*%i where a and b are literal numbers or
symbolic constants.

fft returns a new object of the same type as x, which is not modified. Results are
always computed as floats or expressions a + b*%i where a and b are floats.

The discrete Fourier transform is defined as follows. Let y be the output of the
transform. Then for k from 0 through n - 1,

Chapter 22: Numerical 359

y[k] = (1/n) sum(x[j] exp(+2 %i %pi j k / n), j, 0, n - 1)

As there are various sign and normalization conventions possible, this definition of
the transform may differ from that used by other mathematical software.

When the data x are real, real coefficients a and b can be computed such that

x[j] = sum(a[k]*cos(2*%pi*j*k/n)+b[k]*sin(2*%pi*j*k/n), k, 0, n/2)

with

a[0] = realpart (y[0])
b[0] = 0

and, for k from 1 through n/2 - 1,

a[k] = realpart (y[k] + y[n - k])
b[k] = imagpart (y[n - k] - y[k])

and

a[n/2] = realpart (y[n/2])
b[n/2] = 0

load(fft) loads this function.

See also inverse_fft (inverse transform), recttopolar, and polartorect.

Examples:

Real data.

(%i1) load (fft) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, -1, -2, -3, -4] $
(%i4) L1 : fft (L);
(%o4) [0.0, - 1.811 %i - .1036, 0.0, .6036 - .3107 %i, 0.0,

.3107 %i + .6036, 0.0, 1.811 %i - .1036]
(%i5) L2 : inverse_fft (L1);
(%o5) [1.0, 2.168L-19 %i + 2.0, 7.525L-20 %i + 3.0,
4.256L-19 %i + 4.0, - 1.0, - 2.168L-19 %i - 2.0,
- 7.525L-20 %i - 3.0, - 4.256L-19 %i - 4.0]
(%i6) lmax (abs (L2 - L));
(%o6) 3.545L-16

Complex data.

(%i1) load (fft) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 1 + %i, 1 - %i, -1, -1, 1 - %i, 1 + %i, 1] $
(%i4) L1 : fft (L);
(%o4) [0.5, .3536 %i + .3536, - 0.25 %i - 0.25,
0.5 - 6.776L-21 %i, 0.0, - .3536 %i - .3536, 0.25 %i - 0.25,
0.5 - 3.388L-20 %i]
(%i5) L2 : inverse_fft (L1);
(%o5) [1.0 - 4.066E-20 %i, 1.0 %i + 1.0, 1.0 - 1.0 %i,
- 1.008L-19 %i - 1.0, 4.066E-20 %i - 1.0, 1.0 - 1.0 %i,
1.0 %i + 1.0, 1.947L-20 %i + 1.0]
(%i6) lmax (abs (L2 - L));
(%o6) 6.83L-17

Computation of sine and cosine coefficients.

360 Maxima 5.35.1 Manual

(%i1) load (fft) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, 5, 6, 7, 8] $
(%i4) n : length (L) $
(%i5) x : make_array (any, n) $
(%i6) fillarray (x, L) $
(%i7) y : fft (x) $
(%i8) a : make_array (any, n/2 + 1) $
(%i9) b : make_array (any, n/2 + 1) $
(%i10) a[0] : realpart (y[0]) $
(%i11) b[0] : 0 $
(%i12) for k : 1 thru n/2 - 1 do

(a[k] : realpart (y[k] + y[n - k]),
b[k] : imagpart (y[n - k] - y[k]));

(%o12) done
(%i13) a[n/2] : y[n/2] $
(%i14) b[n/2] : 0 $
(%i15) listarray (a);
(%o15) [4.5, - 1.0, - 1.0, - 1.0, - 0.5]
(%i16) listarray (b);
(%o16) [0, - 2.414, - 1.0, - .4142, 0]
(%i17) f(j) := sum (a[k]*cos(2*%pi*j*k/n) + b[k]*sin(2*%pi*j*k/n),

k, 0, n/2) $
(%i18) makelist (float (f (j)), j, 0, n - 1);
(%o18) [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]

22.3 Functions for numerical solution of equations

Functionhorner
horner (expr, x)
horner (expr)

Returns a rearranged representation of expr as in Horner’s rule, using x as the main
variable if it is specified. x may be omitted in which case the main variable of the
canonical rational expression form of expr is used.

horner sometimes improves stability if expr is to be numerically evaluated. It is
also useful if Maxima is used to generate programs to be run in Fortran. See also
stringout.

(%i1) expr: 1e-155*x^2 - 5.5*x + 5.2e155;
2

(%o1) 1.e-155 x - 5.5 x + 5.2e+155
(%i2) expr2: horner (%, x), keepfloat: true;
(%o2) 1.0 ((1.e-155 x - 5.5) x + 5.2e+155)
(%i3) ev (expr, x=1e155);
Maxima encountered a Lisp error:

arithmetic error FLOATING-POINT-OVERFLOW signalled

Chapter 22: Numerical 361

Automatically continuing.
To enable the Lisp debugger set *debugger-hook* to nil.
(%i4) ev (expr2, x=1e155);
(%o4) 7.00000000000001e+154

Functionfind root (expr, x, a, b, [abserr, relerr])
Functionfind root (f, a, b, [abserr, relerr])
Functionbf find root (expr, x, a, b, [abserr, relerr])
Functionbf find root (f, a, b, [abserr, relerr])

Option variablefind root error
Option variablefind root abs
Option variablefind root rel

Finds a root of the expression expr or the function f over the closed interval [a, b].
The expression expr may be an equation, in which case find_root seeks a root of
lhs(expr) - rhs(expr).

Given that Maxima can evaluate expr or f over [a,b] and that expr or f is continuous,
find_root is guaranteed to find the root, or one of the roots if there is more than
one.

find_root initially applies binary search. If the function in question appears to be
smooth enough, find_root applies linear interpolation instead.

bf_find_root is a bigfloat version of find_root. The function is computed using
bigfloat arithmetic and a bigfloat result is returned. Otherwise, bf_find_root is
identical to find_root, and the following description is equally applicable to bf_

find_root.

The accuracy of find_root is governed by abserr and relerr, which are optional
keyword arguments to find_root. These keyword arguments take the form key=val.
The keyword arguments are

abserr Desired absolute error of function value at root. Default is find_root_

abs.

relerr Desired relative error of root. Default is find_root_rel.

find_root stops when the function in question evaluates to something less than or
equal to abserr, or if successive approximants x 0, x 1 differ by no more than relerr

* max(abs(x_0), abs(x_1)). The default values of find_root_abs and find_root_

rel are both zero.

find_root expects the function in question to have a different sign at the endpoints of
the search interval. When the function evaluates to a number at both endpoints and
these numbers have the same sign, the behavior of find_root is governed by find_

root_error. When find_root_error is true, find_root prints an error message.
Otherwise find_root returns the value of find_root_error. The default value of
find_root_error is true.

If f evaluates to something other than a number at any step in the search algorithm,
find_root returns a partially-evaluated find_root expression.

The order of a and b is ignored; the region in which a root is sought is
[min(a,b),max(a, b)].

362 Maxima 5.35.1 Manual

Examples:

(%i1) f(x) := sin(x) - x/2;
x

(%o1) f(x) := sin(x) - -
2

(%i2) find_root (sin(x) - x/2, x, 0.1, %pi);
(%o2) 1.895494267033981
(%i3) find_root (sin(x) = x/2, x, 0.1, %pi);
(%o3) 1.895494267033981
(%i4) find_root (f(x), x, 0.1, %pi);
(%o4) 1.895494267033981
(%i5) find_root (f, 0.1, %pi);
(%o5) 1.895494267033981
(%i6) find_root (exp(x) = y, x, 0, 100);

x
(%o6) find_root(%e = y, x, 0.0, 100.0)
(%i7) find_root (exp(x) = y, x, 0, 100), y = 10;
(%o7) 2.302585092994046
(%i8) log (10.0);
(%o8) 2.302585092994046
(%i9) fpprec:32;
(%o9) 32
(%i10) bf_find_root (exp(x) = y, x, 0, 100), y = 10;
(%o10) 2.3025850929940456840179914546844b0
(%i11) log(10b0);
(%o11) 2.3025850929940456840179914546844b0

Functionnewton (expr, x, x 0, eps)
Returns an approximate solution of expr = 0 by Newton’s method, considering expr
to be a function of one variable, x. The search begins with x = x 0 and proceeds until
abs(expr) < eps (with expr evaluated at the current value of x).

newton allows undefined variables to appear in expr, so long as the termination test
abs(expr) < eps evaluates to true or false. Thus it is not necessary that expr
evaluate to a number.

load(newton1) loads this function.

See also realroots, allroots, find_root, and mnewton.

Examples:

(%i1) load (newton1);
(%o1) /maxima/share/numeric/newton1.mac
(%i2) newton (cos (u), u, 1, 1/100);
(%o2) 1.570675277161251
(%i3) ev (cos (u), u = %);
(%o3) 1.2104963335033529e-4
(%i4) assume (a > 0);
(%o4) [a > 0]
(%i5) newton (x^2 - a^2, x, a/2, a^2/100);
(%o5) 1.00030487804878 a

Chapter 22: Numerical 363

(%i6) ev (x^2 - a^2, x = %);
2

(%o6) 6.098490481853958e-4 a

22.4 Introduction to numerical solution of differential
equations

The Ordinary Differential Equations (ODE) solved by the functions in this section should
have the form,

dy

dx
= F (x, y)

which is a first-order ODE. Higher order differential equations of order n must be written as
a system of n first-order equations of that kind. For instance, a second-order ODE should
be written as a system of two equations

dx

dt
= G(x, y, t)

dy

dt
= F (x, y, t)

The first argument in the functions will be a list with the expressions on the right-side
of the ODE’s. The variables whose derivatives are represented by those expressions should
be given in a second list. In the case above those variables are x and y. The independent
variable, t in the examples above, might be given in a separated option. If the expressions
given do not depend on that independent variable, the system is called autonomous.

22.5 Functions for numerical solution of differential
equations

Functionplotdf
plotdf (dydx, options. . .)
plotdf (dvdu, [u,v], options. . .)
plotdf ([dxdt,cdydt], options. . .)
plotdf ([dudt,cdvdt], [u,cv], options. . .)

The function plotdf creates a two-dimensional plot of the direction field (also called
slope field) for a first-order Ordinary Differential Equation (ODE) or a system of two
autonomous first-order ODE’s.

Plotdf requires Xmaxima, even if its run from a Maxima session in a console, since
the plot will be created by the Tk scripts in Xmaxima. If Xmaxima is not installed
plotdf will not work.

dydx, dxdt and dydt are expressions that depend on x and y. dvdu, dudt and dvdt
are expressions that depend on u and v. In addition to those two variables, the
expressions can also depend on a set of parameters, with numerical values given with
the parameters option (the option syntax is given below), or with a range of allowed
values specified by a sliders option.

Several other options can be given within the command, or selected in the menu. Inte-
gral curves can be obtained by clicking on the plot, or with the option trajectory_at.
The direction of the integration can be controlled with the direction option, which

364 Maxima 5.35.1 Manual

can have values of forward, backward or both. The number of integration steps is
given by nsteps; at each integration step the time increment will be adjusted auto-
matically to produce displacements much smaller than the size of the plot window.
The numerical method used is 4th order Runge-Kutta with variable time steps.

Plot window menu:

The menu bar of the plot window has the following seven icons:

An X. Can be used to close the plot window.

A wrench and a screwdriver. Opens the configuration menu with several fields that
show the ODE(s) in use and various other settings. If a pair of coordinates are entered
in the field Trajectory at and the 〈enter〉 key is pressed, a new integral curve will be
shown, in addition to the ones already shown.

Two arrows following a circle. Replots the direction field with the new settings defined
in the configuration menu and replots only the last integral curve that was previously
plotted.

Hard disk drive with an arrow. Used to save a copy of the plot, in Postscript format,
in the file specified in a field of the box that appears when that icon is clicked.

Magnifying glass with a plus sign. Zooms in the plot.

Magnifying glass with a minus sign. Zooms out the plot. The plot can be displaced
by holding down the right mouse button while the mouse is moved.

Icon of a plot. Opens another window with a plot of the two variables in terms of
time, for the last integral curve that was plotted.

Plot options:

Options can also be given within the plotdf itself, each one being a list of two or
more elements. The first element in each option is the name of the option, and the
remainder is the value or values assigned to the option.

The options which are recognized by plotdf are the following:

• nsteps defines the number of steps that will be used for the independent variable,
to compute an integral curve. The default value is 100.

• direction defines the direction of the independent variable that will be followed to
compute an integral curve. Possible values are forward, to make the independent
variable increase nsteps times, with increments tstep, backward, to make the
independent variable decrease, or both that will lead to an integral curve that
extends nsteps forward, and nsteps backward. The keywords right and left

can be used as synonyms for forward and backward. The default value is both.

• tinitial defines the initial value of variable t used to compute integral curves.
Since the differential equations are autonomous, that setting will only appear in
the plot of the curves as functions of t. The default value is 0.

• versus t is used to create a second plot window, with a plot of an integral curve,
as two functions x, y, of the independent variable t. If versus_t is given any
value different from 0, the second plot window will be displayed. The second plot
window includes another menu, similar to the menu of the main plot window.
The default value is 0.

Chapter 22: Numerical 365

• trajectory at defines the coordinates xinitial and yinitial for the starting point
of an integral curve. The option is empty by default.

• parameters defines a list of parameters, and their numerical values, used in the
definition of the differential equations. The name and values of the parameters
must be given in a string with a comma-separated sequence of pairs name=value.

• sliders defines a list of parameters that will be changed interactively using slider
buttons, and the range of variation of those parameters. The names and ranges
of the parameters must be given in a string with a comma-separated sequence of
elements name=min:max

• xfun defines a string with semi-colon-separated sequence of functions of x to be
displayed, on top of the direction field. Those functions will be parsed by Tcl
and not by Maxima.

• x should be followed by two numbers, which will set up the minimum and max-
imum values shown on the horizontal axis. If the variable on the horizontal axis
is not x, then this option should have the name of the variable on the horizontal
axis. The default horizontal range is from -10 to 10.

• y should be followed by two numbers, which will set up the minimum and max-
imum values shown on the vertical axis. If the variable on the vertical axis is
not y, then this option should have the name of the variable on the vertical axis.
The default vertical range is from -10 to 10.

• xaxislabel will be used to identify the horizontal axis. Its default value is the
name of the first state variable.

• yaxislabel will be used to identify the vertical axis. Its default value is the name
of the second state variable.

Examples:

• To show the direction field of the differential equation y′ = exp(−x) + y and the
solution that goes through (2,−0.1):

366 Maxima 5.35.1 Manual

(%i1) plotdf(exp(-x)+y,[trajectory_at,2,-0.1])$

-10 -5 0 5 10
-10

-5

0

5

10
y

x

• To obtain the direction field for the equation diff(y, x) = x−y2 and the solution
with initial condition y(−1) = 3, we can use the command:

(%i1) plotdf(x-y^2,[xfun,"sqrt(x);-sqrt(x)"],
[trajectory_at,-1,3], [direction,forward],
[y,-5,5], [x,-4,16])$

The graph also shows the function y = sqrt(x).

0 5 10 15
-5

-2.5

0

2.5

5
y

x

sqrt(x)

-sqrt(x)

• The following example shows the direction field of a harmonic oscillator, defined
by the two equations dz/dt = v and dv/dt = −k ∗ z/m, and the integral curve

Chapter 22: Numerical 367

through (z, v) = (6, 0), with a slider that will allow you to change the value of m
interactively (k is fixed at 2):

(%i1) plotdf([v,-k*z/m], [z,v], [parameters,"m=2,k=2"],
[sliders,"m=1:5"], [trajectory_at,6,0])$

-8 -4 0 4 8
-10

-5

0

5

10

v

z

m: 2.00

• To plot the direction field of the Duffing equation, m∗x′′+c∗x′+k∗x+b∗x3 = 0,
we introduce the variable y = x′ and use:

368 Maxima 5.35.1 Manual

(%i1) plotdf([y,-(k*x + c*y + b*x^3)/m],
[parameters,"k=-1,m=1.0,c=0,b=1"],
[sliders,"k=-2:2,m=-1:1"],[tstep,0.1])$

-8 -4 0 4 8
-10

-5

0

5

10
y

x

m: 1.00

k: -1.00

• The direction field for a damped pendulum, including the solution for the given
initial conditions, with a slider that can be used to change the value of the mass
m, and with a plot of the two state variables as a function of time:

Chapter 22: Numerical 369

(%i1) plotdf([w,-g*sin(a)/l - b*w/m/l], [a,w],
[parameters,"g=9.8,l=0.5,m=0.3,b=0.05"],
[trajectory_at,1.05,-9],[tstep,0.01],
[a,-10,2], [w,-14,14], [direction,forward],
[nsteps,300], [sliders,"m=0.1:1"], [versus_t,1])$

-10 -8 -6 -4 -2 0 2

-12

-8

-4

0

4

8

12

w

a

m: 0.297

a

w

0.4 0.8 1.2 1.6 2

-12

-8

-4

0

4

8

12

t

Functionploteq (exp, ...options...)
Plots equipotential curves for exp, which should be an expression depending on two
variables. The curves are obtained by integrating the differential equation that define

370 Maxima 5.35.1 Manual

the orthogonal trajectories to the solutions of the autonomous system obtained from
the gradient of the expression given. The plot can also show the integral curves for
that gradient system (option fieldlines).

This program also requires Xmaxima, even if its run from a Maxima session in a
console, since the plot will be created by the Tk scripts in Xmaxima. By default, the
plot region will be empty until the user clicks in a point (or gives its coordinate with
in the set-up menu or via the trajectory at option).

Most options accepted by plotdf can also be used for ploteq and the plot interface is
the same that was described in plotdf.

Example:

(%i1) V: 900/((x+1)^2+y^2)^(1/2)-900/((x-1)^2+y^2)^(1/2)$
(%i2) ploteq(V,[x,-2,2],[y,-2,2],[fieldlines,"blue"])$

Clicking on a point will plot the equipotential curve that passes by that point (in red)
and the orthogonal trajectory (in blue).

Functionrk
rk (ODE, var, initial, domain)
rk ([ODE1, . . . , ODEm], [v1, . . . , vm], [init1, . . . , initm], domain)

The first form solves numerically one first-order ordinary differential equation, and the
second form solves a system of m of those equations, using the 4th order Runge-Kutta
method. var represents the dependent variable. ODE must be an expression that
depends only on the independent and dependent variables and defines the derivative
of the dependent variable with respect to the independent variable.

The independent variable is specified with domain, which must be a list of four ele-
ments as, for instance:

[t, 0, 10, 0.1]

the first element of the list identifies the independent variable, the second and third
elements are the initial and final values for that variable, and the last element sets
the increments that should be used within that interval.

If m equations are going to be solved, there should be m dependent variables v1, v2,
..., vm. The initial values for those variables will be init1, init2, ..., initm. There
will still be just one independent variable defined by domain, as in the previous case.
ODE1, ..., ODEm are the expressions that define the derivatives of each dependent
variable in terms of the independent variable. The only variables that may appear in
those expressions are the independent variable and any of the dependent variables. It
is important to give the derivatives ODE1, ..., ODEm in the list in exactly the same
order used for the dependent variables; for instance, the third element in the list will
be interpreted as the derivative of the third dependent variable.

The program will try to integrate the equations from the initial value of the inde-
pendent variable until its last value, using constant increments. If at some step one
of the dependent variables takes an absolute value too large, the integration will be
interrupted at that point. The result will be a list with as many elements as the
number of iterations made. Each element in the results list is itself another list with
m+1 elements: the value of the independent variable, followed by the values of the
dependent variables corresponding to that point.

Chapter 22: Numerical 371

To solve numerically the differential equation

dx

dt
= t− x2

With initial value x(t=0) = 1, in the interval of t from 0 to 8 and with increments of
0.1 for t, use:

(%i1) results: rk(t-x^2,x,1,[t,0,8,0.1])$
(%i2) plot2d ([discrete, results])$

the results will be saved in the list results and the plot will show the solution
obtained, with t on the horizontal axis and x on the vertical axis.

To solve numerically the system:
dx
dt = 4− x2 − 4y2

dy
dt = y2 − x2 + 1

for t between 0 and 4, and with values of -1.25 and 0.75 for x and y at t=0:

(%i1) sol: rk([4-x^2-4*y^2,y^2-x^2+1],[x,y],[-1.25,0.75],[t,0,4,0.02])$
(%i2) plot2d ([discrete,makelist([p[1],p[3]],p,sol)], [xlabel,"t"],[ylabel,"y"])$

The plot will show the solution for variable y as a function of t.

372 Maxima 5.35.1 Manual

Chapter 23: Matrices and Linear Algebra 373

23 Matrices and Linear Algebra

23.1 Introduction to Matrices and Linear Algebra

23.1.1 Dot

The operator . represents noncommutative multiplication and scalar product. When
the operands are 1-column or 1-row matrices a and b, the expression a.b is equivalent to
sum (a[i]*b[i], i, 1, length(a)). If a and b are not complex, this is the scalar product,
also called the inner product or dot product, of a and b. The scalar product is defined as
conjugate(a).b when a and b are complex; innerproduct in the eigen package provides
the complex scalar product.

When the operands are more general matrices, the product is the matrix product a and
b. The number of rows of b must equal the number of columns of a, and the result has
number of rows equal to the number of rows of a and number of columns equal to the
number of columns of b.

To distinguish . as an arithmetic operator from the decimal point in a floating point
number, it may be necessary to leave spaces on either side. For example, 5.e3 is 5000.0

but 5 . e3 is 5 times e3.

There are several flags which govern the simplification of expressions involving ., namely
dot0nscsimp, dot0simp, dot1simp, dotassoc, dotconstrules, dotdistrib, dotexptsimp,
dotident, and dotscrules.

23.1.2 Vectors

vect is a package of functions for vector analysis. load ("vect") loads this package,
and demo ("vect") displays a demonstration.

The vector analysis package can combine and simplify symbolic expressions including dot
products and cross products, together with the gradient, divergence, curl, and Laplacian
operators. The distribution of these operators over sums or products is governed by several
flags, as are various other expansions, including expansion into components in any specific
orthogonal coordinate systems. There are also functions for deriving the scalar or vector
potential of a field.

The vect package contains these functions: vectorsimp, scalefactors, express,
potential, and vectorpotential.

By default the vect package does not declare the dot operator to be a commutative
operator. To get a commutative dot operator ., the command declare(".", commutative)

must be executed.

23.1.3 eigen

The package eigen contains several functions devoted to the symbolic computation
of eigenvalues and eigenvectors. Maxima loads the package automatically if one of the
functions eigenvalues or eigenvectors is invoked. The package may be loaded explicitly
as load ("eigen").

374 Maxima 5.35.1 Manual

demo ("eigen") displays a demonstration of the capabilities of this package. batch

("eigen") executes the same demonstration, but without the user prompt between succes-
sive computations.

The functions in the eigen package are:
innerproduct, unitvector, columnvector, gramschmidt, eigenvalues,
eigenvectors, uniteigenvectors, and similaritytransform.

23.2 Functions and Variables for Matrices and Linear
Algebra

Functionaddcol (M, list 1, . . . , list n)
Appends the column(s) given by the one or more lists (or matrices) onto the matrix
M.

Functionaddrow (M, list 1, . . . , list n)
Appends the row(s) given by the one or more lists (or matrices) onto the matrix M.

Functionadjoint (M)
Returns the adjoint of the matrix M. The adjoint matrix is the transpose of the matrix
of cofactors of M.

Functionaugcoefmatrix ([eqn 1, . . . , eqn m], [x 1, . . . , x n])
Returns the augmented coefficient matrix for the variables x 1, . . . , x n of the system
of linear equations eqn 1, . . . , eqn m. This is the coefficient matrix with a column
adjoined for the constant terms in each equation (i.e., those terms not dependent
upon x 1, . . . , x n).

(%i1) m: [2*x - (a - 1)*y = 5*b, c + b*y + a*x = 0]$
(%i2) augcoefmatrix (m, [x, y]);

[2 1 - a - 5 b]
(%o2) []

[a b c]

Functioncauchy matrix
cauchy_matrix ([x 1, x 2, . . . , x m], [y 1, y 2, . . . , y n])
cauchy_matrix ([x 1, x 2, . . . , x n])

Returns a n by m Cauchy matrix with the elements a[i,j] = 1/(x i+y i). The second
argument of cauchy_matrix is optional. For this case the elements of the Cauchy
matrix are a[i,j] = 1/(x i+x j).

Remark: In the literature the Cauchy matrix can be found defined in two forms. A
second definition is a[i,j] = 1/(x i-y i).

Examples:

Chapter 23: Matrices and Linear Algebra 375

(%i1) cauchy_matrix([x1,x2],[y1,y2]);
[1 1]
[------- -------]
[y1 + x1 y2 + x1]

(%o1) []
[1 1]
[------- -------]
[y1 + x2 y2 + x2]

(%i2) cauchy_matrix([x1,x2]);
[1 1]
[---- -------]
[2 x1 x2 + x1]

(%o2) []
[1 1]
[------- ----]
[x2 + x1 2 x2]

Functioncharpoly (M, x)
Returns the characteristic polynomial for the matrix M with respect to variable x.
That is, determinant (M - diagmatrix (length (M), x)).

(%i1) a: matrix ([3, 1], [2, 4]);
[3 1]

(%o1) []
[2 4]

(%i2) expand (charpoly (a, lambda));
2

(%o2) lambda - 7 lambda + 10
(%i3) (programmode: true, solve (%));
(%o3) [lambda = 5, lambda = 2]
(%i4) matrix ([x1], [x2]);

[x1]
(%o4) []

[x2]
(%i5) ev (a . % - lambda*%, %th(2)[1]);

[x2 - 2 x1]
(%o5) []

[2 x1 - x2]
(%i6) %[1, 1] = 0;
(%o6) x2 - 2 x1 = 0
(%i7) x2^2 + x1^2 = 1;

2 2
(%o7) x2 + x1 = 1
(%i8) solve ([%th(2), %], [x1, x2]);

376 Maxima 5.35.1 Manual

1 2
(%o8) [[x1 = - -------, x2 = - -------],

sqrt(5) sqrt(5)

1 2
[x1 = -------, x2 = -------]]

sqrt(5) sqrt(5)

Functioncoefmatrix ([eqn 1, . . . , eqn m], [x 1, . . . , x n])
Returns the coefficient matrix for the variables x 1, . . . , x n of the system of linear
equations eqn 1, . . . , eqn m.

(%i1) coefmatrix([2*x-(a-1)*y+5*b = 0, b*y+a*x = 3], [x,y]);
[2 1 - a]

(%o1) []
[a b]

Functioncol (M, i)
Returns the i’th column of the matrix M. The return value is a matrix.

Functioncolumnvector (L)
Functioncovect (L)

Returns a matrix of one column and length (L) rows, containing the elements of the
list L.

covect is a synonym for columnvector.

load ("eigen") loads this function.

This is useful if you want to use parts of the outputs of the functions in this package
in matrix calculations.

Example:

(%i1) load ("eigen")$
Warning - you are redefining the Macsyma function eigenvalues
Warning - you are redefining the Macsyma function eigenvectors
(%i2) columnvector ([aa, bb, cc, dd]);

[aa]
[]
[bb]

(%o2) []
[cc]
[]
[dd]

Functioncopymatrix (M)
Returns a copy of the matrix M. This is the only way to make a copy aside from
copying M element by element.

Note that an assignment of one matrix to another, as in m2: m1, does not copy m1. An
assignment m2 [i,j]: x or setelmx(x, i, j, m2) also modifies m1 [i,j]. Creating
a copy with copymatrix and then using assignment creates a separate, modified copy.

Chapter 23: Matrices and Linear Algebra 377

Functiondeterminant (M)
Computes the determinant of M by a method similar to Gaussian elimination.

The form of the result depends upon the setting of the switch ratmx.

There is a special routine for computing sparse determinants which is called when the
switches ratmx and sparse are both true.

Option variabledetout
Default value: false

When detout is true, the determinant of a matrix whose inverse is computed is
factored out of the inverse.

For this switch to have an effect doallmxops and doscmxops should be false (see
their descriptions). Alternatively this switch can be given to ev which causes the
other two to be set correctly.

Example:

(%i1) m: matrix ([a, b], [c, d]);
[a b]

(%o1) []
[c d]

(%i2) detout: true$
(%i3) doallmxops: false$
(%i4) doscmxops: false$
(%i5) invert (m);

[d - b]
[]
[- c a]

(%o5) ------------
a d - b c

Functiondiagmatrix (n, x)
Returns a diagonal matrix of size n by n with the diagonal elements all equal to x.
diagmatrix (n, 1) returns an identity matrix (same as ident (n)).

n must evaluate to an integer, otherwise diagmatrix complains with an error message.

x can be any kind of expression, including another matrix. If x is a matrix, it is not
copied; all diagonal elements refer to the same instance, x.

Option variabledoallmxops
Default value: true

When doallmxops is true, all operations relating to matrices are carried out. When
it is false then the setting of the individual dot switches govern which operations
are performed.

378 Maxima 5.35.1 Manual

Option variabledomxexpt
Default value: true

When domxexpt is true, a matrix exponential, exp (M) where M is a matrix, is
interpreted as a matrix with element [i,j] equal to exp (m[i,j]). Otherwise exp

(M) evaluates to exp (ev(M)).

domxexpt affects all expressions of the form base^power where base is an expression
assumed scalar or constant, and power is a list or matrix.

Example:

(%i1) m: matrix ([1, %i], [a+b, %pi]);
[1 %i]

(%o1) []
[b + a %pi]

(%i2) domxexpt: false$
(%i3) (1 - c)^m;

[1 %i]
[]
[b + a %pi]

(%o3) (1 - c)
(%i4) domxexpt: true$
(%i5) (1 - c)^m;

[%i]
[1 - c (1 - c)]

(%o5) []
[b + a %pi]
[(1 - c) (1 - c)]

Option variabledomxmxops
Default value: true

When domxmxops is true, all matrix-matrix or matrix-list operations are carried out
(but not scalar-matrix operations); if this switch is false such operations are not
carried out.

Option variabledomxnctimes
Default value: false

When domxnctimes is true, non-commutative products of matrices are carried out.

Option variabledontfactor
Default value: []

dontfactor may be set to a list of variables with respect to which factoring is not to
occur. (The list is initially empty.) Factoring also will not take place with respect to
any variables which are less important, according the variable ordering assumed for
canonical rational expression (CRE) form, than those on the dontfactor list.

Chapter 23: Matrices and Linear Algebra 379

Option variabledoscmxops
Default value: false

When doscmxops is true, scalar-matrix operations are carried out.

Option variabledoscmxplus
Default value: false

When doscmxplus is true, scalar-matrix operations yield a matrix result. This switch
is not subsumed under doallmxops.

Option variabledot0nscsimp
Default value: true

When dot0nscsimp is true, a non-commutative product of zero and a nonscalar term
is simplified to a commutative product.

Option variabledot0simp
Default value: true

When dot0simp is true, a non-commutative product of zero and a scalar term is
simplified to a commutative product.

Option variabledot1simp
Default value: true

When dot1simp is true, a non-commutative product of one and another term is
simplified to a commutative product.

Option variabledotassoc
Default value: true

When dotassoc is true, an expression (A.B).C simplifies to A.(B.C).

Option variabledotconstrules
Default value: true

When dotconstrules is true, a non-commutative product of a constant and another
term is simplified to a commutative product. Turning on this flag effectively turns on
dot0simp, dot0nscsimp, and dot1simp as well.

Option variabledotdistrib
Default value: false

When dotdistrib is true, an expression A.(B + C) simplifies to A.B + A.C.

Option variabledotexptsimp
Default value: true

When dotexptsimp is true, an expression A.A simplifies to A^^2.

380 Maxima 5.35.1 Manual

Option variabledotident
Default value: 1

dotident is the value returned by X^^0.

Option variabledotscrules
Default value: false

When dotscrules is true, an expression A.SC or SC.A simplifies to SC*A and
A.(SC*B) simplifies to SC*(A.B).

Functionechelon (M)
Returns the echelon form of the matrix M, as produced by Gaussian elimination. The
echelon form is computed from M by elementary row operations such that the first
non-zero element in each row in the resulting matrix is one and the column elements
under the first one in each row are all zero.

triangularize also carries out Gaussian elimination, but it does not normalize the
leading non-zero element in each row.

lu_factor and cholesky are other functions which yield triangularized matrices.

(%i1) M: matrix ([3, 7, aa, bb], [-1, 8, 5, 2], [9, 2, 11, 4]);
[3 7 aa bb]
[]

(%o1) [- 1 8 5 2]
[]
[9 2 11 4]

(%i2) echelon (M);
[1 - 8 - 5 - 2]
[]
[28 11]
[0 1 -- --]

(%o2) [37 37]
[]
[37 bb - 119]
[0 0 1 -----------]
[37 aa - 313]

Functioneigenvalues (M)
Functioneivals (M)

Returns a list of two lists containing the eigenvalues of the matrix M. The first sublist
of the return value is the list of eigenvalues of the matrix, and the second sublist is
the list of the multiplicities of the eigenvalues in the corresponding order.

eivals is a synonym for eigenvalues.

eigenvalues calls the function solve to find the roots of the characteristic polynomial
of the matrix. Sometimes solve may not be able to find the roots of the polynomial;
in that case some other functions in this package (except innerproduct, unitvector,
columnvector and gramschmidt) will not work.

Chapter 23: Matrices and Linear Algebra 381

In some cases the eigenvalues found by solve may be complicated expressions. (This
may happen when solve returns a not-so-obviously real expression for an eigenvalue
which is known to be real.) It may be possible to simplify the eigenvalues using some
other functions.

The package eigen.mac is loaded automatically when eigenvalues or eigenvectors
is referenced. If eigen.mac is not already loaded, load ("eigen") loads it. After
loading, all functions and variables in the package are available.

Functioneigenvectors (M)
Functioneivects (M)

Computes eigenvectors of the matrix M. The return value is a list of two elements. The
first is a list of the eigenvalues of M and a list of the multiplicities of the eigenvalues.
The second is a list of lists of eigenvectors. There is one list of eigenvectors for each
eigenvalue. There may be one or more eigenvectors in each list.

eivects is a synonym for eigenvectors.

The package eigen.mac is loaded automatically when eigenvalues or eigenvectors
is referenced. If eigen.mac is not already loaded, load ("eigen") loads it. After
loading, all functions and variables in the package are available.

The flags that affect this function are:

nondiagonalizable is set to true or false depending on whether the matrix is
nondiagonalizable or diagonalizable after eigenvectors returns.

hermitianmatrix when true, causes the degenerate eigenvectors of the Hermitian
matrix to be orthogonalized using the Gram-Schmidt algorithm.

knowneigvals when true causes the eigen package to assume the eigenvalues of
the matrix are known to the user and stored under the global name listeigvals.
listeigvals should be set to a list similar to the output eigenvalues.

The function algsys is used here to solve for the eigenvectors. Sometimes if the
eigenvalues are messy, algsys may not be able to find a solution. In some cases, it
may be possible to simplify the eigenvalues by first finding them using eigenvalues

command and then using other functions to reduce them to something simpler. Fol-
lowing simplification, eigenvectors can be called again with the knowneigvals flag
set to true.

See also eigenvalues.

Examples:

A matrix which has just one eigenvector per eigenvalue.

(%i1) M1 : matrix ([11, -1], [1, 7]);
[11 - 1]

(%o1) []
[1 7]

(%i2) [vals, vecs] : eigenvectors (M1);
(%o2) [[[9 - sqrt(3), sqrt(3) + 9], [1, 1]],

[[[1, sqrt(3) + 2]], [[1, 2 - sqrt(3)]]]]
(%i3) for i thru length (vals[1]) do disp (val[i] = vals[1][i],

mult[i] = vals[2][i], vec[i] = vecs[i]);

382 Maxima 5.35.1 Manual

val = 9 - sqrt(3)
1

mult = 1
1

vec = [[1, sqrt(3) + 2]]
1

val = sqrt(3) + 9
2

mult = 1
2

vec = [[1, 2 - sqrt(3)]]
2

(%o3) done

A matrix which has two eigenvectors for one eigenvalue (namely 2).

(%i1) M1 : matrix ([0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0],
[0, 0, 0, 2]);

[0 1 0 0]
[]
[0 0 0 0]

(%o1) []
[0 0 2 0]
[]
[0 0 0 2]

(%i2) [vals, vecs] : eigenvectors (M1);
(%o2) [[[0, 2], [2, 2]], [[[1, 0, 0, 0]],

[[0, 0, 1, 0], [0, 0, 0, 1]]]]
(%i3) for i thru length (vals[1]) do disp (val[i] = vals[1][i],
mult[i] = vals[2][i], vec[i] = vecs[i]);

val = 0
1

mult = 2
1

vec = [[1, 0, 0, 0]]
1

val = 2
2

mult = 2
2

Chapter 23: Matrices and Linear Algebra 383

vec = [[0, 0, 1, 0], [0, 0, 0, 1]]
2

(%o3) done

Functionematrix (m, n, x, i, j)
Returns an m by n matrix, all elements of which are zero except for the [i, j] element
which is x.

Functionentermatrix (m, n)
Returns an m by n matrix, reading the elements interactively.

If n is equal to m, Maxima prompts for the type of the matrix (diagonal, symmetric,
antisymmetric, or general) and for each element. Each response is terminated by a
semicolon ; or dollar sign $.

If n is not equal to m, Maxima prompts for each element.

The elements may be any expressions, which are evaluated. entermatrix evaluates
its arguments.

(%i1) n: 3$
(%i2) m: entermatrix (n, n)$

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric
4. General
Answer 1, 2, 3 or 4 :
1$
Row 1 Column 1:
(a+b)^n$
Row 2 Column 2:
(a+b)^(n+1)$
Row 3 Column 3:
(a+b)^(n+2)$

Matrix entered.
(%i3) m;

[3]
[(b + a) 0 0]
[]

(%o3) [4]
[0 (b + a) 0]
[]
[5]
[0 0 (b + a)]

384 Maxima 5.35.1 Manual

Functiongenmatrix
genmatrix (a, i 2, j 2, i 1, j 1)
genmatrix (a, i 2, j 2, i 1)
genmatrix (a, i 2, j 2)

Returns a matrix generated from a, taking element a[i 1, j 1] as the upper-left ele-
ment and a[i 2, j 2] as the lower-right element of the matrix. Here a is a declared
array (created by array but not by make_array) or an undeclared array, or an array
function, or a lambda expression of two arguments. (An array function is created like
other functions with := or define, but arguments are enclosed in square brackets
instead of parentheses.)

If j 1 is omitted, it is assumed equal to i 1. If both j 1 and i 1 are omitted, both are
assumed equal to 1.

If a selected element i,j of the array is undefined, the matrix will contain a symbolic
element a[i,j].

Examples:

(%i1) h [i, j] := 1 / (i + j - 1);
1

(%o1) h := ---------
i, j i + j - 1

(%i2) genmatrix (h, 3, 3);
[1 1]
[1 - -]
[2 3]
[]
[1 1 1]

(%o2) [- - -]
[2 3 4]
[]
[1 1 1]
[- - -]
[3 4 5]

(%i3) array (a, fixnum, 2, 2);
(%o3) a
(%i4) a [1, 1] : %e;
(%o4) %e
(%i5) a [2, 2] : %pi;
(%o5) %pi
(%i6) genmatrix (a, 2, 2);

[%e 0]
(%o6) []

[0 %pi]
(%i7) genmatrix (lambda ([i, j], j - i), 3, 3);

[0 1 2]
[]

(%o7) [- 1 0 1]
[]
[- 2 - 1 0]

(%i8) genmatrix (B, 2, 2);

Chapter 23: Matrices and Linear Algebra 385

[B B]
[1, 1 1, 2]

(%o8) []
[B B]
[2, 1 2, 2]

Functiongramschmidt
gramschmidt (x)
gramschmidt (x, F)

Carries out the Gram-Schmidt orthogonalization algorithm on x, which is either a
matrix or a list of lists. x is not modified by gramschmidt. The inner product
employed by gramschmidt is F, if present, otherwise the inner product is the function
innerproduct.

If x is a matrix, the algorithm is applied to the rows of x. If x is a list of lists, the
algorithm is applied to the sublists, which must have equal numbers of elements. In
either case, the return value is a list of lists, the sublists of which are orthogonal and
span the same space as x. If the dimension of the span of x is less than the number
of rows or sublists, some sublists of the return value are zero.

factor is called at each stage of the algorithm to simplify intermediate results. As a
consequence, the return value may contain factored integers.

load(eigen) loads this function.

Example:

Gram-Schmidt algorithm using default inner product function.

(%i1) load (eigen)$
(%i2) x: matrix ([1, 2, 3], [9, 18, 30], [12, 48, 60]);

[1 2 3]
[]

(%o2) [9 18 30]
[]
[12 48 60]

(%i3) y: gramschmidt (x);
2 2 4 3
3 3 3 5 2 3 2 3

(%o3) [[1, 2, 3], [- ---, - --, ---], [- ----, ----, 0]]
2 7 7 2 7 5 5

(%i4) map (innerproduct, [y[1], y[2], y[3]], [y[2], y[3], y[1]]);
(%o4) [0, 0, 0]

Gram-Schmidt algorithm using a specified inner product function.

(%i1) load (eigen)$
(%i2) ip (f, g) := integrate (f * g, u, a, b);
(%o2) ip(f, g) := integrate(f g, u, a, b)
(%i3) y : gramschmidt([1, sin(u), cos(u)], ip), a= -%pi/2, b=%pi/2;

%pi cos(u) - 2
(%o3) [1, sin(u), --------------]

%pi
(%i4) map (ip, [y[1], y[2], y[3]], [y[2], y[3], y[1]]),

386 Maxima 5.35.1 Manual

a= -%pi/2, b=%pi/2;
(%o4) [0, 0, 0]

Functionident (n)
Returns an n by n identity matrix.

Functioninnerproduct (x, y)
Functioninprod (x, y)

Returns the inner product (also called the scalar product or dot product) of x and y,
which are lists of equal length, or both 1-column or 1-row matrices of equal length.
The return value is conjugate (x) . y, where . is the noncommutative multiplication
operator.

load ("eigen") loads this function.

inprod is a synonym for innerproduct.

Functioninvert by adjoint (M)
Returns the inverse of the matrix M. The inverse is computed by the adjoint method.

invert_by_adjoint honors the ratmx and detout flags, the same as invert.

Functioninvert (M)
Returns the inverse of the matrix M. The inverse is computed via the LU decompo-
sition.

When ratmx is true, elements of M are converted to canonical rational expressions
(CRE), and the elements of the return value are also CRE.

When ratmx is false, elements of M are not converted to a common representation.
In particular, float and bigfloat elements are not converted to rationals.

When detout is true, the determinant is factored out of the inverse. The global flags
doallmxops and doscmxops must be false to prevent the determinant from being
absorbed into the inverse. xthru can multiply the determinant into the inverse.

invert does not apply any simplifications to the elements of the inverse apart from
the default arithmetic simplifications. ratsimp and expand can apply additional sim-
plifications. In particular, when M has polynomial elements, expand(invert(M))

might be preferable.

invert(M) is equivalent to M^^-1.

Functionlist matrix entries (M)
Returns a list containing the elements of the matrix M.

Example:

(%i1) list_matrix_entries(matrix([a,b],[c,d]));
(%o1) [a, b, c, d]

Chapter 23: Matrices and Linear Algebra 387

Option variablelmxchar
Default value: [

lmxchar is the character displayed as the left delimiter of a matrix. See also rmxchar.

Example:

(%i1) lmxchar: "|"$
(%i2) matrix ([a, b, c], [d, e, f], [g, h, i]);

| a b c]
|]

(%o2) | d e f]
|]
| g h i]

Functionmatrix (row 1, . . . , row n)
Returns a rectangular matrix which has the rows row 1, . . . , row n. Each row is a
list of expressions. All rows must be the same length.

The operations + (addition), - (subtraction), * (multiplication), and / (division), are
carried out element by element when the operands are two matrices, a scalar and a
matrix, or a matrix and a scalar. The operation ^ (exponentiation, equivalently **) is
carried out element by element if the operands are a scalar and a matrix or a matrix
and a scalar, but not if the operands are two matrices. All operations are normally
carried out in full, including . (noncommutative multiplication).

Matrix multiplication is represented by the noncommutative multiplication operator
.. The corresponding noncommutative exponentiation operator is ^^. For a matrix
A, A.A = A^^2 and A^^-1 is the inverse of A, if it exists. A^^-1 is equivalent to
invert(A).

There are switches for controlling simplification of expressions involving dot and
matrix-list operations. These are doallmxops, domxexpt, domxmxops, doscmxops,
and doscmxplus.

There are additional options which are related to matrices. These are: lmxchar,
rmxchar, ratmx, listarith, detout, scalarmatrix and sparse.

There are a number of functions which take matrices as arguments or yield ma-
trices as return values. See eigenvalues, eigenvectors, determinant, charpoly,
genmatrix, addcol, addrow, copymatrix, transpose, echelon, and rank.

Examples:

• Construction of matrices from lists.

(%i1) x: matrix ([17, 3], [-8, 11]);
[17 3]

(%o1) []
[- 8 11]

(%i2) y: matrix ([%pi, %e], [a, b]);
[%pi %e]

(%o2) []
[a b]

• Addition, element by element.

388 Maxima 5.35.1 Manual

(%i3) x + y;
[%pi + 17 %e + 3]

(%o3) []
[a - 8 b + 11]

• Subtraction, element by element.

(%i4) x - y;
[17 - %pi 3 - %e]

(%o4) []
[- a - 8 11 - b]

• Multiplication, element by element.

(%i5) x * y;
[17 %pi 3 %e]

(%o5) []
[- 8 a 11 b]

• Division, element by element.

(%i6) x / y;
[17 - 1]
[--- 3 %e]
[%pi]

(%o6) []
[8 11]
[- - --]
[a b]

• Matrix to a scalar exponent, element by element.

(%i7) x ^ 3;
[4913 27]

(%o7) []
[- 512 1331]

• Scalar base to a matrix exponent, element by element.

(%i8) exp(y);
[%pi %e]
[%e %e]

(%o8) []
[a b]
[%e %e]

• Matrix base to a matrix exponent. This is not carried out element by element.

(%i9) x ^ y;
[%pi %e]
[]
[a b]

[17 3]
(%o9) []

[- 8 11]

• Noncommutative matrix multiplication.

(%i10) x . y;
[3 a + 17 %pi 3 b + 17 %e]

Chapter 23: Matrices and Linear Algebra 389

(%o10) []
[11 a - 8 %pi 11 b - 8 %e]

(%i11) y . x;
[17 %pi - 8 %e 3 %pi + 11 %e]

(%o11) []
[17 a - 8 b 11 b + 3 a]

• Noncommutative matrix exponentiation. A scalar base b to a matrix power M
is carried out element by element and so b^^m is the same as b^m.

(%i12) x ^^ 3;
[3833 1719]

(%o12) []
[- 4584 395]

(%i13) %e ^^ y;
[%pi %e]
[%e %e]

(%o13) []
[a b]
[%e %e]

• A matrix raised to a -1 exponent with noncommutative exponentiation is the
matrix inverse, if it exists.

(%i14) x ^^ -1;
[11 3]
[--- - ---]
[211 211]

(%o14) []
[8 17]
[--- ---]
[211 211]

(%i15) x . (x ^^ -1);
[1 0]

(%o15) []
[0 1]

Functionmatrixmap (f, M)
Returns a matrix with element i,j equal to f (M[i,j]).

See also map, fullmap, fullmapl, and apply.

Functionmatrixp (expr)
Returns true if expr is a matrix, otherwise false.

Option variablematrix element add
Default value: +

matrix_element_add is the operation invoked in place of addition in a matrix mul-
tiplication. matrix_element_add can be assigned any n-ary operator (that is, a
function which handles any number of arguments). The assigned value may be the

390 Maxima 5.35.1 Manual

name of an operator enclosed in quote marks, the name of a function, or a lambda
expression.

See also matrix_element_mult and matrix_element_transpose.

Example:

(%i1) matrix_element_add: "*"$
(%i2) matrix_element_mult: "^"$
(%i3) aa: matrix ([a, b, c], [d, e, f]);

[a b c]
(%o3) []

[d e f]
(%i4) bb: matrix ([u, v, w], [x, y, z]);

[u v w]
(%o4) []

[x y z]
(%i5) aa . transpose (bb);

[u v w x y z]
[a b c a b c]

(%o5) []
[u v w x y z]
[d e f d e f]

Option variablematrix element mult
Default value: *

matrix_element_mult is the operation invoked in place of multiplication in a matrix
multiplication. matrix_element_mult can be assigned any binary operator. The
assigned value may be the name of an operator enclosed in quote marks, the name of
a function, or a lambda expression.

The dot operator . is a useful choice in some contexts.

See also matrix_element_add and matrix_element_transpose.

Example:

(%i1) matrix_element_add: lambda ([[x]], sqrt (apply ("+", x)))$
(%i2) matrix_element_mult: lambda ([x, y], (x - y)^2)$
(%i3) [a, b, c] . [x, y, z];

2 2 2
(%o3) sqrt((c - z) + (b - y) + (a - x))
(%i4) aa: matrix ([a, b, c], [d, e, f]);

[a b c]
(%o4) []

[d e f]
(%i5) bb: matrix ([u, v, w], [x, y, z]);

[u v w]
(%o5) []

[x y z]
(%i6) aa . transpose (bb);

[2 2 2]
[sqrt((c - w) + (b - v) + (a - u))]

Chapter 23: Matrices and Linear Algebra 391

(%o6) Col 1 = []
[2 2 2]
[sqrt((f - w) + (e - v) + (d - u))]

[2 2 2]
[sqrt((c - z) + (b - y) + (a - x))]

Col 2 = []
[2 2 2]
[sqrt((f - z) + (e - y) + (d - x))]

Option variablematrix element transpose
Default value: false

matrix_element_transpose is the operation applied to each element of a matrix
when it is transposed. matrix_element_mult can be assigned any unary operator.
The assigned value may be the name of an operator enclosed in quote marks, the
name of a function, or a lambda expression.

When matrix_element_transpose equals transpose, the transpose function is ap-
plied to every element. When matrix_element_transpose equals nonscalars, the
transpose function is applied to every nonscalar element. If some element is an atom,
the nonscalars option applies transpose only if the atom is declared nonscalar, while
the transpose option always applies transpose.

The default value, false, means no operation is applied.

See also matrix_element_add and matrix_element_mult.

Examples:

(%i1) declare (a, nonscalar)$
(%i2) transpose ([a, b]);

[transpose(a)]
(%o2) []

[b]
(%i3) matrix_element_transpose: nonscalars$
(%i4) transpose ([a, b]);

[transpose(a)]
(%o4) []

[b]
(%i5) matrix_element_transpose: transpose$
(%i6) transpose ([a, b]);

[transpose(a)]
(%o6) []

[transpose(b)]
(%i7) matrix_element_transpose: lambda ([x], realpart(x)

- %i*imagpart(x))$
(%i8) m: matrix ([1 + 5*%i, 3 - 2*%i], [7*%i, 11]);

[5 %i + 1 3 - 2 %i]
(%o8) []

[7 %i 11]
(%i9) transpose (m);

[1 - 5 %i - 7 %i]

392 Maxima 5.35.1 Manual

(%o9) []
[2 %i + 3 11]

Functionmattrace (M)
Returns the trace (that is, the sum of the elements on the main diagonal) of the
square matrix M.

mattrace is called by ncharpoly, an alternative to Maxima’s charpoly.

load ("nchrpl") loads this function.

Functionminor (M, i, j)
Returns the i, j minor of the matrix M. That is, M with row i and column j removed.

Functionncharpoly (M, x)
Returns the characteristic polynomial of the matrix M with respect to x. This is an
alternative to Maxima’s charpoly.

ncharpoly works by computing traces of powers of the given matrix, which are known
to be equal to sums of powers of the roots of the characteristic polynomial. From
these quantities the symmetric functions of the roots can be calculated, which are
nothing more than the coefficients of the characteristic polynomial. charpoly works
by forming the determinant of x * ident [n] - a. Thus ncharpoly wins, for example,
in the case of large dense matrices filled with integers, since it avoids polynomial
arithmetic altogether.

load ("nchrpl") loads this file.

Functionnewdet (M)
Computes the determinant of the matrix M by the Johnson-Gentleman tree minor
algorithm. newdet returns the result in CRE form.

Functionpermanent (M)
Computes the permanent of the matrix M by the Johnson-Gentleman tree minor
algorithm. A permanent is like a determinant but with no sign changes. permanent

returns the result in CRE form.

See also newdet.

Functionrank (M)
Computes the rank of the matrix M. That is, the order of the largest non-singular
subdeterminant of M.

rank may return the wrong answer if it cannot determine that a matrix element that
is equivalent to zero is indeed so.

Chapter 23: Matrices and Linear Algebra 393

Option variableratmx
Default value: false

When ratmx is false, determinant and matrix addition, subtraction, and multiplica-
tion are performed in the representation of the matrix elements and cause the result
of matrix inversion to be left in general representation.

When ratmx is true, the 4 operations mentioned above are performed in CRE form
and the result of matrix inverse is in CRE form. Note that this may cause the elements
to be expanded (depending on the setting of ratfac) which might not always be
desired.

Functionrow (M, i)
Returns the i’th row of the matrix M. The return value is a matrix.

Option variablermxchar
Default value:]

rmxchar is the character drawn on the right-hand side of a matrix.

See also lmxchar.

Option variablescalarmatrixp
Default value: true

When scalarmatrixp is true, then whenever a 1 x 1 matrix is produced as a result
of computing the dot product of matrices it is simplified to a scalar, namely the sole
element of the matrix.

When scalarmatrixp is all, then all 1 x 1 matrices are simplified to scalars.

When scalarmatrixp is false, 1 x 1 matrices are not simplified to scalars.

Functionscalefactors (coordinatetransform)
Here the argument coordinatetransform evaluates to the form [[expression1,

expression2, ...], indeterminate1, indeterminat2, ...], where the variables
indeterminate1, indeterminate2, etc. are the curvilinear coordinate variables and
where a set of rectangular Cartesian components is given in terms of the curvilinear
coordinates by [expression1, expression2, ...]. coordinates is set to the
vector [indeterminate1, indeterminate2,...], and dimension is set to the
length of this vector. SF[1], SF[2], . . . , SF[DIMENSION] are set to the coordinate
scale factors, and sfprod is set to the product of these scale factors. Initially,
coordinates is [X, Y, Z], dimension is 3, and SF[1]=SF[2]=SF[3]=SFPROD=1,
corresponding to 3-dimensional rectangular Cartesian coordinates. To expand an
expression into physical components in the current coordinate system, there is a
function with usage of the form

Functionsetelmx (x, i, j, M)
Assigns x to the (i, j)’th element of the matrix M, and returns the altered matrix.

M [i, j]: x has the same effect, but returns x instead of M.

394 Maxima 5.35.1 Manual

Functionsimilaritytransform (M)
Functionsimtran (M)

similaritytransform computes a similarity transform of the matrix M. It returns a
list which is the output of the uniteigenvectors command. In addition if the flag
nondiagonalizable is false two global matrices leftmatrix and rightmatrix are
computed. These matrices have the property that leftmatrix . M . rightmatrix is
a diagonal matrix with the eigenvalues of M on the diagonal. If nondiagonalizable
is true the left and right matrices are not computed.

If the flag hermitianmatrix is true then leftmatrix is the complex conjugate of
the transpose of rightmatrix. Otherwise leftmatrix is the inverse of rightmatrix.

rightmatrix is the matrix the columns of which are the unit eigenvectors of M.
The other flags (see eigenvalues and eigenvectors) have the same effects since
similaritytransform calls the other functions in the package in order to be able to
form rightmatrix.

load ("eigen") loads this function.

simtran is a synonym for similaritytransform.

Option variablesparse
Default value: false

When sparse is true, and if ratmx is true, then determinant will use special routines
for computing sparse determinants.

Functionsubmatrix
submatrix (i 1, . . . , i m, M, j 1, . . . , j n)
submatrix (i 1, . . . , i m, M)
submatrix (M, j 1, . . . , j n)

Returns a new matrix composed of the matrix M with rows i 1, . . . , i m deleted, and
columns j 1, . . . , j n deleted.

Functiontranspose (M)
Returns the transpose of M.

If M is a matrix, the return value is another matrix N such that N[i,j] = M[j,i].

If M is a list, the return value is a matrix N of length (m) rows and 1 column, such
that N[i,1] = M[i].

Otherwise M is a symbol, and the return value is a noun expression ’transpose

(M).

Functiontriangularize (M)
Returns the upper triangular form of the matrix M, as produced by Gaussian elim-
ination. The return value is the same as echelon, except that the leading nonzero
coefficient in each row is not normalized to 1.

lu_factor and cholesky are other functions which yield triangularized matrices.

Chapter 23: Matrices and Linear Algebra 395

(%i1) M: matrix ([3, 7, aa, bb], [-1, 8, 5, 2], [9, 2, 11, 4]);
[3 7 aa bb]
[]

(%o1) [- 1 8 5 2]
[]
[9 2 11 4]

(%i2) triangularize (M);
[- 1 8 5 2]
[]

(%o2) [0 - 74 - 56 - 22]
[]
[0 0 626 - 74 aa 238 - 74 bb]

Functionuniteigenvectors (M)
Functionueivects (M)

Computes unit eigenvectors of the matrix M. The return value is a list of lists, the first
sublist of which is the output of the eigenvalues command, and the other sublists
of which are the unit eigenvectors of the matrix corresponding to those eigenvalues
respectively.

The flags mentioned in the description of the eigenvectors command have the same
effects in this one as well.

When knowneigvects is true, the eigen package assumes that the eigenvectors of the
matrix are known to the user and are stored under the global name listeigvects.
listeigvects should be set to a list similar to the output of the eigenvectors

command.

If knowneigvects is set to true and the list of eigenvectors is given the setting of the
flag nondiagonalizable may not be correct. If that is the case please set it to the
correct value. The author assumes that the user knows what he is doing and will not
try to diagonalize a matrix the eigenvectors of which do not span the vector space of
the appropriate dimension.

load ("eigen") loads this function.

ueivects is a synonym for uniteigenvectors.

Functionunitvector (x)
Functionuvect (x)

Returns x/norm(x); this is a unit vector in the same direction as x.

load ("eigen") loads this function.

uvect is a synonym for unitvector.

Functionvectorpotential (givencurl)
Returns the vector potential of a given curl vector, in the current coordinate system.
potentialzeroloc has a similar role as for potential, but the order of the left-hand
sides of the equations must be a cyclic permutation of the coordinate variables.

396 Maxima 5.35.1 Manual

Functionvectorsimp (expr)
Applies simplifications and expansions according to the following global flags:

expandall, expanddot, expanddotplus, expandcross, expandcrossplus,
expandcrosscross, expandgrad, expandgradplus, expandgradprod,
expanddiv, expanddivplus, expanddivprod, expandcurl, expandcurlplus,
expandcurlcurl, expandlaplacian, expandlaplacianplus,
and expandlaplacianprod.

All these flags have default value false. The plus suffix refers to employing additivity
or distributivity. The prod suffix refers to the expansion for an operand that is any
kind of product.

expandcrosscross

Simplifies p (q r) to (p.r) ∗ q − (p.q) ∗ r.

expandcurlcurl

Simplifies curlcurlp to graddivp+ divgradp.

expandlaplaciantodivgrad

Simplifies laplacianp to divgradp.

expandcross

Enables expandcrossplus and expandcrosscross.

expandplus
Enables expanddotplus, expandcrossplus, expandgradplus,
expanddivplus, expandcurlplus, and expandlaplacianplus.

expandprod

Enables expandgradprod, expanddivprod, and expandlaplacianprod.

These flags have all been declared evflag.

Option variablevect cross
Default value: false

When vect_cross is true, it allows DIFF(X~Y,T) to work where ~ is defined in
SHARE;VECT (where VECT CROSS is set to true, anyway.)

Functionzeromatrix (m, n)
Returns an m by n matrix, all elements of which are zero.

Chapter 24: Affine 397

24 Affine

24.1 Introduction to Affine

affine is a package to work with groups of polynomials.

24.2 Functions and Variables for Affine

Functionfast linsolve ([expr 1, ..., expr m], [x 1, ..., x n])
Solves the simultaneous linear equations expr 1, ..., expr m for the variables x 1, ...,
x n. Each expr i may be an equation or a general expression; if given as a general
expression, it is treated as an equation of the form expr i = 0.

The return value is a list of equations of the form [x 1 = a 1, ..., x n = a n] where
a 1, ..., a n are all free of x 1, ..., x n.

fast_linsolve is faster than linsolve for system of equations which are sparse.

load(affine) loads this function.

Functiongrobner basis ([expr 1, ..., expr m])
Returns a Groebner basis for the equations expr 1, ..., expr m. The function polysimp

can then be used to simplify other functions relative to the equations.

grobner_basis ([3*x^2+1, y*x])$

polysimp (y^2*x + x^3*9 + 2) ==> -3*x + 2

polysimp(f) yields 0 if and only if f is in the ideal generated by expr 1, ..., expr m,
that is, if and only if f is a polynomial combination of the elements of expr 1, ...,
expr m.

load(affine) loads this function.

Functionset up dot simplifications
set_up_dot_simplifications (eqns, check through degree)
set_up_dot_simplifications (eqns)

The eqns are polynomial equations in non commutative variables. The value of
current_variables is the list of variables used for computing degrees. The equations
must be homogeneous, in order for the procedure to terminate.

If you have checked overlapping simplifications in dot_simplifications above the
degree of f, then the following is true: dotsimp (f) yields 0 if and only if f is in the
ideal generated by the equations, i.e., if and only if f is a polynomial combination of
the elements of the equations.

The degree is that returned by nc_degree. This in turn is influenced by the weights
of individual variables.

load(affine) loads this function.

398 Maxima 5.35.1 Manual

Functiondeclare weights (x 1, w 1, ..., x n, w n)
Assigns weights w 1, ..., w n to x 1, ..., x n, respectively. These are the weights used
in computing nc_degree.

load(affine) loads this function.

Functionnc degree (p)
Returns the degree of a noncommutative polynomial p. See declare_weights.

load(affine) loads this function.

Functiondotsimp (f)
Returns 0 if and only if f is in the ideal generated by the equations, i.e., if and only
if f is a polynomial combination of the elements of the equations.

load(affine) loads this function.

Functionfast central elements ([x 1, ..., x n], n)
If set_up_dot_simplifications has been previously done, finds the central polyno-
mials in the variables x 1, ..., x n in the given degree, n.

For example:

set_up_dot_simplifications ([y.x + x.y], 3);
fast_central_elements ([x, y], 2);
[y.y, x.x];

load(affine) loads this function.

Functioncheck overlaps (n, add to simps)
Checks the overlaps thru degree n, making sure that you have sufficient simplification
rules in each degree, for dotsimp to work correctly. This process can be speeded
up if you know before hand what the dimension of the space of monomials is. If it
is of finite global dimension, then hilbert should be used. If you don’t know the
monomial dimensions, do not specify a rank_function. An optional third argument
reset, false says don’t bother to query about resetting things.

load(affine) loads this function.

Functionmono ([x 1, ..., x n], n)
Returns the list of independent monomials relative to the current dot simplifications
of degree n in the variables x 1, ..., x n.

load(affine) loads this function.

Functionmonomial dimensions (n)
Compute the Hilbert series through degree n for the current algebra.

load(affine) loads this function.

Functionextract linear equations ([p 1, ..., p n], [m 1, ..., m n])
Makes a list of the coefficients of the noncommutative polynomials p 1, ..., p n of the
noncommutative monomials m 1, ..., m n. The coefficients should be scalars. Use
list_nc_monomials to build the list of monomials.

load(affine) loads this function.

Chapter 24: Affine 399

Functionlist nc monomials
list_nc_monomials ([p 1, ..., p n])
list_nc_monomials (p)

Returns a list of the non commutative monomials occurring in a polynomial p or a
list of polynomials p 1, ..., p n.

load(affine) loads this function.

Option variableall dotsimp denoms
Default value: false

When all_dotsimp_denoms is a list, the denominators encountered by dotsimp are
appended to the list. all_dotsimp_denoms may be initialized to an empty list []

before calling dotsimp.

By default, denominators are not collected by dotsimp.

400 Maxima 5.35.1 Manual

Chapter 25: itensor 401

25 itensor

25.1 Introduction to itensor

Maxima implements symbolic tensor manipulation of two distinct types: component ten-
sor manipulation (ctensor package) and indicial tensor manipulation (itensor package).

Nota bene: Please see the note on ’new tensor notation’ below.

Component tensor manipulation means that geometrical tensor objects are represented
as arrays or matrices. Tensor operations such as contraction or covariant differentiation are
carried out by actually summing over repeated (dummy) indices with do statements. That
is, one explicitly performs operations on the appropriate tensor components stored in an
array or matrix.

Indicial tensor manipulation is implemented by representing tensors as functions of their
covariant, contravariant and derivative indices. Tensor operations such as contraction or
covariant differentiation are performed by manipulating the indices themselves rather than
the components to which they correspond.

These two approaches to the treatment of differential, algebraic and analytic processes
in the context of Riemannian geometry have various advantages and disadvantages which
reveal themselves only through the particular nature and difficulty of the user’s problem.
However, one should keep in mind the following characteristics of the two implementations:

The representation of tensors and tensor operations explicitly in terms of their compo-
nents makes ctensor easy to use. Specification of the metric and the computation of the
induced tensors and invariants is straightforward. Although all of Maxima’s powerful sim-
plification capacity is at hand, a complex metric with intricate functional and coordinate
dependencies can easily lead to expressions whose size is excessive and whose structure is
hidden. In addition, many calculations involve intermediate expressions which swell causing
programs to terminate before completion. Through experience, a user can avoid many of
these difficulties.

Because of the special way in which tensors and tensor operations are represented in
terms of symbolic operations on their indices, expressions which in the component repre-
sentation would be unmanageable can sometimes be greatly simplified by using the special
routines for symmetrical objects in itensor. In this way the structure of a large expression
may be more transparent. On the other hand, because of the the special indicial represen-
tation in itensor, in some cases the user may find difficulty with the specification of the
metric, function definition, and the evaluation of differentiated "indexed" objects.

The itensor package can carry out differentiation with respect to an indexed vari-
able, which allows one to use the package when dealing with Lagrangian and Hamiltonian
formalisms. As it is possible to differentiate a field Lagrangian with respect to an (in-
dexed) field variable, one can use Maxima to derive the corresponding Euler-Lagrange
equations in indicial form. These equations can be translated into component tensor
(ctensor) programs using the ic_convert function, allowing us to solve the field equa-
tions in a particular coordinate representation, or to recast the equations of motion in
Hamiltonian form. See einhil.dem and bradic.dem for two comprehensive examples. The
first, einhil.dem, uses the Einstein-Hilbert action to derive the Einstein field tensor in

402 Maxima 5.35.1 Manual

the homogeneous and isotropic case (Friedmann equations) and the spherically symmet-
ric, static case (Schwarzschild solution.) The second, bradic.dem, demonstrates how to
compute the Friedmann equations from the action of Brans-Dicke gravity theory, and also
derives the Hamiltonian associated with the theory’s scalar field.

25.1.1 New tensor notation

Earlier versions of the itensor package in Maxima used a notation that sometimes led
to incorrect index ordering. Consider the following, for instance:

(%i2) imetric(g);
(%o2) done
(%i3) ishow(g([],[j,k])*g([],[i,l])*a([i,j],[]))$

i l j k
(%t3) g g a

i j
(%i4) ishow(contract(%))$

k l
(%t4) a

This result is incorrect unless a happens to be a symmetric tensor. The reason why this
happens is that although itensor correctly maintains the order within the set of covariant
and contravariant indices, once an index is raised or lowered, its position relative to the
other set of indices is lost.

To avoid this problem, a new notation has been developed that remains fully compatible
with the existing notation and can be used interchangeably. In this notation, contravariant
indices are inserted in the appropriate positions in the covariant index list, but with a
minus sign prepended. Functions like contract and ishow are now aware of this new index
notation and can process tensors appropriately.

In this new notation, the previous example yields a correct result:

(%i5) ishow(g([-j,-k],[])*g([-i,-l],[])*a([i,j],[]))$
i l j k

(%t5) g a g
i j

(%i6) ishow(contract(%))$
l k

(%t6) a

Presently, the only code that makes use of this notation is the lc2kdt function. Through
this notation, it achieves consistent results as it applies the metric tensor to resolve Levi-
Civita symbols without resorting to numeric indices.

Since this code is brand new, it probably contains bugs. While it has been tested to make
sure that it doesn’t break anything using the "old" tensor notation, there is a considerable
chance that "new" tensors will fail to interoperate with certain functions or features. These
bugs will be fixed as they are encountered... until then, caveat emptor!

25.1.2 Indicial tensor manipulation

The indicial tensor manipulation package may be loaded by load(itensor). Demos are
also available: try demo(tensor).

Chapter 25: itensor 403

In itensor a tensor is represented as an "indexed object" . This is a function of 3
groups of indices which represent the covariant, contravariant and derivative indices. The
covariant indices are specified by a list as the first argument to the indexed object, and the
contravariant indices by a list as the second argument. If the indexed object lacks either
of these groups of indices then the empty list [] is given as the corresponding argument.
Thus, g([a,b],[c]) represents an indexed object called g which has two covariant indices
(a,b), one contravariant index (c) and no derivative indices.

The derivative indices, if they are present, are appended as additional arguments to the
symbolic function representing the tensor. They can be explicitly specified by the user or
be created in the process of differentiation with respect to some coordinate variable. Since
ordinary differentiation is commutative, the derivative indices are sorted alphanumerically,
unless iframe_flag is set to true, indicating that a frame metric is being used. This canon-
ical ordering makes it possible for Maxima to recognize that, for example, t([a],[b],i,j)
is the same as t([a],[b],j,i). Differentiation of an indexed object with respect to some
coordinate whose index does not appear as an argument to the indexed object would nor-
mally yield zero. This is because Maxima would not know that the tensor represented by
the indexed object might depend implicitly on the corresponding coordinate. By modify-
ing the existing Maxima function diff in itensor, Maxima now assumes that all indexed
objects depend on any variable of differentiation unless otherwise stated. This makes it
possible for the summation convention to be extended to derivative indices. It should be
noted that itensor does not possess the capabilities of raising derivative indices, and so
they are always treated as covariant.

The following functions are available in the tensor package for manipulating indexed
objects. At present, with respect to the simplification routines, it is assumed that indexed
objects do not by default possess symmetry properties. This can be overridden by setting the
variable allsym[false] to true, which will result in treating all indexed objects completely
symmetric in their lists of covariant indices and symmetric in their lists of contravariant
indices.

The itensor package generally treats tensors as opaque objects. Tensorial equations
are manipulated based on algebraic rules, specifically symmetry and contraction rules. In
addition, the itensor package understands covariant differentiation, curvature, and torsion.
Calculations can be performed relative to a metric of moving frame, depending on the setting
of the iframe_flag variable.

A sample session below demonstrates how to load the itensor package, specify the name
of the metric, and perform some simple calculations.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2) done
(%i3) components(g([i,j],[]),p([i,j],[])*e([],[]))$
(%i4) ishow(g([k,l],[]))$
(%t4) e p

k l
(%i5) ishow(diff(v([i],[]),t))$
(%t5) 0
(%i6) depends(v,t);

404 Maxima 5.35.1 Manual

(%o6) [v(t)]
(%i7) ishow(diff(v([i],[]),t))$

d
(%t7) -- (v)

dt i
(%i8) ishow(idiff(v([i],[]),j))$
(%t8) v

i,j
(%i9) ishow(extdiff(v([i],[]),j))$
(%t9) v - v

j,i i,j

2
(%i10) ishow(liediff(v,w([i],[])))$

%3 %3
(%t10) v w + v w

i,%3 ,i %3
(%i11) ishow(covdiff(v([i],[]),j))$

%4
(%t11) v - v ichr2

i,j %4 i j
(%i12) ishow(ev(%,ichr2))$

%4 %5
(%t12) v - (g v (e p + e p - e p - e p

i,j %4 j %5,i ,i j %5 i j,%5 ,%5 i j

+ e p + e p))/2
i %5,j ,j i %5

(%i13) iframe_flag:true;
(%o13) true
(%i14) ishow(covdiff(v([i],[]),j))$

%6
(%t14) v - v icc2

i,j %6 i j
(%i15) ishow(ev(%,icc2))$

%6
(%t15) v - v ifc2

i,j %6 i j
(%i16) ishow(radcan(ev(%,ifc2,ifc1)))$

%6 %7 %6 %7
(%t16) - (ifg v ifb + ifg v ifb - 2 v

%6 j %7 i %6 i j %7 i,j

%6 %7
- ifg v ifb)/2

%6 %7 i j
(%i17) ishow(canform(s([i,j],[])-s([j,i])))$
(%t17) s - s

i j j i

Chapter 25: itensor 405

(%i18) decsym(s,2,0,[sym(all)],[]);
(%o18) done
(%i19) ishow(canform(s([i,j],[])-s([j,i])))$
(%t19) 0
(%i20) ishow(canform(a([i,j],[])+a([j,i])))$
(%t20) a + a

j i i j
(%i21) decsym(a,2,0,[anti(all)],[]);
(%o21) done
(%i22) ishow(canform(a([i,j],[])+a([j,i])))$
(%t22) 0

25.2 Functions and Variables for itensor

25.2.1 Managing indexed objects

Functiondispcon
dispcon (tensor 1, tensor 2, . . .)
dispcon (all)

Displays the contraction properties of its arguments as were given to defcon. dispcon
(all) displays all the contraction properties which were defined.

Functionentertensor (name)
is a function which, by prompting, allows one to create an indexed object called name
with any number of tensorial and derivative indices. Either a single index or a list of
indices (which may be null) is acceptable input (see the example under covdiff).

Functionchangename (old, new, expr)
will change the name of all indexed objects called old to new in expr. old may be
either a symbol or a list of the form [name, m, n] in which case only those indexed
objects called name with m covariant and n contravariant indices will be renamed to
new.

Functionlistoftens
Lists all tensors in a tensorial expression, complete with their indices. E.g.,

(%i6) ishow(a([i,j],[k])*b([u],[],v)+c([x,y],[])*d([],[])*e)$
k

(%t6) d e c + a b
x y i j u,v

(%i7) ishow(listoftens(%))$
k

(%t7) [a , b , c , d]
i j u,v x y

406 Maxima 5.35.1 Manual

Functionishow (expr)
displays expr with the indexed objects in it shown having their covariant indices
as subscripts and contravariant indices as superscripts. The derivative indices are
displayed as subscripts, separated from the covariant indices by a comma (see the
examples throughout this document).

Functionindices (expr)
Returns a list of two elements. The first is a list of the free indices in expr (those
that occur only once). The second is the list of the dummy indices in expr (those
that occur exactly twice) as the following example demonstrates.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(a([i,j],[k,l],m,n)*b([k,o],[j,m,p],q,r))$

k l j m p
(%t2) a b

i j,m n k o,q r
(%i3) indices(%);
(%o3) [[l, p, i, n, o, q, r], [k, j, m]]

A tensor product containing the same index more than twice is syntactically illegal.
indices attempts to deal with these expressions in a reasonable manner; however,
when it is called to operate upon such an illegal expression, its behavior should be
considered undefined.

Functionrename
rename (expr)
rename (expr, count)

Returns an expression equivalent to expr but with the dummy indices in each term
chosen from the set [%1, %2,...], if the optional second argument is omitted. Oth-
erwise, the dummy indices are indexed beginning at the value of count. Each dummy
index in a product will be different. For a sum, rename will operate upon each term
in the sum resetting the counter with each term. In this way rename can serve as a
tensorial simplifier. In addition, the indices will be sorted alphanumerically (if allsym
is true) with respect to covariant or contravariant indices depending upon the value
of flipflag. If flipflag is false then the indices will be renamed according to
the order of the contravariant indices. If flipflag is true the renaming will occur
according to the order of the covariant indices. It often happens that the combined
effect of the two renamings will reduce an expression more than either one by itself.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) allsym:true;
(%o2) true
(%i3) g([],[%4,%5])*g([],[%6,%7])*ichr2([%1,%4],[%3])*
ichr2([%2,%3],[u])*ichr2([%5,%6],[%1])*ichr2([%7,r],[%2])-
g([],[%4,%5])*g([],[%6,%7])*ichr2([%1,%2],[u])*

Chapter 25: itensor 407

ichr2([%3,%5],[%1])*ichr2([%4,%6],[%3])*ichr2([%7,r],[%2]),noeval$
(%i4) expr:ishow(%)$

%4 %5 %6 %7 %3 u %1 %2
(%t4) g g ichr2 ichr2 ichr2 ichr2

%1 %4 %2 %3 %5 %6 %7 r

%4 %5 %6 %7 u %1 %3 %2
- g g ichr2 ichr2 ichr2 ichr2

%1 %2 %3 %5 %4 %6 %7 r
(%i5) flipflag:true;
(%o5) true
(%i6) ishow(rename(expr))$

%2 %5 %6 %7 %4 u %1 %3
(%t6) g g ichr2 ichr2 ichr2 ichr2

%1 %2 %3 %4 %5 %6 %7 r

%4 %5 %6 %7 u %1 %3 %2
- g g ichr2 ichr2 ichr2 ichr2

%1 %2 %3 %4 %5 %6 %7 r
(%i7) flipflag:false;
(%o7) false
(%i8) rename(%th(2));
(%o8) 0
(%i9) ishow(rename(expr))$

%1 %2 %3 %4 %5 %6 %7 u
(%t9) g g ichr2 ichr2 ichr2 ichr2

%1 %6 %2 %3 %4 r %5 %7

%1 %2 %3 %4 %6 %5 %7 u
- g g ichr2 ichr2 ichr2 ichr2

%1 %3 %2 %6 %4 r %5 %7

Functionshow (expr)
Displays expr with the indexed objects in it shown having covariant indices as sub-
scripts, contravariant indices as superscripts. The derivative indices are displayed as
subscripts, separated from the covariant indices by a comma.

Option variableflipflag
Default value: false

If false then the indices will be renamed according to the order of the contravariant
indices, otherwise according to the order of the covariant indices.

If flipflag is false then rename forms a list of the contravariant indices as they
are encountered from left to right (if true then of the covariant indices). The first
dummy index in the list is renamed to %1, the next to %2, etc. Then sorting occurs
after the rename-ing (see the example under rename).

408 Maxima 5.35.1 Manual

Functiondefcon
defcon (tensor 1)
defcon (tensor 1, tensor 2, tensor 3)

gives tensor 1 the property that the contraction of a product of tensor 1 and tensor 2
results in tensor 3 with the appropriate indices. If only one argument, tensor 1, is
given, then the contraction of the product of tensor 1 with any indexed object having
the appropriate indices (say my_tensor) will yield an indexed object with that name,
i.e. my_tensor, and with a new set of indices reflecting the contractions performed.
For example, if imetric:g, then defcon(g) will implement the raising and lowering
of indices through contraction with the metric tensor. More than one defcon can be
given for the same indexed object; the latest one given which applies in a particular
contraction will be used. contractions is a list of those indexed objects which have
been given contraction properties with defcon.

Functionremcon
remcon (tensor 1, ..., tensor n)
remcon (all)

Removes all the contraction properties from the (tensor 1, ..., tensor n). remcon(all)
removes all contraction properties from all indexed objects.

Functioncontract (expr)
Carries out the tensorial contractions in expr which may be any combination of sums
and products. This function uses the information given to the defcon function. For
best results, expr should be fully expanded. ratexpand is the fastest way to expand
products and powers of sums if there are no variables in the denominators of the
terms. The gcd switch should be false if GCD cancellations are unnecessary.

Functionindexed tensor (tensor)
Must be executed before assigning components to a tensor for which a built in value
already exists as with ichr1, ichr2, icurvature. See the example under icurvature.

Functioncomponents (tensor, expr)
permits one to assign an indicial value to an expression expr giving the values of the
components of tensor. These are automatically substituted for the tensor whenever
it occurs with all of its indices. The tensor must be of the form t([...],[...])

where either list may be empty. expr can be any indexed expression involving other
objects with the same free indices as tensor. When used to assign values to the metric
tensor wherein the components contain dummy indices one must be careful to define
these indices to avoid the generation of multiple dummy indices. Removal of this
assignment is given to the function remcomps.

It is important to keep in mind that components cares only about the valence of a
tensor, not about any particular index ordering. Thus assigning components to, say,
x([i,-j],[]), x([-j,i],[]), or x([i],[j]) all produce the same result, namely
components being assigned to a tensor named x with valence (1,1).

Components can be assigned to an indexed expression in four ways, two of which
involve the use of the components command:

1) As an indexed expression. For instance:

Chapter 25: itensor 409

(%i2) components(g([],[i,j]),e([],[i])*p([],[j]))$
(%i3) ishow(g([],[i,j]))$

i j
(%t3) e p

2) As a matrix:

(%i5) lg:-ident(4)$lg[1,1]:1$lg;
[1 0 0 0]
[]
[0 - 1 0 0]

(%o5) []
[0 0 - 1 0]
[]
[0 0 0 - 1]

(%i6) components(g([i,j],[]),lg);
(%o6) done
(%i7) ishow(g([i,j],[]))$
(%t7) g

i j
(%i8) g([1,1],[]);
(%o8) 1
(%i9) g([4,4],[]);
(%o9) - 1

3) As a function. You can use a Maxima function to specify the components of a
tensor based on its indices. For instance, the following code assigns kdelta to h if h
has the same number of covariant and contravariant indices and no derivative indices,
and g otherwise:

(%i4) h(l1,l2,[l3]):=if length(l1)=length(l2) and length(l3)=0
then kdelta(l1,l2) else apply(g,append([l1,l2], l3))$

(%i5) ishow(h([i],[j]))$
j

(%t5) kdelta
i

(%i6) ishow(h([i,j],[k],l))$
k

(%t6) g
i j,l

4) Using Maxima’s pattern matching capabilities, specifically the defrule and
applyb1 commands:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) matchdeclare(l1,listp);
(%o2) done
(%i3) defrule(r1,m(l1,[]),(i1:idummy(),

g([l1[1],l1[2]],[])*q([i1],[])*e([],[i1])))$

410 Maxima 5.35.1 Manual

(%i4) defrule(r2,m([],l1),(i1:idummy(),
w([],[l1[1],l1[2]])*e([i1],[])*q([],[i1])))$

(%i5) ishow(m([i,n],[])*m([],[i,m]))$
i m

(%t5) m m
i n

(%i6) ishow(rename(applyb1(%,r1,r2)))$
%1 %2 %3 m

(%t6) e q w q e g
%1 %2 %3 n

Functionremcomps (tensor)
Unbinds all values from tensor which were assigned with the components function.

Functionshowcomps (tensor)
Shows component assignments of a tensor, as made using the components command.
This function can be particularly useful when a matrix is assigned to an indicial tensor
using components, as demonstrated by the following example:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) load(itensor);
(%o2) /share/tensor/itensor.lisp
(%i3) lg:matrix([sqrt(r/(r-2*m)),0,0,0],[0,r,0,0],

[0,0,sin(theta)*r,0],[0,0,0,sqrt((r-2*m)/r)]);
[r]
[sqrt(-------) 0 0 0]
[r - 2 m]
[]
[0 r 0 0]

(%o3) []
[0 0 r sin(theta) 0]
[]
[r - 2 m]
[0 0 0 sqrt(-------)]
[r]

(%i4) components(g([i,j],[]),lg);
(%o4) done
(%i5) showcomps(g([i,j],[]));

[r]
[sqrt(-------) 0 0 0]
[r - 2 m]
[]
[0 r 0 0]

(%t5) g = []
i j [0 0 r sin(theta) 0]

[]

Chapter 25: itensor 411

[r - 2 m]
[0 0 0 sqrt(-------)]
[r]

(%o5) false

The showcomps command can also display components of a tensor of rank higher than
2.

Functionidummy ()
Increments icounter and returns as its value an index of the form %n where n is
a positive integer. This guarantees that dummy indices which are needed in form-
ing expressions will not conflict with indices already in use (see the example under
indices).

Option variableidummyx
Default value: %

Is the prefix for dummy indices (see the example under indices).

Option variableicounter
Default value: 1

Determines the numerical suffix to be used in generating the next dummy index in
the tensor package. The prefix is determined by the option idummy (default: %).

Functionkdelta (L1, L2)
is the generalized Kronecker delta function defined in the itensor package with L1 the
list of covariant indices and L2 the list of contravariant indices. kdelta([i],[j])

returns the ordinary Kronecker delta. The command ev(expr,kdelta) causes the
evaluation of an expression containing kdelta([],[]) to the dimension of the man-
ifold.

In what amounts to an abuse of this notation, itensor also allows kdelta to have 2
covariant and no contravariant, or 2 contravariant and no covariant indices, in effect
providing a co(ntra)variant "unit matrix" capability. This is strictly considered a
programming aid and not meant to imply that kdelta([i,j],[]) is a valid tensorial
object.

Functionkdels (L1, L2)
Symmetrized Kronecker delta, used in some calculations. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) kdelta([1,2],[2,1]);
(%o2) - 1
(%i3) kdels([1,2],[2,1]);
(%o3) 1
(%i4) ishow(kdelta([a,b],[c,d]))$

c d d c

412 Maxima 5.35.1 Manual

(%t4) kdelta kdelta - kdelta kdelta
a b a b

(%i4) ishow(kdels([a,b],[c,d]))$
c d d c

(%t4) kdelta kdelta + kdelta kdelta
a b a b

Functionlevi civita (L)
is the permutation (or Levi-Civita) tensor which yields 1 if the list L consists of an
even permutation of integers, -1 if it consists of an odd permutation, and 0 if some
indices in L are repeated.

Functionlc2kdt (expr)
Simplifies expressions containing the Levi-Civita symbol, converting these to
Kronecker-delta expressions when possible. The main difference between this
function and simply evaluating the Levi-Civita symbol is that direct evaluation
often results in Kronecker expressions containing numerical indices. This is often
undesirable as it prevents further simplification. The lc2kdt function avoids
this problem, yielding expressions that are more easily simplified with rename or
contract.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) expr:ishow(’levi_civita([],[i,j])

*’levi_civita([k,l],[])*a([j],[k]))$
i j k

(%t2) levi_civita a levi_civita
j k l

(%i3) ishow(ev(expr,levi_civita))$
i j k 1 2

(%t3) kdelta a kdelta
1 2 j k l

(%i4) ishow(ev(%,kdelta))$
i j j i k

(%t4) (kdelta kdelta - kdelta kdelta) a
1 2 1 2 j

1 2 2 1
(kdelta kdelta - kdelta kdelta)

k l k l
(%i5) ishow(lc2kdt(expr))$

k i j k j i
(%t5) a kdelta kdelta - a kdelta kdelta

j k l j k l
(%i6) ishow(contract(expand(%)))$

i i
(%t6) a - a kdelta

Chapter 25: itensor 413

l l

The lc2kdt function sometimes makes use of the metric tensor. If the metric tensor
was not defined previously with imetric, this results in an error.

(%i7) expr:ishow(’levi_civita([],[i,j])
*’levi_civita([],[k,l])*a([j,k],[]))$

i j k l
(%t7) levi_civita levi_civita a

j k
(%i8) ishow(lc2kdt(expr))$
Maxima encountered a Lisp error:

Error in $IMETRIC [or a callee]:
$IMETRIC [or a callee] requires less than two arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i9) imetric(g);
(%o9) done
(%i10) ishow(lc2kdt(expr))$

%3 i k %4 j l %3 i l %4 j
(%t10) (g kdelta g kdelta - g kdelta g

%3 %4 %3
k

kdelta) a
%4 j k

(%i11) ishow(contract(expand(%)))$
l i l i j

(%t11) a - g a
j

Functionlc l
Simplification rule used for expressions containing the unevaluated Levi-Civita symbol
(levi_civita). Along with lc_u, it can be used to simplify many expressions more
efficiently than the evaluation of levi_civita. For example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) el1:ishow(’levi_civita([i,j,k],[])*a([],[i])*a([],[j]))$

i j
(%t2) a a levi_civita

i j k
(%i3) el2:ishow(’levi_civita([],[i,j,k])*a([i])*a([j]))$

i j k
(%t3) levi_civita a a

i j
(%i4) canform(contract(expand(applyb1(el1,lc_l,lc_u))));
(%t4) 0

414 Maxima 5.35.1 Manual

(%i5) canform(contract(expand(applyb1(el2,lc_l,lc_u))));
(%t5) 0

Functionlc u
Simplification rule used for expressions containing the unevaluated Levi-Civita symbol
(levi_civita). Along with lc_u, it can be used to simplify many expressions more
efficiently than the evaluation of levi_civita. For details, see lc_l.

Functioncanten (expr)
Simplifies expr by renaming (see rename) and permuting dummy indices. rename is
restricted to sums of tensor products in which no derivatives are present. As such
it is limited and should only be used if canform is not capable of carrying out the
required simplification.

The canten function returns a mathematically correct result only if its argument is
an expression that is fully symmetric in its indices. For this reason, canten returns
an error if allsym is not set to true.

Functionconcan (expr)
Similar to canten but also performs index contraction.

25.2.2 Tensor symmetries

Option variableallsym
Default value: false

If true then all indexed objects are assumed symmetric in all of their covariant and
contravariant indices. If false then no symmetries of any kind are assumed in these
indices. Derivative indices are always taken to be symmetric unless iframe_flag is
set to true.

Functiondecsym (tensor, m, n, [cov 1, cov 2, ...], [contr 1, contr 2, ...])
Declares symmetry properties for tensor of m covariant and n contravariant
indices. The cov i and contr i are pseudofunctions expressing symmetry relations
among the covariant and contravariant indices respectively. These are of the form
symoper(index 1, index 2,...) where symoper is one of sym, anti or cyc and
the index i are integers indicating the position of the index in the tensor. This
will declare tensor to be symmetric, antisymmetric or cyclic respectively in the
index i. symoper(all) is also an allowable form which indicates all indices obey
the symmetry condition. For example, given an object b with 5 covariant indices,
decsym(b,5,3,[sym(1,2),anti(3,4)],[cyc(all)]) declares b symmetric in its
first and second and antisymmetric in its third and fourth covariant indices, and
cyclic in all of its contravariant indices. Either list of symmetry declarations may
be null. The function which performs the simplifications is canform as the example
below illustrates.

Chapter 25: itensor 415

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) expr:contract(expand(a([i1, j1, k1], [])

*kdels([i, j, k], [i1, j1, k1])))$
(%i3) ishow(expr)$
(%t3) a + a + a + a + a + a

k j i k i j j k i j i k i k j i j k
(%i4) decsym(a,3,0,[sym(all)],[]);
(%o4) done
(%i5) ishow(canform(expr))$
(%t5) 6 a

i j k
(%i6) remsym(a,3,0);
(%o6) done
(%i7) decsym(a,3,0,[anti(all)],[]);
(%o7) done
(%i8) ishow(canform(expr))$
(%t8) 0
(%i9) remsym(a,3,0);
(%o9) done
(%i10) decsym(a,3,0,[cyc(all)],[]);
(%o10) done
(%i11) ishow(canform(expr))$
(%t11) 3 a + 3 a

i k j i j k
(%i12) dispsym(a,3,0);
(%o12) [[cyc, [[1, 2, 3]], []]]

Functionremsym (tensor, m, n)
Removes all symmetry properties from tensor which has m covariant indices and n
contravariant indices.

Functioncanform
canform (expr)
canform (expr, rename)

Simplifies expr by renaming dummy indices and reordering all indices as dictated by
symmetry conditions imposed on them. If allsym is true then all indices are assumed
symmetric, otherwise symmetry information provided by decsym declarations will
be used. The dummy indices are renamed in the same manner as in the rename

function. When canform is applied to a large expression the calculation may take a
considerable amount of time. This time can be shortened by calling rename on the
expression first. Also see the example under decsym. Note: canform may not be able
to reduce an expression completely to its simplest form although it will always return
a mathematically correct result.

The optional second parameter rename, if set to false, suppresses renaming.

416 Maxima 5.35.1 Manual

25.2.3 Indicial tensor calculus

Functiondiff (expr, v 1, [n 1, [v 2, n 2] ...])
is the usual Maxima differentiation function which has been expanded in its abilities
for itensor. It takes the derivative of expr with respect to v 1 n 1 times, with
respect to v 2 n 2 times, etc. For the tensor package, the function has been modified
so that the v i may be integers from 1 up to the value of the variable dim. This will
cause the differentiation to be carried out with respect to the v ith member of the
list vect_coords. If vect_coords is bound to an atomic variable, then that variable
subscripted by v i will be used for the variable of differentiation. This permits an
array of coordinate names or subscripted names like x[1], x[2], ... to be used.

A further extension adds the ability to diff to compute derivatives with respect to
an indexed variable. In particular, the tensor package knows how to differentiate
expressions containing combinations of the metric tensor and its derivatives with
respect to the metric tensor and its first and second derivatives. This capability
is particularly useful when considering Lagrangian formulations of a gravitational
theory, allowing one to derive the Einstein tensor and field equations from the action
principle.

Functionidiff (expr, v 1, [n 1, [v 2, n 2] ...])
Indicial differentiation. Unlike diff, which differentiates with respect to an indepen-
dent variable, idiff) can be used to differentiate with respect to a coordinate. For an
indexed object, this amounts to appending the v i as derivative indices. Subsequently,
derivative indices will be sorted, unless iframe_flag is set to true.

idiff can also differentiate the determinant of the metric tensor. Thus, if imetric has
been bound to G then idiff(determinant(g),k) will return 2 * determinant(g) *

ichr2([%i,k],[%i]) where the dummy index %i is chosen appropriately.

Functionliediff (v, ten)
Computes the Lie-derivative of the tensorial expression ten with respect to the vector
field v. ten should be any indexed tensor expression; v should be the name (without
indices) of a vector field. For example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(liediff(v,a([i,j],[])*b([],[k],l)))$

k %2 %2 %2
(%t2) b (v a + v a + v a)

,l i j,%2 ,j i %2 ,i %2 j

%1 k %1 k %1 k
+ (v b - b v + v b) a

,%1 l ,l ,%1 ,l ,%1 i j

Functionrediff (ten)
Evaluates all occurrences of the idiff command in the tensorial expression ten.

Chapter 25: itensor 417

Functionundiff (expr)
Returns an expression equivalent to expr but with all derivatives of indexed objects
replaced by the noun form of the idiff function. Its arguments would yield that
indexed object if the differentiation were carried out. This is useful when it is desired
to replace a differentiated indexed object with some function definition resulting in
expr and then carry out the differentiation by saying ev(expr, idiff).

Functionevundiff (expr)
Equivalent to the execution of undiff, followed by ev and rediff.

The point of this operation is to easily evalute expressions that cannot be directly
evaluated in derivative form. For instance, the following causes an error:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) icurvature([i,j,k],[l],m);
Maxima encountered a Lisp error:

Error in $ICURVATURE [or a callee]:
$ICURVATURE [or a callee] requires less than three arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

However, if icurvature is entered in noun form, it can be evaluated using evundiff:

(%i3) ishow(’icurvature([i,j,k],[l],m))$
l

(%t3) icurvature
i j k,m

(%i4) ishow(evundiff(%))$
l l %1 l %1

(%t4) - ichr2 - ichr2 ichr2 - ichr2 ichr2
i k,j m %1 j i k,m %1 j,m i k

l l %1 l %1
+ ichr2 + ichr2 ichr2 + ichr2 ichr2

i j,k m %1 k i j,m %1 k,m i j

Note: In earlier versions of Maxima, derivative forms of the Christoffel-symbols also
could not be evaluated. This has been fixed now, so evundiff is no longer necessary
for expressions like this:

(%i5) imetric(g);
(%o5) done
(%i6) ishow(ichr2([i,j],[k],l))$

k %3
g (g - g + g)

j %3,i l i j,%3 l i %3,j l
(%t6) ---

2

k %3

418 Maxima 5.35.1 Manual

g (g - g + g)
,l j %3,i i j,%3 i %3,j

+ -----------------------------------
2

Functionflush (expr, tensor 1, tensor 2, ...)
Set to zero, in expr, all occurrences of the tensor i that have no derivative indices.

Functionflushd (expr, tensor 1, tensor 2, ...)
Set to zero, in expr, all occurrences of the tensor i that have derivative indices.

Functionflushnd (expr, tensor, n)
Set to zero, in expr, all occurrences of the differentiated object tensor that have n or
more derivative indices as the following example demonstrates.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(a([i],[J,r],k,r)+a([i],[j,r,s],k,r,s))$

J r j r s
(%t2) a + a

i,k r i,k r s
(%i3) ishow(flushnd(%,a,3))$

J r
(%t3) a

i,k r

Functioncoord (tensor 1, tensor 2, ...)
Gives tensor i the coordinate differentiation property that the derivative of contravari-
ant vector whose name is one of the tensor i yields a Kronecker delta. For example, if
coord(x) has been done then idiff(x([],[i]),j) gives kdelta([i],[j]). coord

is a list of all indexed objects having this property.

Functionremcoord
remcoord (tensor 1, tensor 2, ...)
remcoord (all)

Removes the coordinate differentiation property from the tensor_i that was estab-
lished by the function coord. remcoord(all) removes this property from all indexed
objects.

Functionmakebox (expr)
Display expr in the same manner as show; however, any tensor d’Alembertian oc-
curring in expr will be indicated using the symbol []. For example, []p([m],[n])
represents g([],[i,j])*p([m],[n],i,j).

Functionconmetderiv (expr, tensor)
Simplifies expressions containing ordinary derivatives of both covariant and contrava-
riant forms of the metric tensor (the current restriction). For example, conmetderiv

Chapter 25: itensor 419

can relate the derivative of the contravariant metric tensor with the Christoffel sym-
bols as seen from the following:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(g([],[a,b],c))$

a b
(%t2) g

,c
(%i3) ishow(conmetderiv(%,g))$

%1 b a %1 a b
(%t3) - g ichr2 - g ichr2

%1 c %1 c

Functionsimpmetderiv
simpmetderiv (expr)
simpmetderiv (expr[, stop])

Simplifies expressions containing products of the derivatives of the metric tensor.
Specifically, simpmetderiv recognizes two identities:

ab ab ab a
g g + g g = (g g) = (kdelta) = 0
,d bc bc,d bc ,d c ,d

hence

ab ab
g g = - g g
,d bc bc,d

and

ab ab
g g = g g
,j ab,i ,i ab,j

which follows from the symmetries of the Christoffel symbols.

The simpmetderiv function takes one optional parameter which, when present, causes
the function to stop after the first successful substitution in a product expression. The
simpmetderiv function also makes use of the global variable flipflag which determines
how to apply a “canonical” ordering to the product indices.

Put together, these capabilities can be used to achieve powerful simplifications that
are difficult or impossible to accomplish otherwise. This is demonstrated through
the following example that explicitly uses the partial simplification features of
simpmetderiv to obtain a contractible expression:

(%i1) load(itensor);

420 Maxima 5.35.1 Manual

(%o1) /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2) done
(%i3) ishow(g([],[a,b])*g([],[b,c])*g([a,b],[],d)*g([b,c],[],e))$

a b b c
(%t3) g g g g

a b,d b c,e
(%i4) ishow(canform(%))$

errexp1 has improper indices
-- an error. Quitting. To debug this try debugmode(true);
(%i5) ishow(simpmetderiv(%))$

a b b c
(%t5) g g g g

a b,d b c,e
(%i6) flipflag:not flipflag;
(%o6) true
(%i7) ishow(simpmetderiv(%th(2)))$

a b b c
(%t7) g g g g

,d ,e a b b c
(%i8) flipflag:not flipflag;
(%o8) false
(%i9) ishow(simpmetderiv(%th(2),stop))$

a b b c
(%t9) - g g g g

,e a b,d b c
(%i10) ishow(contract(%))$

b c
(%t10) - g g

,e c b,d

See also weyl.dem for an example that uses simpmetderiv and conmetderiv together
to simplify contractions of the Weyl tensor.

Functionflush1deriv (expr, tensor)
Set to zero, in expr, all occurrences of tensor that have exactly one derivative index.

25.2.4 Tensors in curved spaces

Functionimetric (g)
System variableimetric

Specifies the metric by assigning the variable imetric:g in addition, the contrac-
tion properties of the metric g are set up by executing the commands defcon(g),
defcon(g, g, kdelta). The variable imetric (unbound by default), is bound to the
metric, assigned by the imetric(g) command.

Chapter 25: itensor 421

Functionidim (n)
Sets the dimensions of the metric. Also initializes the antisymmetry properties of the
Levi-Civita symbols for the given dimension.

Functionichr1 ([i, j, k])
Yields the Christoffel symbol of the first kind via the definition

(g + g - g)/2 .
ik,j jk,i ij,k

To evaluate the Christoffel symbols for a particular metric, the variable imetric must
be assigned a name as in the example under chr2.

Functionichr2 ([i, j], [k])
Yields the Christoffel symbol of the second kind defined by the relation

ks
ichr2([i,j],[k]) = g (g + g - g)/2

is,j js,i ij,s

Functionicurvature ([i, j, k], [h])
Yields the Riemann curvature tensor in terms of the Christoffel symbols of the second
kind (ichr2). The following notation is used:

h h h %1 h
icurvature = - ichr2 - ichr2 ichr2 + ichr2

i j k i k,j %1 j i k i j,k
h %1

+ ichr2 ichr2
%1 k i j

Functioncovdiff (expr, v 1, v 2, ...)
Yields the covariant derivative of expr with respect to the variables v i in terms of
the Christoffel symbols of the second kind (ichr2). In order to evaluate these, one
should use ev(expr,ichr2).

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) entertensor()$
Enter tensor name: a;
Enter a list of the covariant indices: [i,j];
Enter a list of the contravariant indices: [k];
Enter a list of the derivative indices: [];

k
(%t2) a

i j
(%i3) ishow(covdiff(%,s))$

k %1 k %1 k
(%t3) - a ichr2 - a ichr2 + a

i %1 j s %1 j i s i j,s

422 Maxima 5.35.1 Manual

k %1
+ ichr2 a

%1 s i j
(%i4) imetric:g;
(%o4) g
(%i5) ishow(ev(%th(2),ichr2))$

%1 %4 k
g a (g - g + g)

i %1 s %4,j j s,%4 j %4,s
(%t5) - --

2
%1 %3 k
g a (g - g + g)

%1 j s %3,i i s,%3 i %3,s
- --

2
k %2 %1
g a (g - g + g)

i j s %2,%1 %1 s,%2 %1 %2,s k
+ --- + a

2 i j,s
(%i6)

Functionlorentz gauge (expr)
Imposes the Lorentz condition by substituting 0 for all indexed objects in expr that
have a derivative index identical to a contravariant index.

Functionigeodesic coords (expr, name)
Causes undifferentiated Christoffel symbols and first derivatives of the metric tensor
vanish in expr. The name in the igeodesic_coords function refers to the metric
name (if it appears in expr) while the connection coefficients must be called with the
names ichr1 and/or ichr2. The following example demonstrates the verification of
the cyclic identity satisfied by the Riemann curvature tensor using the igeodesic_

coords function.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(icurvature([r,s,t],[u]))$

u u %1 u
(%t2) - ichr2 - ichr2 ichr2 + ichr2

r t,s %1 s r t r s,t

u %1
+ ichr2 ichr2

%1 t r s
(%i3) ishow(igeodesic_coords(%,ichr2))$

u u
(%t3) ichr2 - ichr2

Chapter 25: itensor 423

r s,t r t,s
(%i4) ishow(igeodesic_coords(icurvature([r,s,t],[u]),ichr2)+

igeodesic_coords(icurvature([s,t,r],[u]),ichr2)+
igeodesic_coords(icurvature([t,r,s],[u]),ichr2))$
u u u u

(%t4) - ichr2 + ichr2 + ichr2 - ichr2
t s,r t r,s s t,r s r,t

u u
- ichr2 + ichr2

r t,s r s,t
(%i5) canform(%);
(%o5) 0

25.2.5 Moving frames

Maxima now has the ability to perform calculations using moving frames. These can be
orthonormal frames (tetrads, vielbeins) or an arbitrary frame.

To use frames, you must first set iframe_flag to true. This causes the Christoffel-
symbols, ichr1 and ichr2, to be replaced by the more general frame connection coefficients
icc1 and icc2 in calculations. Speficially, the behavior of covdiff and icurvature is
changed.

The frame is defined by two tensors: the inverse frame field (ifri, the dual basis tetrad),
and the frame metric ifg. The frame metric is the identity matrix for orthonormal frames,
or the Lorentz metric for orthonormal frames in Minkowski spacetime. The inverse frame
field defines the frame base (unit vectors). Contraction properties are defined for the frame
field and the frame metric.

When iframe_flag is true, many itensor expressions use the frame metric ifg instead
of the metric defined by imetric for raising and lowerind indices.

IMPORTANT: Setting the variable iframe_flag to true does NOT undefine the con-
traction properties of a metric defined by a call to defcon or imetric. If a frame field is
used, it is best to define the metric by assigning its name to the variable imetric and NOT
invoke the imetric function.

Maxima uses these two tensors to define the frame coefficients (ifc1 and ifc2) which
form part of the connection coefficients (icc1 and icc2), as the following example demon-
strates:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) iframe_flag:true;
(%o2) true
(%i3) ishow(covdiff(v([],[i]),j))$

i i %1
(%t3) v + icc2 v

,j %1 j
(%i4) ishow(ev(%,icc2))$

424 Maxima 5.35.1 Manual

%1 i i
(%t4) v ifc2 + v

%1 j ,j
(%i5) ishow(ev(%,ifc2))$

%1 i %2 i
(%t5) v ifg ifc1 + v

%1 j %2 ,j
(%i6) ishow(ev(%,ifc1))$

%1 i %2
v ifg (ifb - ifb + ifb)

j %2 %1 %2 %1 j %1 j %2 i
(%t6) -- + v

2 ,j
(%i7) ishow(ifb([a,b,c]))$

%3 %4
(%t7) (ifri - ifri) ifr ifr

a %3,%4 a %4,%3 b c

An alternate method is used to compute the frame bracket (ifb) if the iframe_bracket_
form flag is set to false:

(%i8) block([iframe_bracket_form:false],ishow(ifb([a,b,c])))$
%6 %5 %5 %6

(%t8) ifri (ifr ifr - ifr ifr)
a %5 b c,%6 b,%6 c

Functioniframes ()
Since in this version of Maxima, contraction identities for ifr and ifri are always
defined, as is the frame bracket (ifb), this function does nothing.

Variableifb
The frame bracket. The contribution of the frame metric to the connection coefficients
is expressed using the frame bracket:

- ifb + ifb + ifb
c a b b c a a b c

ifc1 = --------------------------------
abc 2

The frame bracket itself is defined in terms of the frame field and frame metric.
Two alternate methods of computation are used depending on the value of frame_
bracket_form. If true (the default) or if the itorsion_flag is true:

d e f
ifb = ifr ifr (ifri - ifri - ifri itr)

abc b c a d,e a e,d a f d e

Chapter 25: itensor 425

Otherwise:

e d d e
ifb = (ifr ifr - ifr ifr) ifri

abc b c,e b,e c a d

Variableicc1
Connection coefficients of the first kind. In itensor, defined as

icc1 = ichr1 - ikt1 - inmc1
abc abc abc abc

In this expression, if iframe_flag is true, the Christoffel-symbol ichr1 is replaced
with the frame connection coefficient ifc1. If itorsion_flag is false, ikt1 will be
omitted. It is also omitted if a frame base is used, as the torsion is already calculated
as part of the frame bracket. Lastly, of inonmet_flag is false, inmc1 will not be
present.

Variableicc2
Connection coefficients of the second kind. In itensor, defined as

c c c c
icc2 = ichr2 - ikt2 - inmc2

ab ab ab ab

In this expression, if iframe_flag is true, the Christoffel-symbol ichr2 is replaced
with the frame connection coefficient ifc2. If itorsion_flag is false, ikt2 will be
omitted. It is also omitted if a frame base is used, as the torsion is already calculated
as part of the frame bracket. Lastly, of inonmet_flag is false, inmc2 will not be
present.

Variableifc1
Frame coefficient of the first kind (also known as Ricci-rotation coefficients.) This
tensor represents the contribution of the frame metric to the connection coefficient of
the first kind. Defined as:

- ifb + ifb + ifb
c a b b c a a b c

ifc1 = --------------------------------
abc 2

426 Maxima 5.35.1 Manual

Variableifc2
Frame coefficient of the second kind. This tensor represents the contribution of the
frame metric to the connection coefficient of the second kind. Defined as a permu-
tation of the frame bracket (ifb) with the appropriate indices raised and lowered as
necessary:

c cd
ifc2 = ifg ifc1

ab abd

Variableifr
The frame field. Contracts with the inverse frame field (ifri) to form the frame
metric (ifg).

Variableifri
The inverse frame field. Specifies the frame base (dual basis vectors). Along with the
frame metric, it forms the basis of all calculations based on frames.

Variableifg
The frame metric. Defaults to kdelta, but can be changed using components.

Variableifgi
The inverse frame metric. Contracts with the frame metric (ifg) to kdelta.

Option variableiframe bracket form
Default value: true

Specifies how the frame bracket (ifb) is computed.

25.2.6 Torsion and nonmetricity

Maxima can now take into account torsion and nonmetricity. When the flag itorsion_

flag is set to true, the contribution of torsion is added to the connection coefficients.
Similarly, when the flag inonmet_flag is true, nonmetricity components are included.

Variableinm
The nonmetricity vector. Conformal nonmetricity is defined through the covariant
derivative of the metric tensor. Normally zero, the metric tensor’s covariant derivative
will evaluate to the following when inonmet_flag is set to true:

g =- g inm
ij;k ij k

Variableinmc1
Covariant permutation of the nonmetricity vector components. Defined as

Chapter 25: itensor 427

g inm - inm g - g inm
ab c a bc ac b

inmc1 = ------------------------------
abc 2

(Substitute ifg in place of g if a frame metric is used.)

Variableinmc2
Contravariant permutation of the nonmetricity vector components. Used in the con-
nection coefficients if inonmet_flag is true. Defined as:

c c cd
-inm kdelta - kdelta inm + g inm g

c a b a b d ab
inmc2 = ---

ab 2

(Substitute ifg in place of g if a frame metric is used.)

Variableikt1
Covariant permutation of the torsion tensor (also known as contorsion). Defined as:

d d d
-g itr - g itr - itr g

ad cb bd ca ab cd
ikt1 = ----------------------------------

abc 2

(Substitute ifg in place of g if a frame metric is used.)

Variableikt2
Contravariant permutation of the torsion tensor (also known as contorsion). Defined
as:

c cd
ikt2 = g ikt1

ab abd

(Substitute ifg in place of g if a frame metric is used.)

Variableitr
The torsion tensor. For a metric with torsion, repeated covariant differentiation on a
scalar function will not commute, as demonstrated by the following example:

428 Maxima 5.35.1 Manual

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric:g;
(%o2) g
(%i3) covdiff(covdiff(f([], []), i), j)

- covdiff(covdiff(f([], []), j), i)$
(%i4) ishow(%)$

%4 %2
(%t4) f ichr2 - f ichr2

,%4 j i ,%2 i j
(%i5) canform(%);
(%o5) 0
(%i6) itorsion_flag:true;
(%o6) true
(%i7) covdiff(covdiff(f([], []), i), j)

- covdiff(covdiff(f([], []), j), i)$
(%i8) ishow(%)$

%8 %6
(%t8) f icc2 - f icc2 - f + f

,%8 j i ,%6 i j ,j i ,i j
(%i9) ishow(canform(%))$

%1 %1
(%t9) f icc2 - f icc2

,%1 j i ,%1 i j
(%i10) ishow(canform(ev(%,icc2)))$

%1 %1
(%t10) f ikt2 - f ikt2

,%1 i j ,%1 j i
(%i11) ishow(canform(ev(%,ikt2)))$

%2 %1 %2 %1
(%t11) f g ikt1 - f g ikt1

,%2 i j %1 ,%2 j i %1
(%i12) ishow(factor(canform(rename(expand(ev(%,ikt1))))))$

%3 %2 %1 %1
f g g (itr - itr)
,%3 %2 %1 j i i j

(%t12) ------------------------------------
2

(%i13) decsym(itr,2,1,[anti(all)],[]);
(%o13) done
(%i14) defcon(g,g,kdelta);
(%o14) done
(%i15) subst(g,nounify(g),%th(3))$
(%i16) ishow(canform(contract(%)))$

%1
(%t16) - f itr

,%1 i j

Chapter 25: itensor 429

25.2.7 Exterior algebra

The itensor package can perform operations on totally antisymmetric covariant tensor
fields. A totally antisymmetric tensor field of rank (0,L) corresponds with a differential
L-form. On these objects, a multiplication operation known as the exterior product, or
wedge product, is defined.

Unfortunately, not all authors agree on the definition of the wedge product. Some
authors prefer a definition that corresponds with the notion of antisymmetrization: in these
works, the wedge product of two vector fields, for instance, would be defined as

a a - a a
i j j i

a /\ a = -----------
i j 2

More generally, the product of a p-form and a q-form would be defined as

1 k1..kp l1..lq
A /\ B = ------ D A B
i1..ip j1..jq (p+q)! i1..ip j1..jq k1..kp l1..lq

where D stands for the Kronecker-delta.

Other authors, however, prefer a “geometric” definition that corresponds with the notion
of the volume element:

a /\ a = a a - a a
i j i j j i

and, in the general case

1 k1..kp l1..lq
A /\ B = ----- D A B
i1..ip j1..jq p! q! i1..ip j1..jq k1..kp l1..lq

Since itensor is a tensor algebra package, the first of these two definitions appears to
be the more natural one. Many applications, however, utilize the second definition. To
resolve this dilemma, a flag has been implemented that controls the behavior of the wedge
product: if igeowedge_flag is false (the default), the first, "tensorial" definition is used,
otherwise the second, "geometric" definition will be applied.

Operator~
The wedge product operator is denoted by the tilde ~. This is a binary operator. Its
arguments should be expressions involving scalars, covariant tensors of rank one, or
covariant tensors of rank l that have been declared antisymmetric in all covariant
indices.

The behavior of the wedge product operator is controlled by the igeowedge_flag

flag, as in the following example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(a([i])~b([j]))$

a b - b a
i j i j

(%t2) -------------

430 Maxima 5.35.1 Manual

2
(%i3) decsym(a,2,0,[anti(all)],[]);
(%o3) done
(%i4) ishow(a([i,j])~b([k]))$

a b + b a - a b
i j k i j k i k j

(%t4) ---------------------------
3

(%i5) igeowedge_flag:true;
(%o5) true
(%i6) ishow(a([i])~b([j]))$
(%t6) a b - b a

i j i j
(%i7) ishow(a([i,j])~b([k]))$
(%t7) a b + b a - a b

i j k i j k i k j

Operator|
The vertical bar | denotes the "contraction with a vector" binary operation. When a
totally antisymmetric covariant tensor is contracted with a contravariant vector, the
result is the same regardless which index was used for the contraction. Thus, it is
possible to define the contraction operation in an index-free manner.

In the itensor package, contraction with a vector is always carried out with respect
to the first index in the literal sorting order. This ensures better simplification of
expressions involving the | operator. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) decsym(a,2,0,[anti(all)],[]);
(%o2) done
(%i3) ishow(a([i,j],[])|v)$

%1
(%t3) v a

%1 j
(%i4) ishow(a([j,i],[])|v)$

%1
(%t4) - v a

%1 j

Note that it is essential that the tensors used with the | operator be declared totally
antisymmetric in their covariant indices. Otherwise, the results will be incorrect.

Functionextdiff (expr, i)
Computes the exterior derivative of expr with respect to the index i. The exterior
derivative is formally defined as the wedge product of the partial derivative operator
and a differential form. As such, this operation is also controlled by the setting of
igeowedge_flag. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp

Chapter 25: itensor 431

(%i2) ishow(extdiff(v([i]),j))$
v - v
j,i i,j

(%t2) -----------
2

(%i3) decsym(a,2,0,[anti(all)],[]);
(%o3) done
(%i4) ishow(extdiff(a([i,j]),k))$

a - a + a
j k,i i k,j i j,k

(%t4) ------------------------
3

(%i5) igeowedge_flag:true;
(%o5) true
(%i6) ishow(extdiff(v([i]),j))$
(%t6) v - v

j,i i,j
(%i7) ishow(extdiff(a([i,j]),k))$
(%t7) - (a - a + a)

k j,i k i,j j i,k

Functionhodge (expr)
Compute the Hodge-dual of expr. For instance:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2) done
(%i3) idim(4);
(%o3) done
(%i4) icounter:100;
(%o4) 100
(%i5) decsym(A,3,0,[anti(all)],[])$

(%i6) ishow(A([i,j,k],[]))$
(%t6) A

i j k
(%i7) ishow(canform(hodge(%)))$

%1 %2 %3 %4
levi_civita g A

%1 %102 %2 %3 %4
(%t7) ---

6
(%i8) ishow(canform(hodge(%)))$

%1 %2 %3 %8 %4 %5 %6 %7
(%t8) levi_civita levi_civita g

%1 %106
g g g A /6

432 Maxima 5.35.1 Manual

%2 %107 %3 %108 %4 %8 %5 %6 %7
(%i9) lc2kdt(%)$

(%i10) %,kdelta$

(%i11) ishow(canform(contract(expand(%))))$
(%t11) - A

%106 %107 %108

Option variableigeowedge flag
Default value: false

Controls the behavior of the wedge product and exterior derivative. When set to
false (the default), the notion of differential forms will correspond with that of a
totally antisymmetric covariant tensor field. When set to true, differential forms will
agree with the notion of the volume element.

25.2.8 Exporting TeX expressions

The itensor package provides limited support for exporting tensor expressions to TeX.
Since itensor expressions appear as function calls, the regular Maxima tex command
will not produce the expected output. You can try instead the tentex command, which
attempts to translate tensor expressions into appropriately indexed TeX objects.

Functiontentex (expr)
To use the tentex function, you must first load tentex, as in the following example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) load(tentex);
(%o2) /share/tensor/tentex.lisp
(%i3) idummyx:m;
(%o3) m
(%i4) ishow(icurvature([j,k,l],[i]))$

m1 i m1 i i
(%t4) ichr2 ichr2 - ichr2 ichr2 - ichr2

j k m1 l j l m1 k j l,k

i
+ ichr2

j k,l
(%i5) tentex(%)$
$$\Gamma_{j\,k}^{m_1}\,\Gamma_{l\,m_1}^{i}-\Gamma_{j\,l}^{m_1}\,
\Gamma_{k\,m_1}^{i}-\Gamma_{j\,l,k}^{i}+\Gamma_{j\,k,l}^{i}$$

Note the use of the idummyx assignment, to avoid the appearance of the percent sign
in the TeX expression, which may lead to compile errors.

NB: This version of the tentex function is somewhat experimental.

Chapter 25: itensor 433

25.2.9 Interfacing with ctensor

The itensor package has the ability to generate Maxima code that can then be executed
in the context of the ctensor package. The function that performs this task is ic_convert.

Functionic convert (eqn)
Converts the itensor equation eqn to a ctensor assignment statement. Implied
sums over dummy indices are made explicit while indexed objects are transformed
into arrays (the array subscripts are in the order of covariant followed by contravariant
indices of the indexed objects). The derivative of an indexed object will be replaced by
the noun form of diff taken with respect to ct_coords subscripted by the derivative
index. The Christoffel symbols ichr1 and ichr2 will be translated to lcs and mcs,
respectively and if metricconvert is true then all occurrences of the metric with two
covariant (contravariant) indices will be renamed to lg (ug). In addition, do loops
will be introduced summing over all free indices so that the transformed assignment
statement can be evaluated by just doing ev. The following examples demonstrate
the features of this function.

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) eqn:ishow(t([i,j],[k])=f([],[])*g([l,m],[])*a([],[m],j)

*b([i],[l,k]))$
k m l k

(%t2) t = f a b g
i j ,j i l m

(%i3) ic_convert(eqn);
(%o3) for i thru dim do (for j thru dim do (

for k thru dim do
t : f sum(sum(diff(a , ct_coords) b
i, j, k m j i, l, k

g , l, 1, dim), m, 1, dim)))
l, m

(%i4) imetric(g);
(%o4) done
(%i5) metricconvert:true;
(%o5) true
(%i6) ic_convert(eqn);
(%o6) for i thru dim do (for j thru dim do (

for k thru dim do
t : f sum(sum(diff(a , ct_coords) b
i, j, k m j i, l, k

lg , l, 1, dim), m, 1, dim)))
l, m

25.2.10 Reserved words

The following Maxima words are used by the itensor package internally and should not
be redefined:

434 Maxima 5.35.1 Manual

Keyword Comments
--
indices2() Internal version of indices()
conti Lists contravariant indices
covi Lists covariant indices of a indexed object
deri Lists derivative indices of an indexed object
name Returns the name of an indexed object
concan
irpmon
lc0
_lc2kdt0
_lcprod
_extlc

Chapter 26: ctensor 435

26 ctensor

26.1 Introduction to ctensor

ctensor is a component tensor manipulation package. To use the ctensor package,
type load(ctensor). To begin an interactive session with ctensor, type csetup(). You
are first asked to specify the dimension of the manifold. If the dimension is 2, 3 or 4 then
the list of coordinates defaults to [x,y], [x,y,z] or [x,y,z,t] respectively. These names
may be changed by assigning a new list of coordinates to the variable ct_coords (described
below) and the user is queried about this. Care must be taken to avoid the coordinate
names conflicting with other object definitions.

Next, the user enters the metric either directly or from a file by specifying its ordinal
position. The metric is stored in the matrix lg. Finally, the metric inverse is computed
and stored in the matrix ug. One has the option of carrying out all calculations in a power
series.

A sample protocol is begun below for the static, spherically symmetric metric (standard
coordinates) which will be applied to the problem of deriving Einstein’s vacuum equations
(which lead to the Schwarzschild solution) as an example. Many of the functions in ctensor

will be displayed for the standard metric as examples.

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) csetup();
Enter the dimension of the coordinate system:
4;
Do you wish to change the coordinate names?
n;
Do you want to
1. Enter a new metric?

2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
1;

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
1;
Row 1 Column 1:
a;
Row 2 Column 2:
x^2;
Row 3 Column 3:
x^2*sin(y)^2;
Row 4 Column 4:
-d;

Matrix entered.

436 Maxima 5.35.1 Manual

Enter functional dependencies with the DEPENDS function or ’N’ if none
depends([a,d],x);
Do you wish to see the metric?
y;

[a 0 0 0]
[]
[2]
[0 x 0 0]
[]
[2 2]
[0 0 x sin (y) 0]
[]
[0 0 0 - d]

(%o2) done
(%i3) christof(mcs);

a
x

(%t3) mcs = ---
1, 1, 1 2 a

1
(%t4) mcs = -

1, 2, 2 x

1
(%t5) mcs = -

1, 3, 3 x

d
x

(%t6) mcs = ---
1, 4, 4 2 d

x
(%t7) mcs = - -

2, 2, 1 a

cos(y)
(%t8) mcs = ------

2, 3, 3 sin(y)

2
x sin (y)

(%t9) mcs = - ---------
3, 3, 1 a

(%t10) mcs = - cos(y) sin(y)
3, 3, 2

Chapter 26: ctensor 437

d
x

(%t11) mcs = ---
4, 4, 1 2 a

(%o11) done

26.2 Functions and Variables for ctensor

26.2.1 Initialization and setup

Functioncsetup ()
A function in the ctensor (component tensor) package which initializes the package
and allows the user to enter a metric interactively. See ctensor for more details.

Functioncmetric
cmetric (dis)
cmetric ()

A function in the ctensor (component tensor) package that computes the metric
inverse and sets up the package for further calculations.

If cframe_flag is false, the function computes the inverse metric ug from the (user-
defined) matrix lg. The metric determinant is also computed and stored in the
variable gdet. Furthermore, the package determines if the metric is diagonal and sets
the value of diagmetric accordingly. If the optional argument dis is present and not
equal to false, the user is prompted to see the metric inverse.

If cframe_flag is true, the function expects that the values of fri (the inverse frame
matrix) and lfg (the frame metric) are defined. From these, the frame matrix fr and
the inverse frame metric ufg are computed.

Functionct coordsys
ct_coordsys (coordinate system, extra arg)
ct_coordsys (coordinate system)

Sets up a predefined coordinate system and metric. The argument coordinate system
can be one of the following symbols:

SYMBOL Dim Coordinates Description/comments
--
cartesian2d 2 [x,y] Cartesian 2D coordinate

system
polar 2 [r,phi] Polar coordinate system
elliptic 2 [u,v] Elliptic coord. system
confocalelliptic 2 [u,v] Confocal elliptic

coordinates
bipolar 2 [u,v] Bipolar coord. system
parabolic 2 [u,v] Parabolic coord. system

438 Maxima 5.35.1 Manual

cartesian3d 3 [x,y,z] Cartesian 3D coordinate
system

polarcylindrical 3 [r,theta,z] Polar 2D with
cylindrical z

ellipticcylindrical 3 [u,v,z] Elliptic 2D with
cylindrical z

confocalellipsoidal 3 [u,v,w] Confocal ellipsoidal
bipolarcylindrical 3 [u,v,z] Bipolar 2D with

cylindrical z
paraboliccylindrical 3 [u,v,z] Parabolic 2D with

cylindrical z
paraboloidal 3 [u,v,phi] Paraboloidal coords.
conical 3 [u,v,w] Conical coordinates
toroidal 3 [u,v,phi] Toroidal coordinates
spherical 3 [r,theta,phi] Spherical coord. system
oblatespheroidal 3 [u,v,phi] Oblate spheroidal

coordinates
oblatespheroidalsqrt 3 [u,v,phi]
prolatespheroidal 3 [u,v,phi] Prolate spheroidal

coordinates
prolatespheroidalsqrt 3 [u,v,phi]
ellipsoidal 3 [r,theta,phi] Ellipsoidal coordinates
cartesian4d 4 [x,y,z,t] Cartesian 4D coordinate

system
spherical4d 4 [r,theta,eta,phi] Spherical 4D coordinate

system
exteriorschwarzschild 4 [t,r,theta,phi] Schwarzschild metric
interiorschwarzschild 4 [t,z,u,v] Interior Schwarzschild

metric
kerr_newman 4 [t,r,theta,phi] Charged axially

symmetric metric

coordinate_system can also be a list of transformation functions, followed by a list
containing the coordinate variables. For instance, you can specify a spherical metric
as follows:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) ct_coordsys([r*cos(theta)*cos(phi),r*cos(theta)*sin(phi),

r*sin(theta),[r,theta,phi]]);
(%o2) done
(%i3) lg:trigsimp(lg);

[1 0 0]
[]
[2]

(%o3) [0 r 0]
[]
[2 2]
[0 0 r cos (theta)]

(%i4) ct_coords;

Chapter 26: ctensor 439

(%o4) [r, theta, phi]
(%i5) dim;
(%o5) 3

Transformation functions can also be used when cframe_flag is true:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) cframe_flag:true;
(%o2) true
(%i3) ct_coordsys([r*cos(theta)*cos(phi),r*cos(theta)*sin(phi),

r*sin(theta),[r,theta,phi]]);
(%o3) done
(%i4) fri;
(%o4)
[cos(phi)cos(theta) -cos(phi) r sin(theta) -sin(phi) r cos(theta)]
[]
[sin(phi)cos(theta) -sin(phi) r sin(theta) cos(phi) r cos(theta)]
[]
[sin(theta) r cos(theta) 0]

(%i5) cmetric();
(%o5) false
(%i6) lg:trigsimp(lg);

[1 0 0]
[]
[2]

(%o6) [0 r 0]
[]
[2 2]
[0 0 r cos (theta)]

The optional argument extra arg can be any one of the following:

cylindrical tells ct_coordsys to attach an additional cylindrical coordinate.

minkowski tells ct_coordsys to attach an additional coordinate with negative metric
signature.

all tells ct_coordsys to call cmetric and christof(false) after setting up the
metric.

If the global variable verbose is set to true, ct_coordsys displays the values of dim,
ct_coords, and either lg or lfg and fri, depending on the value of cframe_flag.

Functioninit ctensor ()
Initializes the ctensor package.

The init_ctensor function reinitializes the ctensor package. It removes all arrays
and matrices used by ctensor, resets all flags, resets dim to 4, and resets the frame
metric to the Lorentz-frame.

440 Maxima 5.35.1 Manual

26.2.2 The tensors of curved space

The main purpose of the ctensor package is to compute the tensors of curved
space(time), most notably the tensors used in general relativity.

When a metric base is used, ctensor can compute the following tensors:

lg -- ug
\ \
lcs -- mcs -- ric -- uric

\ \ \
\ tracer - ein -- lein
\
riem -- lriem -- weyl

\
uriem

ctensor can also work using moving frames. When cframe_flag is set to true, the
following tensors can be calculated:

lfg -- ufg
\

fri -- fr -- lcs -- mcs -- lriem -- ric -- uric
\ | \ \ \
lg -- ug | weyl tracer - ein -- lein

|\
| riem
|
\uriem

Functionchristof (dis)
A function in the ctensor (component tensor) package. It computes the Christoffel
symbols of both kinds. The argument dis determines which results are to be imme-
diately displayed. The Christoffel symbols of the first and second kinds are stored
in the arrays lcs[i,j,k] and mcs[i,j,k] respectively and defined to be symmetric
in the first two indices. If the argument to christof is lcs or mcs then the unique
non-zero values of lcs[i,j,k] or mcs[i,j,k], respectively, will be displayed. If the
argument is all then the unique non-zero values of lcs[i,j,k] and mcs[i,j,k] will
be displayed. If the argument is false then the display of the elements will not occur.
The array elements mcs[i,j,k] are defined in such a manner that the final index is
contravariant.

Functionricci (dis)
A function in the ctensor (component tensor) package. ricci computes the covariant
(symmetric) components ric[i,j] of the Ricci tensor. If the argument dis is true,
then the non-zero components are displayed.

Chapter 26: ctensor 441

Functionuricci (dis)
This function first computes the covariant components ric[i,j] of the Ricci tensor.
Then the mixed Ricci tensor is computed using the contravariant metric tensor. If
the value of the argument dis is true, then these mixed components, uric[i,j]

(the index i is covariant and the index j is contravariant), will be displayed directly.
Otherwise, ricci(false) will simply compute the entries of the array uric[i,j]

without displaying the results.

Functionscurvature ()
Returns the scalar curvature (obtained by contracting the Ricci tensor) of the Rie-
mannian manifold with the given metric.

Functioneinstein (dis)
A function in the ctensor (component tensor) package. einstein computes the
mixed Einstein tensor after the Christoffel symbols and Ricci tensor have been ob-
tained (with the functions christof and ricci). If the argument dis is true, then
the non-zero values of the mixed Einstein tensor ein[i,j] will be displayed where
j is the contravariant index. The variable rateinstein will cause the rational sim-
plification on these components. If ratfac is true then the components will also be
factored.

Functionleinstein (dis)
Covariant Einstein-tensor. leinstein stores the values of the covariant Einstein
tensor in the array lein. The covariant Einstein-tensor is computed from the mixed
Einstein tensor ein by multiplying it with the metric tensor. If the argument dis is
true, then the non-zero values of the covariant Einstein tensor are displayed.

Functionriemann (dis)
A function in the ctensor (component tensor) package. riemann computes the Rie-
mann curvature tensor from the given metric and the corresponding Christoffel sym-
bols. The following index conventions are used:

l _l _l _l _m _l _m
R[i,j,k,l] = R = | - | + | | - | |

ijk ij,k ik,j mk ij mj ik

This notation is consistent with the notation used by the itensor package and its
icurvature function. If the optional argument dis is true, the unique non-zero
components riem[i,j,k,l] will be displayed. As with the Einstein tensor, various
switches set by the user control the simplification of the components of the Riemann
tensor. If ratriemann is true, then rational simplification will be done. If ratfac is
true then each of the components will also be factored.

If the variable cframe_flag is false, the Riemann tensor is computed directly from
the Christoffel-symbols. If cframe_flag is true, the covariant Riemann-tensor is
computed first from the frame field coefficients.

Functionlriemann (dis)
Covariant Riemann-tensor (lriem[]).

442 Maxima 5.35.1 Manual

Computes the covariant Riemann-tensor as the array lriem. If the argument dis is
true, unique non-zero values are displayed.

If the variable cframe_flag is true, the covariant Riemann tensor is computed di-
rectly from the frame field coefficients. Otherwise, the (3,1) Riemann tensor is com-
puted first.

For information on index ordering, see riemann.

Functionuriemann (dis)
Computes the contravariant components of the Riemann curvature tensor as array
elements uriem[i,j,k,l]. These are displayed if dis is true.

Functionrinvariant ()
Forms the Kretchmann-invariant (kinvariant) obtained by contracting the tensors

lriem[i,j,k,l]*uriem[i,j,k,l].

This object is not automatically simplified since it can be very large.

Functionweyl (dis)
Computes the Weyl conformal tensor. If the argument dis is true, the non-zero com-
ponents weyl[i,j,k,l] will be displayed to the user. Otherwise, these components
will simply be computed and stored. If the switch ratweyl is set to true, then the
components will be rationally simplified; if ratfac is true then the results will be
factored as well.

26.2.3 Taylor series expansion

The ctensor package has the ability to truncate results by assuming that they are Taylor-
series approximations. This behavior is controlled by the ctayswitch variable; when set to
true, ctensor makes use internally of the function ctaylor when simplifying results.

The ctaylor function is invoked by the following ctensor functions:

Function Comments

christof() For mcs only
ricci()
uricci()
einstein()
riemann()
weyl()
checkdiv()

Functionctaylor ()
The ctaylor function truncates its argument by converting it to a Taylor-series using
taylor, and then calling ratdisrep. This has the combined effect of dropping terms
higher order in the expansion variable ctayvar. The order of terms that should be
dropped is defined by ctaypov; the point around which the series expansion is carried
out is specified in ctaypt.

Chapter 26: ctensor 443

As an example, consider a simple metric that is a perturbation of the Minkowski
metric. Without further restrictions, even a diagonal metric produces expressions for
the Einstein tensor that are far too complex:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) ratfac:true;
(%o2) true
(%i3) derivabbrev:true;
(%o3) true
(%i4) ct_coords:[t,r,theta,phi];
(%o4) [t, r, theta, phi]
(%i5) lg:matrix([-1,0,0,0],[0,1,0,0],[0,0,r^2,0],

[0,0,0,r^2*sin(theta)^2]);
[- 1 0 0 0]
[]
[0 1 0 0]
[]

(%o5) [2]
[0 0 r 0]
[]
[2 2]
[0 0 0 r sin (theta)]

(%i6) h:matrix([h11,0,0,0],[0,h22,0,0],[0,0,h33,0],[0,0,0,h44]);
[h11 0 0 0]
[]
[0 h22 0 0]

(%o6) []
[0 0 h33 0]
[]
[0 0 0 h44]

(%i7) depends(l,r);
(%o7) [l(r)]
(%i8) lg:lg+l*h;

[h11 l - 1 0 0 0]
[]
[0 h22 l + 1 0 0]
[]

(%o8) [2]
[0 0 r + h33 l 0]
[]
[2 2]
[0 0 0 r sin (theta) + h44 l]

(%i9) cmetric(false);
(%o9) done
(%i10) einstein(false);
(%o10) done
(%i11) ntermst(ein);
[[1, 1], 62]

444 Maxima 5.35.1 Manual

[[1, 2], 0]
[[1, 3], 0]
[[1, 4], 0]
[[2, 1], 0]
[[2, 2], 24]
[[2, 3], 0]
[[2, 4], 0]
[[3, 1], 0]
[[3, 2], 0]
[[3, 3], 46]
[[3, 4], 0]
[[4, 1], 0]
[[4, 2], 0]
[[4, 3], 0]
[[4, 4], 46]
(%o12) done

However, if we recompute this example as an approximation that is linear in the
variable l, we get much simpler expressions:

(%i14) ctayswitch:true;
(%o14) true
(%i15) ctayvar:l;
(%o15) l
(%i16) ctaypov:1;
(%o16) 1
(%i17) ctaypt:0;
(%o17) 0
(%i18) christof(false);
(%o18) done
(%i19) ricci(false);
(%o19) done
(%i20) einstein(false);
(%o20) done
(%i21) ntermst(ein);
[[1, 1], 6]
[[1, 2], 0]
[[1, 3], 0]
[[1, 4], 0]
[[2, 1], 0]
[[2, 2], 13]
[[2, 3], 2]
[[2, 4], 0]
[[3, 1], 0]
[[3, 2], 2]
[[3, 3], 9]
[[3, 4], 0]
[[4, 1], 0]
[[4, 2], 0]

Chapter 26: ctensor 445

[[4, 3], 0]
[[4, 4], 9]
(%o21) done
(%i22) ratsimp(ein[1,1]);

2 2 4 2 2
(%o22) - (((h11 h22 - h11) (l) r - 2 h33 l r) sin (theta)

r r r

2 2 4 2
- 2 h44 l r - h33 h44 (l))/(4 r sin (theta))

r r r

This capability can be useful, for instance, when working in the weak field limit far
from a gravitational source.

26.2.4 Frame fields

When the variable cframe_flag is set to true, the ctensor package performs its calcu-
lations using a moving frame.

Functionframe bracket (fr, fri, diagframe)
The frame bracket (fb[]).

Computes the frame bracket according to the following definition:

c c c d e
ifb = (ifri - ifri) ifr ifr

ab d,e e,d a b

26.2.5 Algebraic classification

A new feature (as of November, 2004) of ctensor is its ability to compute the Petrov
classification of a 4-dimensional spacetime metric. For a demonstration of this capability,
see the file share/tensor/petrov.dem.

Functionnptetrad ()
Computes a Newman-Penrose null tetrad (np) and its raised-index counterpart (npi).
See petrov for an example.

The null tetrad is constructed on the assumption that a four-dimensional orthonormal
frame metric with metric signature (-,+,+,+) is being used. The components of the
null tetrad are related to the inverse frame matrix as follows:

np = (fri + fri) / sqrt(2)
1 1 2

np = (fri - fri) / sqrt(2)
2 1 2

446 Maxima 5.35.1 Manual

np = (fri + %i fri) / sqrt(2)
3 3 4

np = (fri - %i fri) / sqrt(2)
4 3 4

Functionpsi (dis)
Computes the five Newman-Penrose coefficients psi[0]...psi[4]. If dis is set to
true, the coefficients are displayed. See petrov for an example.

These coefficients are computed from the Weyl-tensor in a coordinate base. If a
frame base is used, the Weyl-tensor is first converted to a coordinate base, which
can be a computationally expensive procedure. For this reason, in some cases it may
be more advantageous to use a coordinate base in the first place before the Weyl
tensor is computed. Note however, that constructing a Newman-Penrose null tetrad
requires a frame base. Therefore, a meaningful computation sequence may begin
with a frame base, which is then used to compute lg (computed automatically by
cmetric) and then ug. See petrov for an example. At this point, you can switch back
to a coordinate base by setting cframe_flag to false before beginning to compute the
Christoffel symbols. Changing to a frame base at a later stage could yield inconsistent
results, as you may end up with a mixed bag of tensors, some computed in a frame
base, some in a coordinate base, with no means to distinguish between the two.

Functionpetrov ()
Computes the Petrov classification of the metric characterized by psi[0]...psi[4].

For example, the following demonstrates how to obtain the Petrov-classification of
the Kerr metric:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) (cframe_flag:true,gcd:spmod,ctrgsimp:true,ratfac:true);
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) ug:invert(lg)$
(%i5) weyl(false);
(%o5) done
(%i6) nptetrad(true);
(%t6) np =

[sqrt(r - 2 m) sqrt(r)]
[--------------- --------------------- 0 0]
[sqrt(2) sqrt(r) sqrt(2) sqrt(r - 2 m)]
[]
[sqrt(r - 2 m) sqrt(r)]
[--------------- - --------------------- 0 0]
[sqrt(2) sqrt(r) sqrt(2) sqrt(r - 2 m)]

Chapter 26: ctensor 447

[]
[r %i r sin(theta)]
[0 0 ------- ---------------]
[sqrt(2) sqrt(2)]
[]
[r %i r sin(theta)]
[0 0 ------- - ---------------]
[sqrt(2) sqrt(2)]

sqrt(r) sqrt(r - 2 m)
(%t7) npi = matrix([- ---------------------,---------------, 0, 0],

sqrt(2) sqrt(r - 2 m) sqrt(2) sqrt(r)

sqrt(r) sqrt(r - 2 m)
[- ---------------------, - ---------------, 0, 0],

sqrt(2) sqrt(r - 2 m) sqrt(2) sqrt(r)

1 %i
[0, 0, ---------, --------------------],

sqrt(2) r sqrt(2) r sin(theta)

1 %i
[0, 0, ---------, - --------------------])

sqrt(2) r sqrt(2) r sin(theta)

(%o7) done
(%i7) psi(true);
(%t8) psi = 0

0

(%t9) psi = 0
1

m
(%t10) psi = --

2 3
r

(%t11) psi = 0
3

(%t12) psi = 0
4

(%o12) done
(%i12) petrov();
(%o12) D

The Petrov classification function is based on the algorithm published in "Classifying
geometries in general relativity: III Classification in practice" by Pollney, Skea, and

448 Maxima 5.35.1 Manual

d’Inverno, Class. Quant. Grav. 17 2885-2902 (2000). Except for some simple test
cases, the implementation is untested as of December 19, 2004, and is likely to contain
errors.

26.2.6 Torsion and nonmetricity

ctensor has the ability to compute and include torsion and nonmetricity coefficients in
the connection coefficients.

The torsion coefficients are calculated from a user-supplied tensor tr, which should be
a rank (2,1) tensor. From this, the torsion coefficients kt are computed according to the
following formulae:

m m m
- g tr - g tr - tr g

im kj jm ki ij km
kt = -------------------------------
ijk 2

k km
kt = g kt
ij ijm

Note that only the mixed-index tensor is calculated and stored in the array kt.

The nonmetricity coefficients are calculated from the user-supplied nonmetricity vector
nm. From this, the nonmetricity coefficients nmc are computed as follows:

k k km
-nm D - D nm + g nm g

k i j i j m ij
nmc = ------------------------------

ij 2

where D stands for the Kronecker-delta.

When ctorsion_flag is set to true, the values of kt are subtracted from the mixed-
indexed connection coefficients computed by christof and stored in mcs. Similarly, if
cnonmet_flag is set to true, the values of nmc are subtracted from the mixed-indexed
connection coefficients.

If necessary, christof calls the functions contortion and nonmetricity in order to
compute kt and nm.

Functioncontortion (tr)
Computes the (2,1) contortion coefficients from the torsion tensor tr.

Functionnonmetricity (nm)
Computes the (2,1) nonmetricity coefficients from the nonmetricity vector nm.

Chapter 26: ctensor 449

26.2.7 Miscellaneous features

Functionctransform (M)
A function in the ctensor (component tensor) package which will perform a coordi-
nate transformation upon an arbitrary square symmetric matrix M. The user must
input the functions which define the transformation. (Formerly called transform.)

Functionfindde (A, n)
returns a list of the unique differential equations (expressions) corresponding to the
elements of the n dimensional square array A. Presently, n may be 2 or 3. deindex

is a global list containing the indices of A corresponding to these unique differential
equations. For the Einstein tensor (ein), which is a two dimensional array, if com-
puted for the metric in the example below, findde gives the following independent
differential equations:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%o2) true
(%i3) dim:4;
(%o3) 4
(%i4) lg:matrix([a, 0, 0, 0], [0, x^2, 0, 0],

[0, 0, x^2*sin(y)^2, 0], [0,0,0,-d]);
[a 0 0 0]
[]
[2]
[0 x 0 0]

(%o4) []
[2 2]
[0 0 x sin (y) 0]
[]
[0 0 0 - d]

(%i5) depends([a,d],x);
(%o5) [a(x), d(x)]
(%i6) ct_coords:[x,y,z,t];
(%o6) [x, y, z, t]
(%i7) cmetric();
(%o7) done
(%i8) einstein(false);
(%o8) done
(%i9) findde(ein,2);

2
(%o9) [d x - a d + d, 2 a d d x - a (d) x - a d d x

x x x x x x

2 2
+ 2 a d d - 2 a d , a x + a - a]

x x x
(%i10) deindex;

450 Maxima 5.35.1 Manual

(%o10) [[1, 1], [2, 2], [4, 4]]

Functioncograd ()
Computes the covariant gradient of a scalar function allowing the user to choose the
corresponding vector name as the example under contragrad illustrates.

Functioncontragrad ()
Computes the contravariant gradient of a scalar function allowing the user to choose
the corresponding vector name as the example below for the Schwarzschild metric
illustrates:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) depends(f,r);
(%o4) [f(r)]
(%i5) cograd(f,g1);
(%o5) done
(%i6) listarray(g1);
(%o6) [0, f , 0, 0]

r
(%i7) contragrad(f,g2);
(%o7) done
(%i8) listarray(g2);

f r - 2 f m
r r

(%o8) [0, -------------, 0, 0]
r

Functiondscalar ()
computes the tensor d’Alembertian of the scalar function once dependencies have
been declared upon the function. For example:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) depends(p,r);
(%o4) [p(r)]
(%i5) factor(dscalar(p));

2
p r - 2 m p r + 2 p r - 2 m p
r r r r r r

(%o5) --------------------------------------
2
r

Chapter 26: ctensor 451

Functioncheckdiv ()
computes the covariant divergence of the mixed second rank tensor (whose first index
must be covariant) by printing the corresponding n components of the vector field (the
divergence) where n = dim. If the argument to the function is g then the divergence
of the Einstein tensor will be formed and must be zero. In addition, the divergence
(vector) is given the array name div.

Functioncgeodesic (dis)
A function in the ctensor (component tensor) package. cgeodesic computes the
geodesic equations of motion for a given metric. They are stored in the array geod[i].
If the argument dis is true then these equations are displayed.

Functionbdvac (f)
generates the covariant components of the vacuum field equations of the Brans- Dicke
gravitational theory. The scalar field is specified by the argument f, which should be
a (quoted) function name with functional dependencies, e.g., ’p(x).

The components of the second rank covariant field tensor are represented by the array
bd.

Functioninvariant1 ()
generates the mixed Euler- Lagrange tensor (field equations) for the invariant density
of R^2. The field equations are the components of an array named inv1.

Functioninvariant2 ()
*** NOT YET IMPLEMENTED ***

generates the mixed Euler- Lagrange tensor (field equations) for the invariant density
of ric[i,j]*uriem[i,j]. The field equations are the components of an array named
inv2.

Functionbimetric ()
*** NOT YET IMPLEMENTED ***

generates the field equations of Rosen’s bimetric theory. The field equations are the
components of an array named rosen.

26.2.8 Utility functions

Functiondiagmatrixp (M)
Returns true if M is a diagonal matrix or (2D) array.

Functionsymmetricp (M, n)
Returns true if M is a n by n symmetric matrix or two-dimensional array, otherwise
false.

If n is less than the size of M, symmetricp considers only the n by n submatrix
(respectively, subarray) comprising rows 1 through n and columns 1 through n.

452 Maxima 5.35.1 Manual

Functionntermst (f)
gives the user a quick picture of the "size" of the doubly subscripted tensor (array) f.
It prints two element lists where the second element corresponds to NTERMS of the
components specified by the first elements. In this way, it is possible to quickly find
the non-zero expressions and attempt simplification.

Functioncdisplay (ten)
displays all the elements of the tensor ten, as represented by a multidimensional
array. Tensors of rank 0 and 1, as well as other types of variables, are displayed
as with ldisplay. Tensors of rank 2 are displayed as 2-dimensional matrices, while
tensors of higher rank are displayed as a list of 2-dimensional matrices. For instance,
the Riemann-tensor of the Schwarzschild metric can be viewed as:

(%i1) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) ratfac:true;
(%o2) true
(%i3) ct_coordsys(exteriorschwarzschild,all);
(%o3) done
(%i4) riemann(false);
(%o4) done
(%i5) cdisplay(riem);

[0 0 0 0]
[]
[2]
[3 m (r - 2 m) m 2 m]
[0 - ------------- + -- - ---- 0 0]
[4 3 4]
[r r r]
[]

riem = [m (r - 2 m)]
1, 1 [0 0 ----------- 0]

[4]
[r]
[]
[m (r - 2 m)]
[0 0 0 -----------]
[4]
[r]

[2 m (r - 2 m)]
[0 ------------- 0 0]
[4]
[r]

riem = []
1, 2 [0 0 0 0]

[]
[0 0 0 0]
[]
[0 0 0 0]

Chapter 26: ctensor 453

[m (r - 2 m)]
[0 0 - ----------- 0]
[4]
[r]

riem = []
1, 3 [0 0 0 0]

[]
[0 0 0 0]
[]
[0 0 0 0]

[m (r - 2 m)]
[0 0 0 - -----------]
[4]
[r]

riem = []
1, 4 [0 0 0 0]

[]
[0 0 0 0]
[]
[0 0 0 0]

[0 0 0 0]
[]
[2 m]
[- ------------ 0 0 0]

riem = [2]
2, 1 [r (r - 2 m)]

[]
[0 0 0 0]
[]
[0 0 0 0]

[2 m]
[------------ 0 0 0]
[2]
[r (r - 2 m)]
[]
[0 0 0 0]
[]

riem = [m]
2, 2 [0 0 - ------------ 0]

[2]
[r (r - 2 m)]
[]
[m]
[0 0 0 - ------------]
[2]

454 Maxima 5.35.1 Manual

[r (r - 2 m)]

[0 0 0 0]
[]
[m]
[0 0 ------------ 0]

riem = [2]
2, 3 [r (r - 2 m)]

[]
[0 0 0 0]
[]
[0 0 0 0]

[0 0 0 0]
[]
[m]
[0 0 0 ------------]

riem = [2]
2, 4 [r (r - 2 m)]

[]
[0 0 0 0]
[]
[0 0 0 0]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [m]
3, 1 [- 0 0 0]

[r]
[]
[0 0 0 0]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [m]
3, 2 [0 - 0 0]

[r]
[]
[0 0 0 0]

[m]
[- - 0 0 0]
[r]
[]
[m]

Chapter 26: ctensor 455

[0 - - 0 0]
riem = [r]

3, 3 []
[0 0 0 0]
[]
[2 m - r]
[0 0 0 ------- + 1]
[r]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [2 m]
3, 4 [0 0 0 - ---]

[r]
[]
[0 0 0 0]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [0 0 0 0]
4, 1 []

[2]
[m sin (theta)]
[------------- 0 0 0]
[r]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [0 0 0 0]
4, 2 []

[2]
[m sin (theta)]
[0 ------------- 0 0]
[r]

[0 0 0 0]
[]
[0 0 0 0]
[]

riem = [0 0 0 0]
4, 3 []

[2]
[2 m sin (theta)]

456 Maxima 5.35.1 Manual

[0 0 - --------------- 0]
[r]

[2]
[m sin (theta)]
[- ------------- 0 0 0]
[r]
[]
[2]
[m sin (theta)]

riem = [0 - ------------- 0 0]
4, 4 [r]

[]
[2]
[2 m sin (theta)]
[0 0 --------------- 0]
[r]
[]
[0 0 0 0]

(%o5) done

Functiondeleten (L, n)
Returns a new list consisting of L with the n’th element deleted.

26.2.9 Variables used by ctensor

Option variabledim
Default value: 4

An option in the ctensor (component tensor) package. dim is the dimension of the
manifold with the default 4. The command dim: n will reset the dimension to any
other value n.

Option variablediagmetric
Default value: false

An option in the ctensor (component tensor) package. If diagmetric is true special
routines compute all geometrical objects (which contain the metric tensor explicitly)
by taking into consideration the diagonality of the metric. Reduced run times will, of
course, result. Note: this option is set automatically by csetup if a diagonal metric
is specified.

Option variablectrgsimp
Causes trigonometric simplifications to be used when tensors are computed. Presently,
ctrgsimp affects only computations involving a moving frame.

Chapter 26: ctensor 457

Option variablecframe flag
Causes computations to be performed relative to a moving frame as opposed to a
holonomic metric. The frame is defined by the inverse frame array fri and the frame
metric lfg. For computations using a Cartesian frame, lfg should be the unit matrix
of the appropriate dimension; for computations in a Lorentz frame, lfg should have
the appropriate signature.

Option variablectorsion flag
Causes the contortion tensor to be included in the computation of the connection
coefficients. The contortion tensor itself is computed by contortion from the user-
supplied tensor tr.

Option variablecnonmet flag
Causes the nonmetricity coefficients to be included in the computation of the connec-
tion coefficients. The nonmetricity coefficients are computed from the user-supplied
nonmetricity vector nm by the function nonmetricity.

Option variablectayswitch
If set to true, causes some ctensor computations to be carried out using Taylor-
series expansions. Presently, christof, ricci, uricci, einstein, and weyl take
into account this setting.

Option variablectayvar
Variable used for Taylor-series expansion if ctayswitch is set to true.

Option variablectaypov
Maximum power used in Taylor-series expansion when ctayswitch is set to true.

Option variablectaypt
Point around which Taylor-series expansion is carried out when ctayswitch is set to
true.

System variablegdet
The determinant of the metric tensor lg. Computed by cmetric when cframe_flag

is set to false.

Option variableratchristof
Causes rational simplification to be applied by christof.

Option variablerateinstein
Default value: true

If true rational simplification will be performed on the non-zero components of Ein-
stein tensors; if ratfac is true then the components will also be factored.

458 Maxima 5.35.1 Manual

Option variableratriemann
Default value: true

One of the switches which controls simplification of Riemann tensors; if true, then
rational simplification will be done; if ratfac is true then each of the components
will also be factored.

Option variableratweyl
Default value: true

If true, this switch causes the weyl function to apply rational simplification to the
values of the Weyl tensor. If ratfac is true, then the components will also be
factored.

Variablelfg
The covariant frame metric. By default, it is initialized to the 4-dimensional Lorentz
frame with signature (+,+,+,-). Used when cframe_flag is true.

Variableufg
The inverse frame metric. Computed from lfg when cmetric is called while cframe_
flag is set to true.

Variableriem
The (3,1) Riemann tensor. Computed when the function riemann is invoked. For
information about index ordering, see the description of riemann.

If cframe_flag is true, riem is computed from the covariant Riemann-tensor lriem.

Variablelriem
The covariant Riemann tensor. Computed by lriemann.

Variableuriem
The contravariant Riemann tensor. Computed by uriemann.

Variableric
The mixed Ricci-tensor. Computed by ricci.

Variableuric
The contravariant Ricci-tensor. Computed by uricci.

Variablelg
The metric tensor. This tensor must be specified (as a dim by dim matrix) before
other computations can be performed.

Variableug
The inverse of the metric tensor. Computed by cmetric.

Variableweyl
The Weyl tensor. Computed by weyl.

Chapter 26: ctensor 459

Variablefb
Frame bracket coefficients, as computed by frame_bracket.

Variablekinvariant
The Kretchmann invariant. Computed by rinvariant.

Variablenp
A Newman-Penrose null tetrad. Computed by nptetrad.

Variablenpi
The raised-index Newman-Penrose null tetrad. Computed by nptetrad. Defined as
ug.np. The product np.transpose(npi) is constant:

(%i39) trigsimp(np.transpose(npi));
[0 - 1 0 0]
[]
[- 1 0 0 0]

(%o39) []
[0 0 0 1]
[]
[0 0 1 0]

Variabletr
User-supplied rank-3 tensor representing torsion. Used by contortion.

Variablekt
The contortion tensor, computed from tr by contortion.

Variablenm
User-supplied nonmetricity vector. Used by nonmetricity.

Variablenmc
The nonmetricity coefficients, computed from nm by nonmetricity.

System variabletensorkill
Variable indicating if the tensor package has been initialized. Set and used by csetup,
reset by init_ctensor.

Option variablect coords
Default value: []

An option in the ctensor (component tensor) package. ct_coords contains a list
of coordinates. While normally defined when the function csetup is called, one may
redefine the coordinates with the assignment ct_coords: [j1, j2, ..., jn] where
the j’s are the new coordinate names. See also csetup.

460 Maxima 5.35.1 Manual

26.2.10 Reserved names

The following names are used internally by the ctensor package and should not be
redefined:

Name Description

_lg() Evaluates to lfg if frame metric used, lg otherwise
_ug() Evaluates to ufg if frame metric used, ug otherwise
cleanup() Removes items drom the deindex list
contract4() Used by psi()
filemet() Used by csetup() when reading the metric from a file
findde1() Used by findde()
findde2() Used by findde()
findde3() Used by findde()
kdelt() Kronecker-delta (not generalized)
newmet() Used by csetup() for setting up a metric interactively
setflags() Used by init_ctensor()
readvalue()
resimp()
sermet() Used by csetup() for entering a metric as Taylor-series
txyzsum()
tmetric() Frame metric, used by cmetric() when cframe_flag:true
triemann() Riemann-tensor in frame base, used when cframe_flag:true
tricci() Ricci-tensor in frame base, used when cframe_flag:true
trrc() Ricci rotation coefficients, used by christof()
yesp()

26.2.11 Changes

In November, 2004, the ctensor package was extensively rewritten. Many functions and
variables have been renamed in order to make the package compatible with the commercial
version of Macsyma.

New Name Old Name Description

ctaylor() DLGTAYLOR() Taylor-series expansion of an expression
lgeod[] EM Geodesic equations
ein[] G[] Mixed Einstein-tensor
ric[] LR[] Mixed Ricci-tensor
ricci() LRICCICOM() Compute the mixed Ricci-tensor
ctaypov MINP Maximum power in Taylor-series expansion
cgeodesic() MOTION Compute geodesic equations
ct_coords OMEGA Metric coordinates
ctayvar PARAM Taylor-series expansion variable
lriem[] R[] Covariant Riemann-tensor
uriemann() RAISERIEMANN() Compute the contravariant Riemann-tensor
ratriemann RATRIEMAN Rational simplif. of the Riemann-tensor
uric[] RICCI[] Contravariant Ricci-tensor
uricci() RICCICOM() Compute the contravariant Ricci-tensor
cmetric() SETMETRIC() Set up the metric

Chapter 26: ctensor 461

ctaypt TAYPT Point for Taylor-series expansion
ctayswitch TAYSWITCH Taylor-series setting switch
csetup() TSETUP() Start interactive setup session
ctransform() TTRANSFORM() Interactive coordinate transformation
uriem[] UR[] Contravariant Riemann-tensor
weyl[] W[] (3,1) Weyl-tensor

462 Maxima 5.35.1 Manual

Chapter 27: atensor 463

27 atensor

27.1 Introduction to atensor

atensor is an algebraic tensor manipulation package. To use atensor, type
load(atensor), followed by a call to the init_atensor function.

The essence of atensor is a set of simplification rules for the noncommutative (dot)
product operator ("."). atensor recognizes several algebra types; the corresponding sim-
plification rules are put into effect when the init_atensor function is called.

The capabilities of atensor can be demonstrated by defining the algebra of quaternions
as a Clifford-algebra Cl(0,2) with two basis vectors. The three quaternionic imaginary units
are then the two basis vectors and their product, i.e.:

i = v j = v k = v . v
1 2 1 2

Although the atensor package has a built-in definition for the quaternion algebra, it
is not used in this example, in which we endeavour to build the quaternion multiplication
table as a matrix:

(%i1) load(atensor);
(%o1) /share/tensor/atensor.mac
(%i2) init_atensor(clifford,0,0,2);
(%o2) done
(%i3) atensimp(v[1].v[1]);
(%o3) - 1
(%i4) atensimp((v[1].v[2]).(v[1].v[2]));
(%o4) - 1
(%i5) q:zeromatrix(4,4);

[0 0 0 0]
[]
[0 0 0 0]

(%o5) []
[0 0 0 0]
[]
[0 0 0 0]

(%i6) q[1,1]:1;
(%o6) 1
(%i7) for i thru adim do q[1,i+1]:q[i+1,1]:v[i];
(%o7) done
(%i8) q[1,4]:q[4,1]:v[1].v[2];
(%o8) v . v

1 2
(%i9) for i from 2 thru 4 do for j from 2 thru 4 do

q[i,j]:atensimp(q[i,1].q[1,j]);
(%o9) done
(%i10) q;

464 Maxima 5.35.1 Manual

[1 v v v . v]
[1 2 1 2]
[]
[v - 1 v . v - v]
[1 1 2 2]

(%o10) []
[v - v . v - 1 v]
[2 1 2 1]
[]
[v . v v - v - 1]
[1 2 2 1]

atensor recognizes as base vectors indexed symbols, where the symbol is that stored in
asymbol and the index runs between 1 and adim. For indexed symbols, and indexed symbols
only, the bilinear forms sf, af, and av are evaluated. The evaluation substitutes the value
of aform[i,j] in place of fun(v[i],v[j]) where v represents the value of asymbol and
fun is either af or sf; or, it substitutes v[aform[i,j]] in place of av(v[i],v[j]).

Needless to say, the functions sf, af and av can be redefined.

When the atensor package is loaded, the following flags are set:

dotscrules:true;
dotdistrib:true;
dotexptsimp:false;

If you wish to experiment with a nonassociative algebra, you may also consider setting
dotassoc to false. In this case, however, atensimp will not always be able to obtain the
desired simplifications.

27.2 Functions and Variables for atensor

Functioninit atensor
init_atensor (alg type, opt dims)
init_atensor (alg type)

Initializes the atensor package with the specified algebra type. alg type can be one
of the following:

universal: The universal algebra has no commutation rules.

grassmann: The Grassman algebra is defined by the commutation relation u.v+v.u=0.

clifford: The Clifford algebra is defined by the commutation relation u.v+v.u=-

2*sf(u,v) where sf is a symmetric scalar-valued function. For this algebra, opt dims
can be up to three nonnegative integers, representing the number of positive, degen-
erate, and negative dimensions of the algebra, respectively. If any opt dims values
are supplied, atensor will configure the values of adim and aform appropriately.
Otherwise, adim will default to 0 and aform will not be defined.

symmetric: The symmetric algebra is defined by the commutation relation u.v-

v.u=0.

symplectic: The symplectic algebra is defined by the commutation relation u.v-

v.u=2*af(u,v) where af is an antisymmetric scalar-valued function. For the sym-
plectic algebra, opt dims can be up to two nonnegative integers, representing the

Chapter 27: atensor 465

nondegenerate and degenerate dimensions, respectively. If any opt dims values are
supplied, atensor will configure the values of adim and aform appropriately. Other-
wise, adim will default to 0 and aform will not be defined.

lie_envelop: The algebra of the Lie envelope is defined by the commutation relation
u.v-v.u=2*av(u,v) where av is an antisymmetric function.

The init_atensor function also recognizes several predefined algebra types:

complex implements the algebra of complex numbers as the Clifford algebra Cl(0,1).
The call init_atensor(complex) is equivalent to init_atensor(clifford,0,0,1).

quaternion implements the algebra of quaternions. The call init_atensor

(quaternion) is equivalent to init_atensor (clifford,0,0,2).

pauli implements the algebra of Pauli-spinors as the Clifford-algebra Cl(3,0). A call
to init_atensor(pauli) is equivalent to init_atensor(clifford,3).

dirac implements the algebra of Dirac-spinors as the Clifford-algebra Cl(3,1). A call
to init_atensor(dirac) is equivalent to init_atensor(clifford,3,0,1).

Functionatensimp (expr)
Simplifies an algebraic tensor expression expr according to the rules configured by a
call to init_atensor. Simplification includes recursive application of commutation
relations and resolving calls to sf, af, and av where applicable. A safeguard is used
to ensure that the function always terminates, even for complex expressions.

Functionalg type
The algebra type. Valid values are universal, grassmann, clifford, symmetric,
symplectic and lie_envelop.

Variableadim
Default value: 0

The dimensionality of the algebra. atensor uses the value of adim to determine if an
indexed object is a valid base vector. See abasep.

Variableaform
Default value: ident(3)

Default values for the bilinear forms sf, af, and av. The default is the identity matrix
ident(3).

Variableasymbol
Default value: v

The symbol for base vectors.

Functionsf (u, v)
A symmetric scalar function that is used in commutation relations. The default
implementation checks if both arguments are base vectors using abasep and if that
is the case, substitutes the corresponding value from the matrix aform.

466 Maxima 5.35.1 Manual

Functionaf (u, v)
An antisymmetric scalar function that is used in commutation relations. The default
implementation checks if both arguments are base vectors using abasep and if that
is the case, substitutes the corresponding value from the matrix aform.

Functionav (u, v)
An antisymmetric function that is used in commutation relations. The default imple-
mentation checks if both arguments are base vectors using abasep and if that is the
case, substitutes the corresponding value from the matrix aform.

For instance:

(%i1) load(atensor);
(%o1) /share/tensor/atensor.mac
(%i2) adim:3;
(%o2) 3
(%i3) aform:matrix([0,3,-2],[-3,0,1],[2,-1,0]);

[0 3 - 2]
[]

(%o3) [- 3 0 1]
[]
[2 - 1 0]

(%i4) asymbol:x;
(%o4) x
(%i5) av(x[1],x[2]);
(%o5) x

3

Functionabasep (v)
Checks if its argument is an atensor base vector. That is, if it is an indexed symbol,
with the symbol being the same as the value of asymbol, and the index having a
numeric value between 1 and adim.

Chapter 28: Sums, Products, and Series 467

28 Sums, Products, and Series

28.1 Functions and Variables for Sums and Products

Functionbashindices (expr)
Transforms the expression expr by giving each summation and product a unique in-
dex. This gives changevar greater precision when it is working with summations or
products. The form of the unique index is jnumber. The quantity number is deter-
mined by referring to gensumnum, which can be changed by the user. For example,
gensumnum:0$ resets it.

Functionlsum (expr, x, L)
Represents the sum of expr for each element x in L. A noun form ’lsum is returned
if the argument L does not evaluate to a list.

Examples:

(%i1) lsum (x^i, i, [1, 2, 7]);
7 2

(%o1) x + x + x
(%i2) lsum (i^2, i, rootsof (x^3 - 1));

====
\ 2

(%o2) > i
/
====

3
i in rootsof(x - 1)

Functionintosum (expr)
Moves multiplicative factors outside a summation to inside. If the index is used in the
outside expression, then the function tries to find a reasonable index, the same as it
does for sumcontract. This is essentially the reverse idea of the outative property
of summations, but note that it does not remove this property, it only bypasses it.

In some cases, a scanmap (multthru, expr) may be necessary before the intosum.

Functionproduct (expr, i, i 0, i 1)
Represents a product of the values of expr as the index i varies from i 0 to i 1. The
noun form ’product is displayed as an uppercase letter pi.

product evaluates expr and lower and upper limits i 0 and i 1, product quotes (does
not evaluate) the index i.

If the upper and lower limits differ by an integer, expr is evaluated for each value of
the index i, and the result is an explicit product.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
product. When the global variable simpproduct is true, additional rules are applied.

468 Maxima 5.35.1 Manual

In some cases, simplification yields a result which is not a product; otherwise, the
result is a noun form ’product.

See also nouns and evflag.

Examples:

(%i1) product (x + i*(i+1)/2, i, 1, 4);
(%o1) (x + 1) (x + 3) (x + 6) (x + 10)
(%i2) product (i^2, i, 1, 7);
(%o2) 25401600
(%i3) product (a[i], i, 1, 7);
(%o3) a a a a a a a

1 2 3 4 5 6 7
(%i4) product (a(i), i, 1, 7);
(%o4) a(1) a(2) a(3) a(4) a(5) a(6) a(7)
(%i5) product (a(i), i, 1, n);

n
/===\
! !

(%o5) ! ! a(i)
! !
i = 1

(%i6) product (k, k, 1, n);
n

/===\
! !

(%o6) ! ! k
! !
k = 1

(%i7) product (k, k, 1, n), simpproduct;
(%o7) n!
(%i8) product (integrate (x^k, x, 0, 1), k, 1, n);

n
/===\
! ! 1

(%o8) ! ! -----
! ! k + 1
k = 1

(%i9) product (if k <= 5 then a^k else b^k, k, 1, 10);
15 40

(%o9) a b

Option variablesimpsum
Default value: false

When simpsum is true, the result of a sum is simplified. This simplification may
sometimes be able to produce a closed form. If simpsum is false or if the quoted
form ’sum is used, the value is a sum noun form which is a representation of the sigma
notation used in mathematics.

Chapter 28: Sums, Products, and Series 469

Functionsum (expr, i, i 0, i 1)
Represents a summation of the values of expr as the index i varies from i 0 to i 1.
The noun form ’sum is displayed as an uppercase letter sigma.

sum evaluates its summand expr and lower and upper limits i 0 and i 1, sum quotes
(does not evaluate) the index i.

If the upper and lower limits differ by an integer, the summand expr is evaluated for
each value of the summation index i, and the result is an explicit sum.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
summation. When the global variable simpsum is true, additional rules are applied.
In some cases, simplification yields a result which is not a summation; otherwise, the
result is a noun form ’sum.

When the evflag (evaluation flag) cauchysum is true, a product of summations
is expressed as a Cauchy product, in which the index of the inner summation is a
function of the index of the outer one, rather than varying independently.

The global variable genindex is the alphabetic prefix used to generate the next index
of summation, when an automatically generated index is needed.

gensumnum is the numeric suffix used to generate the next index of summation,
when an automatically generated index is needed. When gensumnum is false, an
automatically-generated index is only genindex with no numeric suffix.

See also sumcontract, intosum, bashindices, niceindices, nouns, evflag, and
zeilberger.

Examples:

(%i1) sum (i^2, i, 1, 7);
(%o1) 140
(%i2) sum (a[i], i, 1, 7);
(%o2) a + a + a + a + a + a + a

7 6 5 4 3 2 1
(%i3) sum (a(i), i, 1, 7);
(%o3) a(7) + a(6) + a(5) + a(4) + a(3) + a(2) + a(1)
(%i4) sum (a(i), i, 1, n);

n
====
\

(%o4) > a(i)
/
====
i = 1

(%i5) sum (2^i + i^2, i, 0, n);
n
====
\ i 2

(%o5) > (2 + i)
/
====
i = 0

(%i6) sum (2^i + i^2, i, 0, n), simpsum;

470 Maxima 5.35.1 Manual

3 2
n + 1 2 n + 3 n + n

(%o6) 2 + --------------- - 1
6

(%i7) sum (1/3^i, i, 1, inf);
inf
====
\ 1

(%o7) > --
/ i
==== 3
i = 1

(%i8) sum (1/3^i, i, 1, inf), simpsum;
1

(%o8) -
2

(%i9) sum (i^2, i, 1, 4) * sum (1/i^2, i, 1, inf);
inf
====
\ 1

(%o9) 30 > --
/ 2
==== i
i = 1

(%i10) sum (i^2, i, 1, 4) * sum (1/i^2, i, 1, inf), simpsum;
2

(%o10) 5 %pi
(%i11) sum (integrate (x^k, x, 0, 1), k, 1, n);

n
====
\ 1

(%o11) > -----
/ k + 1
====
k = 1

(%i12) sum (if k <= 5 then a^k else b^k, k, 1, 10);
10 9 8 7 6 5 4 3 2

(%o12) b + b + b + b + b + a + a + a + a + a

Functionsumcontract (expr)
Combines all sums of an addition that have upper and lower bounds that differ by
constants. The result is an expression containing one summation for each set of such
summations added to all appropriate extra terms that had to be extracted to form
this sum. sumcontract combines all compatible sums and uses one of the indices
from one of the sums if it can, and then try to form a reasonable index if it cannot
use any supplied.

It may be necessary to do an intosum (expr) before the sumcontract.

Chapter 28: Sums, Products, and Series 471

Option variablesumexpand
Default value: false

When sumexpand is true, products of sums and exponentiated sums simplify to nested
sums.

See also cauchysum.

Examples:

(%i1) sumexpand: true$
(%i2) sum (f (i), i, 0, m) * sum (g (j), j, 0, n);

m n
==== ====
\ \

(%o2) > > f(i1) g(i2)
/ /
==== ====
i1 = 0 i2 = 0

(%i3) sum (f (i), i, 0, m)^2;
m m
==== ====
\ \

(%o3) > > f(i3) f(i4)
/ /
==== ====
i3 = 0 i4 = 0

28.2 Introduction to Series

Maxima contains functions taylor and powerseries for finding the series of differen-
tiable functions. It also has tools such as nusum capable of finding the closed form of some
series. Operations such as addition and multiplication work as usual on series. This section
presents the global variables which control the expansion.

28.3 Functions and Variables for Series

Option variablecauchysum
Default value: false

When multiplying together sums with inf as their upper limit, if sumexpand is true
and cauchysum is true then the Cauchy product will be used rather than the usual
product. In the Cauchy product the index of the inner summation is a function of
the index of the outer one rather than varying independently.

Example:

(%i1) sumexpand: false$
(%i2) cauchysum: false$
(%i3) s: sum (f(i), i, 0, inf) * sum (g(j), j, 0, inf);

inf inf
==== ====

472 Maxima 5.35.1 Manual

\ \
(%o3) (> f(i)) > g(j)

/ /
==== ====
i = 0 j = 0

(%i4) sumexpand: true$
(%i5) cauchysum: true$
(%i6) ’’s;

inf i1
==== ====
\ \

(%o6) > > g(i1 - i2) f(i2)
/ /
==== ====
i1 = 0 i2 = 0

Functiondeftaylor (f 1(x 1), expr 1, . . . , f n(x n), expr n)
For each function f i of one variable x i, deftaylor defines expr i as the Taylor series
about zero. expr i is typically a polynomial in x i or a summation; more general
expressions are accepted by deftaylor without complaint.

powerseries (f i(x i), x i, 0) returns the series defined by deftaylor.

deftaylor returns a list of the functions f 1, . . . , f n. deftaylor evaluates its argu-
ments.

Example:

(%i1) deftaylor (f(x), x^2 + sum(x^i/(2^i*i!^2), i, 4, inf));
(%o1) [f]
(%i2) powerseries (f(x), x, 0);

inf
==== i1
\ x 2

(%o2) > -------- + x
/ i1 2
==== 2 i1!
i1 = 4

(%i3) taylor (exp (sqrt (f(x))), x, 0, 4);
2 3 4
x 3073 x 12817 x

(%o3)/T/ 1 + x + -- + ------- + -------- + . . .
2 18432 307200

Option variablemaxtayorder
Default value: true

When maxtayorder is true, then during algebraic manipulation of (truncated) Taylor
series, taylor tries to retain as many terms as are known to be correct.

Chapter 28: Sums, Products, and Series 473

Functionniceindices (expr)
Renames the indices of sums and products in expr. niceindices attempts to rename
each index to the value of niceindicespref[1], unless that name appears in the
summand or multiplicand, in which case niceindices tries the succeeding elements
of niceindicespref in turn, until an unused variable is found. If the entire list is
exhausted, additional indices are constructed by appending integers to the value of
niceindicespref[1], e.g., i0, i1, i2, . . .

niceindices returns an expression. niceindices evaluates its argument.

Example:

(%i1) niceindicespref;
(%o1) [i, j, k, l, m, n]
(%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);

inf inf
/===\ ====
! ! \

(%o2) ! ! > f(bar i j + foo)
! ! /

bar = 1 ====
foo = 1

(%i3) niceindices (%);
inf inf

/===\ ====
! ! \

(%o3) ! ! > f(i j l + k)
! ! /
l = 1 ====

k = 1

Option variableniceindicespref
Default value: [i, j, k, l, m, n]

niceindicespref is the list from which niceindices takes the names of indices for
sums and products.

The elements of niceindicespref are typically names of variables, although that is
not enforced by niceindices.

Example:

(%i1) niceindicespref: [p, q, r, s, t, u]$
(%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);

inf inf
/===\ ====
! ! \

(%o2) ! ! > f(bar i j + foo)
! ! /

bar = 1 ====
foo = 1

(%i3) niceindices (%);
inf inf

474 Maxima 5.35.1 Manual

/===\ ====
! ! \

(%o3) ! ! > f(i j q + p)
! ! /
q = 1 ====

p = 1

Functionnusum (expr, x, i 0, i 1)
Carries out indefinite hypergeometric summation of expr with respect to x using a
decision procedure due to R.W. Gosper. expr and the result must be expressible as
products of integer powers, factorials, binomials, and rational functions.

The terms "definite" and "indefinite summation" are used analogously to "definite"
and "indefinite integration". To sum indefinitely means to give a symbolic result for
the sum over intervals of variable length, not just e.g. 0 to inf. Thus, since there is
no formula for the general partial sum of the binomial series, nusum can’t do it.

nusum and unsum know a little about sums and differences of finite products. See also
unsum.

Examples:

(%i1) nusum (n*n!, n, 0, n);

Dependent equations eliminated: (1)
(%o1) (n + 1)! - 1
(%i2) nusum (n^4*4^n/binomial(2*n,n), n, 0, n);

4 3 2 n
2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2

(%o2) -- - ------
693 binomial(2 n, n) 3 11 7

(%i3) unsum (%, n);
4 n
n 4

(%o3) ----------------
binomial(2 n, n)

(%i4) unsum (prod (i^2, i, 1, n), n);
n - 1
/===\
! ! 2

(%o4) (! ! i) (n - 1) (n + 1)
! !
i = 1

(%i5) nusum (%, n, 1, n);

Dependent equations eliminated: (2 3)
n

/===\
! ! 2

(%o5) ! ! i - 1
! !
i = 1

Chapter 28: Sums, Products, and Series 475

Functionpade (taylor series, numer deg bound, denom deg bound)
Returns a list of all rational functions which have the given Taylor series expansion
where the sum of the degrees of the numerator and the denominator is less than or
equal to the truncation level of the power series, i.e. are "best" approximants, and
which additionally satisfy the specified degree bounds.

taylor series is a univariate Taylor series. numer deg bound and denom deg bound
are positive integers specifying degree bounds on the numerator and denominator.

taylor series can also be a Laurent series, and the degree bounds can be inf which
causes all rational functions whose total degree is less than or equal to the length
of the power series to be returned. Total degree is defined as numer deg bound +

denom deg bound. Length of a power series is defined as "truncation level" + 1 -

min(0, "order of series").

(%i1) taylor (1 + x + x^2 + x^3, x, 0, 3);
2 3

(%o1)/T/ 1 + x + x + x + . . .
(%i2) pade (%, 1, 1);

1
(%o2) [- -----]

x - 1
(%i3) t: taylor(-(83787*x^10 - 45552*x^9 - 187296*x^8

+ 387072*x^7 + 86016*x^6 - 1507328*x^5
+ 1966080*x^4 + 4194304*x^3 - 25165824*x^2
+ 67108864*x - 134217728)

/134217728, x, 0, 10);
2 3 4 5 6 7

x 3 x x 15 x 23 x 21 x 189 x
(%o3)/T/ 1 - - + ---- - -- - ----- + ----- - ----- - ------

2 16 32 1024 2048 32768 65536

8 9 10
5853 x 2847 x 83787 x

+ ------- + ------- - --------- + . . .
4194304 8388608 134217728

(%i4) pade (t, 4, 4);
(%o4) []

There is no rational function of degree 4 numerator/denominator, with this power
series expansion. You must in general have degree of the numerator and degree of
the denominator adding up to at least the degree of the power series, in order to have
enough unknown coefficients to solve.

(%i5) pade (t, 5, 5);
5 4 3

(%o5) [- (520256329 x - 96719020632 x - 489651410240 x

2
- 1619100813312 x - 2176885157888 x - 2386516803584)

5 4 3

476 Maxima 5.35.1 Manual

/(47041365435 x + 381702613848 x + 1360678489152 x

2
+ 2856700692480 x + 3370143559680 x + 2386516803584)]

Functionpowerseries (expr, x, a)
Returns the general form of the power series expansion for expr in the variable x
about the point a (which may be inf for infinity):

inf
====
\ n
> b (x - a)

/ n
====
n = 0

If powerseries is unable to expand expr, taylor may give the first several terms of
the series.

When verbose is true, powerseries prints progress messages.

(%i1) verbose: true$
(%i2) powerseries (log(sin(x)/x), x, 0);
can’t expand

log(sin(x))
so we’ll try again after applying the rule:

d
/ -- (sin(x))
[dx

log(sin(x)) = i ----------- dx
] sin(x)
/

in the first simplification we have returned:
/
[
i cot(x) dx - log(x)
]
/

inf
==== i1 2 i1 2 i1
\ (- 1) 2 bern(2 i1) x
> ------------------------------
/ i1 (2 i1)!
====
i1 = 1

(%o2) -------------------------------------
2

Option variablepsexpand
Default value: false

Chapter 28: Sums, Products, and Series 477

When psexpand is true, an extended rational function expression is displayed fully
expanded. The switch ratexpand has the same effect.

When psexpand is false, a multivariate expression is displayed just as in the rational
function package.

When psexpand is multi, then terms with the same total degree in the variables are
grouped together.

Functionrevert (expr, x)
Functionrevert2 (expr, x, n)

These functions return the reversion of expr, a Taylor series about zero in the variable
x. revert returns a polynomial of degree equal to the highest power in expr. revert2
returns a polynomial of degree n, which may be greater than, equal to, or less than
the degree of expr.

load ("revert") loads these functions.

Examples:

(%i1) load ("revert")$
(%i2) t: taylor (exp(x) - 1, x, 0, 6);

2 3 4 5 6
x x x x x

(%o2)/T/ x + -- + -- + -- + --- + --- + . . .
2 6 24 120 720

(%i3) revert (t, x);
6 5 4 3 2

10 x - 12 x + 15 x - 20 x + 30 x - 60 x
(%o3)/R/ - --

60
(%i4) ratexpand (%);

6 5 4 3 2
x x x x x

(%o4) - -- + -- - -- + -- - -- + x
6 5 4 3 2

(%i5) taylor (log(x+1), x, 0, 6);
2 3 4 5 6
x x x x x

(%o5)/T/ x - -- + -- - -- + -- - -- + . . .
2 3 4 5 6

(%i6) ratsimp (revert (t, x) - taylor (log(x+1), x, 0, 6));
(%o6) 0
(%i7) revert2 (t, x, 4);

4 3 2
x x x

(%o7) - -- + -- - -- + x
4 3 2

478 Maxima 5.35.1 Manual

Functiontaylor
taylor (expr, x, a, n)
taylor (expr, [x 1, x 2, . . .], a, n)
taylor (expr, [x, a, n, ’asymp])
taylor (expr, [x 1, x 2, . . .], [a 1, a 2, . . .], [n 1, n 2, . . .])
taylor (expr, [x 1, a 1, n 1], [x 2, a 2, n 2], . . .)

taylor (expr, x, a, n) expands the expression expr in a truncated Taylor or Laurent
series in the variable x around the point a, containing terms through (x - a)^n.

If expr is of the form f (x)/g(x) and g(x) has no terms up to degree n then taylor

attempts to expand g(x) up to degree 2 n. If there are still no nonzero terms, taylor
doubles the degree of the expansion of g(x) so long as the degree of the expansion is
less than or equal to n 2^taylordepth.

taylor (expr, [x 1, x 2, ...], a, n) returns a truncated power series of degree n
in all variables x 1, x 2, . . . about the point (a, a, ...).

taylor (expr, [x 1, a 1, n 1], [x 2, a 2, n 2], ...) returns a truncated power
series in the variables x 1, x 2, . . . about the point (a 1, a 2, ...), truncated at
n 1, n 2, . . .

taylor (expr, [x 1, x 2, ...], [a 1, a 2, ...], [n 1, n 2, ...]) returns a trun-
cated power series in the variables x 1, x 2, . . . about the point (a 1, a 2, ...),
truncated at n 1, n 2, . . .

taylor (expr, [x, a, n, ’asymp]) returns an expansion of expr in negative powers
of x - a. The highest order term is (x - a)^-n.

When maxtayorder is true, then during algebraic manipulation of (truncated) Taylor
series, taylor tries to retain as many terms as are known to be correct.

When psexpand is true, an extended rational function expression is displayed fully
expanded. The switch ratexpand has the same effect. When psexpand is false, a
multivariate expression is displayed just as in the rational function package. When
psexpand is multi, then terms with the same total degree in the variables are grouped
together.

See also the taylor_logexpand switch for controlling expansion.

Examples:

(%i1) taylor (sqrt (sin(x) + a*x + 1), x, 0, 3);
2 2

(a + 1) x (a + 2 a + 1) x
(%o1)/T/ 1 + --------- - -----------------

2 8

3 2 3
(3 a + 9 a + 9 a - 1) x

+ -------------------------- + . . .
48

(%i2) %^2;
3
x

(%o2)/T/ 1 + (a + 1) x - -- + . . .

Chapter 28: Sums, Products, and Series 479

6
(%i3) taylor (sqrt (x + 1), x, 0, 5);

2 3 4 5
x x x 5 x 7 x

(%o3)/T/ 1 + - - -- + -- - ---- + ---- + . . .
2 8 16 128 256

(%i4) %^2;
(%o4)/T/ 1 + x + . . .
(%i5) product ((1 + x^i)^2.5, i, 1, inf)/(1 + x^2);

inf
/===\
! ! i 2.5
! ! (x + 1)
! !
i = 1

(%o5) -----------------
2
x + 1

(%i6) ev (taylor(%, x, 0, 3), keepfloat);
2 3

(%o6)/T/ 1 + 2.5 x + 3.375 x + 6.5625 x + . . .
(%i7) taylor (1/log (x + 1), x, 0, 3);

2 3
1 1 x x 19 x

(%o7)/T/ - + - - -- + -- - ----- + . . .
x 2 12 24 720

(%i8) taylor (cos(x) - sec(x), x, 0, 5);
4

2 x
(%o8)/T/ - x - -- + . . .

6
(%i9) taylor ((cos(x) - sec(x))^3, x, 0, 5);
(%o9)/T/ 0 + . . .
(%i10) taylor (1/(cos(x) - sec(x))^3, x, 0, 5);

2 4
1 1 11 347 6767 x 15377 x

(%o10)/T/ - -- + ---- + ------ - ----- - ------- - --------
6 4 2 15120 604800 7983360
x 2 x 120 x

+ . . .
(%i11) taylor (sqrt (1 - k^2*sin(x)^2), x, 0, 6);

2 2 4 2 4
k x (3 k - 4 k) x

(%o11)/T/ 1 - ----- - ----------------
2 24

6 4 2 6
(45 k - 60 k + 16 k) x

480 Maxima 5.35.1 Manual

- -------------------------- + . . .
720

(%i12) taylor ((x + 1)^n, x, 0, 4);
2 2 3 2 3

(n - n) x (n - 3 n + 2 n) x
(%o12)/T/ 1 + n x + ----------- + --------------------

2 6

4 3 2 4
(n - 6 n + 11 n - 6 n) x

+ ---------------------------- + . . .
24

(%i13) taylor (sin (y + x), x, 0, 3, y, 0, 3);
3 2
y y

(%o13)/T/ y - -- + . . . + (1 - -- + . . .) x
6 2

3 2
y y 2 1 y 3

+ (- - + -- + . . .) x + (- - + -- + . . .) x + . . .
2 12 6 12

(%i14) taylor (sin (y + x), [x, y], 0, 3);
3 2 2 3
x + 3 y x + 3 y x + y

(%o14)/T/ y + x - ------------------------- + . . .
6

(%i15) taylor (1/sin (y + x), x, 0, 3, y, 0, 3);
1 y 1 1 1 2

(%o15)/T/ - + - + . . . + (- -- + - + . . .) x + (-- + . . .) x
y 6 2 6 3

y y

1 3
+ (- -- + . . .) x + . . .

4
y

(%i16) taylor (1/sin (y + x), [x, y], 0, 3);
3 2 2 3

1 x + y 7 x + 21 y x + 21 y x + 7 y
(%o16)/T/ ----- + ----- + ------------------------------- + . . .

x + y 6 360

Option variabletaylordepth
Default value: 3

If there are still no nonzero terms, taylor doubles the degree of the expansion of
g(x) so long as the degree of the expansion is less than or equal to n 2^taylordepth.

Chapter 28: Sums, Products, and Series 481

Functiontaylorinfo (expr)
Returns information about the Taylor series expr. The return value is a list of lists.
Each list comprises the name of a variable, the point of expansion, and the degree of
the expansion.

taylorinfo returns false if expr is not a Taylor series.

Example:

(%i1) taylor ((1 - y^2)/(1 - x), x, 0, 3, [y, a, inf]);
2 2

(%o1)/T/ - (y - a) - 2 a (y - a) + (1 - a)

2 2
+ (1 - a - 2 a (y - a) - (y - a)) x

2 2 2
+ (1 - a - 2 a (y - a) - (y - a)) x

2 2 3
+ (1 - a - 2 a (y - a) - (y - a)) x + . . .
(%i2) taylorinfo(%);
(%o2) [[y, a, inf], [x, 0, 3]]

Functiontaylorp (expr)
Returns true if expr is a Taylor series, and false otherwise.

Option variabletaylor logexpand
Default value: true

taylor_logexpand controls expansions of logarithms in taylor series.

When taylor_logexpand is true, all logarithms are expanded fully so that zero-
recognition problems involving logarithmic identities do not disturb the expansion
process. However, this scheme is not always mathematically correct since it ignores
branch information.

When taylor_logexpand is set to false, then the only expansion of logarithms that
occur is that necessary to obtain a formal power series.

Option variabletaylor order coefficients
Default value: true

taylor_order_coefficients controls the ordering of coefficients in a Taylor series.

When taylor_order_coefficients is true, coefficients of taylor series are ordered
canonically.

Functiontaylor simplifier (expr)
Simplifies coefficients of the power series expr. taylor calls this function.

482 Maxima 5.35.1 Manual

Option variabletaylor truncate polynomials
Default value: true

When taylor_truncate_polynomials is true, polynomials are truncated based
upon the input truncation levels.

Otherwise, polynomials input to taylor are considered to have infinite precison.

Functiontaytorat (expr)
Converts expr from taylor form to canonical rational expression (CRE) form. The
effect is the same as rat (ratdisrep (expr)), but faster.

Functiontrunc (expr)
Annotates the internal representation of the general expression expr so that it is
displayed as if its sums were truncated Taylor series. expr is not otherwise modified.

Example:

(%i1) expr: x^2 + x + 1;
2

(%o1) x + x + 1
(%i2) trunc (expr);

2
(%o2) 1 + x + x + . . .
(%i3) is (expr = trunc (expr));
(%o3) true

Functionunsum (f, n)
Returns the first backward difference f (n) - f (n - 1). Thus unsum in a sense is the
inverse of sum.

See also nusum.

Examples:

(%i1) g(p) := p*4^n/binomial(2*n,n);
n

p 4
(%o1) g(p) := ----------------

binomial(2 n, n)
(%i2) g(n^4);

4 n
n 4

(%o2) ----------------
binomial(2 n, n)

(%i3) nusum (%, n, 0, n);
4 3 2 n

2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2
(%o3) -- - ------

693 binomial(2 n, n) 3 11 7
(%i4) unsum (%, n);

4 n

Chapter 28: Sums, Products, and Series 483

n 4
(%o4) ----------------

binomial(2 n, n)

Option variableverbose
Default value: false

When verbose is true, powerseries prints progress messages.

28.4 Introduction to Fourier series

The fourie package comprises functions for the symbolic computation of Fourier series.
There are functions in the fourie package to calculate Fourier integral coefficients and some
functions for manipulation of expressions.

28.5 Functions and Variables for Fourier series

Functionequalp (x, y)
Returns true if equal (x, y) otherwise false (doesn’t give an error message like
equal (x, y) would do in this case).

Functionremfun
remfun (f, expr)
remfun (f, expr, x)

remfun (f, expr) replaces all occurrences of f (arg) by arg in expr.

remfun (f, expr, x) replaces all occurrences of f (arg) by arg in expr only if arg
contains the variable x.

Functionfunp
funp (f, expr)
funp (f, expr, x)

funp (f, expr) returns true if expr contains the function f.

funp (f, expr, x) returns true if expr contains the function f and the variable x is
somewhere in the argument of one of the instances of f.

Functionabsint
absint (f, x, halfplane)
absint (f, x)
absint (f, x, a, b)

absint (f, x, halfplane) returns the indefinite integral of f with respect to x in the
given halfplane (pos, neg, or both). f may contain expressions of the form abs (x),
abs (sin (x)), abs (a) * exp (-abs (b) * abs (x)).

absint (f, x) is equivalent to absint (f, x, pos).

absint (f, x, a, b) returns the definite integral of f with respect to x from a to b.
f may include absolute values.

484 Maxima 5.35.1 Manual

Functionfourier (f, x, p)
Returns a list of the Fourier coefficients of f (x) defined on the interval [-p, p].

Functionfoursimp (l)
Simplifies sin (n %pi) to 0 if sinnpiflag is true and cos (n %pi) to (-1)^n if
cosnpiflag is true.

Option variablesinnpiflag
Default value: true

See foursimp.

Option variablecosnpiflag
Default value: true

See foursimp.

Functionfourexpand (l, x, p, limit)
Constructs and returns the Fourier series from the list of Fourier coefficients l up
through limit terms (limit may be inf). x and p have same meaning as in fourier.

Functionfourcos (f, x, p)
Returns the Fourier cosine coefficients for f (x) defined on [0, p].

Functionfoursin (f, x, p)
Returns the Fourier sine coefficients for f (x) defined on [0, p].

Functiontotalfourier (f, x, p)
Returns fourexpand (foursimp (fourier (f, x, p)), x, p, ’inf).

Functionfourint (f, x)
Constructs and returns a list of the Fourier integral coefficients of f (x) defined on
[minf, inf].

Functionfourintcos (f, x)
Returns the Fourier cosine integral coefficients for f (x) on [0, inf].

Functionfourintsin (f, x)
Returns the Fourier sine integral coefficients for f (x) on [0, inf].

Chapter 28: Sums, Products, and Series 485

28.6 Functions and Variables for Poisson series

Functionintopois (a)
Converts a into a Poisson encoding.

Functionoutofpois (a)
Converts a from Poisson encoding to general representation. If a is not in Pois-
son form, outofpois carries out the conversion, i.e., the return value is outofpois

(intopois (a)). This function is thus a canonical simplifier for sums of powers of
sine and cosine terms of a particular type.

Functionpoisdiff (a, b)
Differentiates a with respect to b. b must occur only in the trig arguments or only in
the coefficients.

Functionpoisexpt (a, b)
Functionally identical to intopois (a^b). b must be a positive integer.

Functionpoisint (a, b)
Integrates in a similarly restricted sense (to poisdiff). Non-periodic terms in b are
dropped if b is in the trig arguments.

Option variablepoislim
Default value: 5

poislim determines the domain of the coefficients in the arguments of the trig func-
tions. The initial value of 5 corresponds to the interval [-2^(5-1)+1,2^(5-1)], or [-15,16],
but it can be set to [-2^(n-1)+1, 2^(n-1)].

Functionpoismap (series, sinfn, cosfn)
will map the functions sinfn on the sine terms and cosfn on the cosine terms of the
Poisson series given. sinfn and cosfn are functions of two arguments which are a
coefficient and a trigonometric part of a term in series respectively.

Functionpoisplus (a, b)
Is functionally identical to intopois (a + b).

Functionpoissimp (a)
Converts a into a Poisson series for a in general representation.

Special symbolpoisson
The symbol /P/ follows the line label of Poisson series expressions.

486 Maxima 5.35.1 Manual

Functionpoissubst (a, b, c)
Substitutes a for b in c. c is a Poisson series.

(1) Where B is a variable u, v, w, x, y, or z, then a must be an expression linear in
those variables (e.g., 6*u + 4*v).

(2) Where b is other than those variables, then a must also be free of those variables,
and furthermore, free of sines or cosines.

poissubst (a, b, c, d, n) is a special type of substitution which operates on a and
b as in type (1) above, but where d is a Poisson series, expands cos(d) and sin(d)
to order n so as to provide the result of substituting a + d for b in c. The idea is
that d is an expansion in terms of a small parameter. For example, poissubst (u,

v, cos(v), %e, 3) yields cos(u)*(1 - %e^2/2) - sin(u)*(%e - %e^3/6).

Functionpoistimes (a, b)
Is functionally identical to intopois (a*b).

Functionpoistrim ()
is a reserved function name which (if the user has defined it) gets applied during Pois-
son multiplication. It is a predicate function of 6 arguments which are the coefficients
of the u, v, ..., z in a term. Terms for which poistrim is true (for the coefficients of
that term) are eliminated during multiplication.

Functionprintpois (a)
Prints a Poisson series in a readable format. In common with outofpois, it will
convert a into a Poisson encoding first, if necessary.

Chapter 29: Number Theory 487

29 Number Theory

29.1 Functions and Variables for Number Theory

Functionbern (n)
Returns the n’th Bernoulli number for integer n. Bernoulli numbers equal to zero are
suppressed if zerobern is false.

See also burn.

(%i1) zerobern: true$
(%i2) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]);

1 1 1 1 1
(%o2) [1, - -, -, 0, - --, 0, --, 0, - --]

2 6 30 42 30
(%i3) zerobern: false$
(%i4) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]);

1 1 1 1 1 5 691 7
(%o4) [1, - -, -, - --, --, - --, --, - ----, -]

2 6 30 42 30 66 2730 6

Functionbernpoly (x, n)
Returns the n’th Bernoulli polynomial in the variable x.

Functionbfzeta (s, n)
Returns the Riemann zeta function for the argument s. The return value is a big float
(bfloat); n is the number of digits in the return value.

Functionbfhzeta (s, h, n)
Returns the Hurwitz zeta function for the arguments s and h. The return value is a
big float (bfloat); n is the number of digits in the return value.

The Hurwitz zeta function is defined as

ζ (s, h) =
∞∑
k=0

1

(k + h)
s

load ("bffac") loads this function.

Functionburn (n)
Returns a rational number, which is an approximation of the n’th Bernoulli number
for integer n. burn exploits the observation that (rational) Bernoulli numbers can be
approximated by (transcendental) zetas with tolerable efficiency:

488 Maxima 5.35.1 Manual

n - 1 1 - 2 n
(- 1) 2 zeta(2 n) (2 n)!

B(2 n) = ------------------------------------
2 n

%pi

burn may be more efficient than bern for large, isolated n as bern computes all the
Bernoulli numbers up to index n before returning. burn invokes the approximation
for even integers n > 255. For odd integers and n <= 255 the function bern is called.

load ("bffac") loads this function. See also bern.

Functionchinese ([r 1, . . . , r n], [m 1, . . . , m n])
Solves the system of congruences x = r_1 mod m_1, . . . , x = r_n mod m_n. The re-
mainders r n may be arbitrary integers while the moduli m n have to be positive and
pairwise coprime integers.

(%i1) mods : [1000, 1001, 1003, 1007];
(%o1) [1000, 1001, 1003, 1007]
(%i2) lreduce(’gcd, mods);
(%o2) 1
(%i3) x : random(apply("*", mods));
(%o3) 685124877004
(%i4) rems : map(lambda([z], mod(x, z)), mods);
(%o4) [4, 568, 54, 624]
(%i5) chinese(rems, mods);
(%o5) 685124877004
(%i6) chinese([1, 2], [3, n]);
(%o6) chinese([1, 2], [3, n])
(%i7) %, n = 4;
(%o7) 10

Functioncf (expr)
Computes a continued fraction approximation. expr is an expression comprising con-
tinued fractions, square roots of integers, and literal real numbers (integers, rational
numbers, ordinary floats, and bigfloats). cf computes exact expansions for ratio-
nal numbers, but expansions are truncated at ratepsilon for ordinary floats and
10^(-fpprec) for bigfloats.

Operands in the expression may be combined with arithmetic operators. Maxima
does not know about operations on continued fractions outside of cf.

cf evaluates its arguments after binding listarith to false. cf returns a continued
fraction, represented as a list.

A continued fraction a + 1/(b + 1/(c + ...)) is represented by the list [a, b, c,

...]. The list elements a, b, c, . . . must evaluate to integers. expr may also contain
sqrt (n) where n is an integer. In this case cf will give as many terms of the continued
fraction as the value of the variable cflength times the period.

A continued fraction can be evaluated to a number by evaluating the arithmetic
representation returned by cfdisrep. See also cfexpand for another way to evaluate
a continued fraction.

Chapter 29: Number Theory 489

See also cfdisrep, cfexpand, and cflength.

Examples:

• expr is an expression comprising continued fractions and square roots of integers.

(%i1) cf ([5, 3, 1]*[11, 9, 7] + [3, 7]/[4, 3, 2]);
(%o1) [59, 17, 2, 1, 1, 1, 27]
(%i2) cf ((3/17)*[1, -2, 5]/sqrt(11) + (8/13));
(%o2) [0, 1, 1, 1, 3, 2, 1, 4, 1, 9, 1, 9, 2]

• cflength controls how many periods of the continued fraction are computed for
algebraic, irrational numbers.

(%i1) cflength: 1$
(%i2) cf ((1 + sqrt(5))/2);
(%o2) [1, 1, 1, 1, 2]
(%i3) cflength: 2$
(%i4) cf ((1 + sqrt(5))/2);
(%o4) [1, 1, 1, 1, 1, 1, 1, 2]
(%i5) cflength: 3$
(%i6) cf ((1 + sqrt(5))/2);
(%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]

• A continued fraction can be evaluated by evaluating the arithmetic representation
returned by cfdisrep.

(%i1) cflength: 3$
(%i2) cfdisrep (cf (sqrt (3)))$
(%i3) ev (%, numer);
(%o3) 1.731707317073171

• Maxima does not know about operations on continued fractions outside of cf.

(%i1) cf ([1,1,1,1,1,2] * 3);
(%o1) [4, 1, 5, 2]
(%i2) cf ([1,1,1,1,1,2]) * 3;
(%o2) [3, 3, 3, 3, 3, 6]

Functioncfdisrep (list)
Constructs and returns an ordinary arithmetic expression of the form a + 1/(b + 1/(c

+ ...)) from the list representation of a continued fraction [a, b, c, ...].

(%i1) cf ([1, 2, -3] + [1, -2, 1]);
(%o1) [1, 1, 1, 2]
(%i2) cfdisrep (%);

1
(%o2) 1 + ---------

1
1 + -----

1
1 + -

2

490 Maxima 5.35.1 Manual

Functioncfexpand (x)
Returns a matrix of the numerators and denominators of the last (column 1) and
next-to-last (column 2) convergents of the continued fraction x.

(%i1) cf (rat (ev (%pi, numer)));

‘rat’ replaced 3.141592653589793 by 103993/33102 =3.141592653011902
(%o1) [3, 7, 15, 1, 292]
(%i2) cfexpand (%);

[103993 355]
(%o2) []

[33102 113]
(%i3) %[1,1]/%[2,1], numer;
(%o3) 3.141592653011902

Option variablecflength
Default value: 1

cflength controls the number of terms of the continued fraction the function cf will
give, as the value cflength times the period. Thus the default is to give one period.

(%i1) cflength: 1$
(%i2) cf ((1 + sqrt(5))/2);
(%o2) [1, 1, 1, 1, 2]
(%i3) cflength: 2$
(%i4) cf ((1 + sqrt(5))/2);
(%o4) [1, 1, 1, 1, 1, 1, 1, 2]
(%i5) cflength: 3$
(%i6) cf ((1 + sqrt(5))/2);
(%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]

Functiondivsum
divsum (n, k)
divsum (n)

divsum (n, k) returns the sum of the divisors of n raised to the k’th power.

divsum (n) returns the sum of the divisors of n.

(%i1) divsum (12);
(%o1) 28
(%i2) 1 + 2 + 3 + 4 + 6 + 12;
(%o2) 28
(%i3) divsum (12, 2);
(%o3) 210
(%i4) 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2;
(%o4) 210

Functioneuler (n)
Returns the n’th Euler number for nonnegative integer n. Euler numbers equal to
zero are suppressed if zerobern is false.

For the Euler-Mascheroni constant, see %gamma.

Chapter 29: Number Theory 491

(%i1) zerobern: true$
(%i2) map (euler, [0, 1, 2, 3, 4, 5, 6]);
(%o2) [1, 0, - 1, 0, 5, 0, - 61]
(%i3) zerobern: false$
(%i4) map (euler, [0, 1, 2, 3, 4, 5, 6]);
(%o4) [1, - 1, 5, - 61, 1385, - 50521, 2702765]

Option variablefactors only
Default value: false

Controls the value returned by ifactors. The default false causes ifactors to
provide information about multiplicities of the computed prime factors. If factors_
only is set to true, ifactors returns nothing more than a list of prime factors.

Example: See ifactors.

Functionfib (n)
Returns the n’th Fibonacci number. fib(0) is equal to 0 and fib(1) equal to 1, and
fib (-n) equal to (-1)^(n + 1) * fib(n).

After calling fib, prevfib is equal to fib(n - 1), the Fibonacci number preceding
the last one computed.

(%i1) map (fib, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]);
(%o1) [- 3, 2, - 1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21]

Functionfibtophi (expr)
Expresses Fibonacci numbers in expr in terms of the constant %phi, which is (1 +

sqrt(5))/2, approximately 1.61803399.

Examples:

(%i1) fibtophi (fib (n));
n n

%phi - (1 - %phi)
(%o1) -------------------

2 %phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%o2) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) fibtophi (%);

n + 1 n + 1 n n
%phi - (1 - %phi) %phi - (1 - %phi)

(%o3) - --------------------------- + -------------------
2 %phi - 1 2 %phi - 1

n - 1 n - 1
%phi - (1 - %phi)

+ ---------------------------
2 %phi - 1

(%i4) ratsimp (%);
(%o4) 0

492 Maxima 5.35.1 Manual

Functionifactors (n)
For a positive integer n returns the factorization of n. If n=p1^e1..pk^nk is the
decomposition of n into prime factors, ifactors returns [[p1, e1], ... , [pk, ek]].

Factorization methods used are trial divisions by primes up to 9973, Pollard’s rho
and p-1 method and elliptic curves.

The value returned by ifactors is controlled by the option variable factors_only.
The default false causes ifactors to provide information about the multiplicities
of the computed prime factors. If factors_only is set to true, ifactors simply
returns the list of prime factors.

(%i1) ifactors(51575319651600);
(%o1) [[2, 4], [3, 2], [5, 2], [1583, 1], [9050207, 1]]
(%i2) apply("*", map(lambda([u], u[1]^u[2]), %));
(%o2) 51575319651600
(%i3) ifactors(51575319651600), factors_only : true;
(%o3) [2, 3, 5, 1583, 9050207]

Functionigcdex (n, k)
Returns a list [a, b, u] where u is the greatest common divisor of n and k, and u is
equal to a n + b k. The arguments n and k must be integers.

igcdex implements the Euclidean algorithm. See also gcdex.

The command load(gcdex) loads the function.

Examples:

(%i1) load(gcdex)$

(%i2) igcdex(30,18);
(%o2) [- 1, 2, 6]
(%i3) igcdex(1526757668, 7835626735736);
(%o3) [845922341123, - 164826435, 4]
(%i4) igcdex(fib(20), fib(21));
(%o4) [4181, - 2584, 1]

Functioninrt (x, n)
Returns the integer n’th root of the absolute value of x.

(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$
(%i2) map (lambda ([a], inrt (10^a, 3)), l);
(%o2) [2, 4, 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000]

Functioninv mod (n, m)
Computes the inverse of n modulo m. inv_mod (n,m) returns false, if n is a zero
divisor modulo m.

(%i1) inv_mod(3, 41);
(%o1) 14
(%i2) ratsimp(3^-1), modulus = 41;
(%o2) 14
(%i3) inv_mod(3, 42);
(%o3) false

Chapter 29: Number Theory 493

Functionisqrt (x)
Returns the "integer square root" of the absolute value of x, which is an integer.

Functionjacobi (p, q)
Returns the Jacobi symbol of p and q.

(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$
(%i2) map (lambda ([a], jacobi (a, 9)), l);
(%o2) [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0]

Functionlcm (expr 1, . . . , expr n)
Returns the least common multiple of its arguments. The arguments may be general
expressions as well as integers.

load ("functs") loads this function.

Functionlucas (n)
Returns the n’th Lucas number. lucas(0) is equal to 2 and lucas(1) equal to 1,
and lucas(-n) equal to (-1)^(-n) * lucas(n).

(%i1) map (lucas, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]);
(%o1) [7, - 4, 3, - 1, 2, 1, 3, 4, 7, 11, 18, 29, 47]

After calling lucas, the global variable next_lucas is equal to lucas (n + 1), the
Lucas number following the last returned. The example shows how Fibonacci numbers
can be computed via lucas and next_lucas.

(%i1) fib_via_lucas(n) :=
block([lucas : lucas(n)],
signum(n) * (2*next_lucas - lucas)/5)$

(%i2) map (fib_via_lucas, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]);
(%o2) [- 3, 2, - 1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21]

Functionmod (x, y)
If x and y are real numbers and y is nonzero, return x - y * floor(x / y). Further
for all real x, we have mod (x, 0) = x. For a discussion of the definition mod (x, 0)

= x, see Section 3.4, of "Concrete Mathematics," by Graham, Knuth, and Patashnik.
The function mod (x, 1) is a sawtooth function with period 1 with mod (1, 1) = 0

and mod (0, 1) = 0.

To find the principal argument (a number in the interval (-%pi, %pi]) of a complex
number, use the function x |-> %pi - mod (%pi - x, 2*%pi), where x is an argument.

When x and y are constant expressions (10 * %pi, for example), mod uses the same big
float evaluation scheme that floor and ceiling uses. Again, it’s possible, although
unlikely, that mod could return an erroneous value in such cases.

For nonnumerical arguments x or y, mod knows several simplification rules:

(%i1) mod (x, 0);
(%o1) x
(%i2) mod (a*x, a*y);
(%o2) a mod(x, y)
(%i3) mod (0, x);
(%o3) 0

494 Maxima 5.35.1 Manual

Functionnext prime (n)
Returns the smallest prime bigger than n.

(%i1) next_prime(27);
(%o1) 29

Functionpartfrac (expr, var)
Expands the expression expr in partial fractions with respect to the main variable var.
partfrac does a complete partial fraction decomposition. The algorithm employed is
based on the fact that the denominators of the partial fraction expansion (the factors
of the original denominator) are relatively prime. The numerators can be written as
linear combinations of denominators, and the expansion falls out.

(%i1) 1/(1+x)^2 - 2/(1+x) + 2/(2+x);
2 2 1

(%o1) ----- - ----- + --------
x + 2 x + 1 2

(x + 1)
(%i2) ratsimp (%);

x
(%o2) - -------------------

3 2
x + 4 x + 5 x + 2

(%i3) partfrac (%, x);
2 2 1

(%o3) ----- - ----- + --------
x + 2 x + 1 2

(x + 1)

Functionpower mod (a, n, m)
Uses a modular algorithm to compute a^n mod m where a and n are integers and m is
a positive integer. If n is negative, inv_mod is used to find the modular inverse.

(%i1) power_mod(3, 15, 5);
(%o1) 2
(%i2) mod(3^15,5);
(%o2) 2
(%i3) power_mod(2, -1, 5);
(%o3) 3
(%i4) inv_mod(2,5);
(%o4) 3

Functionprimep (n)
Primality test. If primep (n) returns false, n is a composite number and if it returns
true, n is a prime number with very high probability.

For n less than 341550071728321 a deterministic version of Miller-Rabin’s test is used.
If primep (n) returns true, then n is a prime number.

For n bigger than 341550071728321 primep uses primep_number_of_tests Miller-
Rabin’s pseudo-primality tests and one Lucas pseudo-primality test. The probability

Chapter 29: Number Theory 495

that a non-prime n will pass one Miller-Rabin test is less than 1/4. Using the default
value 25 for primep_number_of_tests, the probability of n beeing composite is much
smaller that 10^-15.

Option variableprimep number of tests
Default value: 25

Number of Miller-Rabin’s tests used in primep.

Functionprev prime (n)
Returns the greatest prime smaller than n.

(%i1) prev_prime(27);
(%o1) 23

Functionqunit (n)
Returns the principal unit of the real quadratic number field sqrt (n) where n is an
integer, i.e., the element whose norm is unity. This amounts to solving Pell’s equation
a^2 - n b^2 = 1.

(%i1) qunit (17);
(%o1) sqrt(17) + 4
(%i2) expand (% * (sqrt(17) - 4));
(%o2) 1

Functiontotient (n)
Returns the number of integers less than or equal to n which are relatively prime to
n.

Option variablezerobern
Default value: true

When zerobern is false, bern excludes the Bernoulli numbers and euler excludes
the Euler numbers which are equal to zero. See bern and euler.

Functionzeta (n)
Returns the Riemann zeta function. If n is a negative integer, 0, or a positive even
integer, the Riemann zeta function simplifies to an exact value. For a positive even
integer the option variable zeta%pi has to be true in addition (See zeta%pi). For a
floating point or bigfloat number the Riemann zeta function is evaluated numerically.
Maxima returns a noun form zeta (n) for all other arguments, including rational
noninteger, and complex arguments, or for even integers, if zeta%pi has the value
false.

zeta(1) is undefined, but Maxima knows the limit limit(zeta(x), x, 1) from above
and below.

The Riemann zeta function distributes over lists, matrices, and equations.

See also bfzeta and zeta%pi.

Examples:

496 Maxima 5.35.1 Manual

(%i1) zeta([-2, -1, 0, 0.5, 2, 3, 1+%i]);
2

1 1 %pi
(%o1) [0, - --, - -, - 1.460354508809586, ----, zeta(3),

12 2 6
zeta(%i + 1)]

(%i2) limit(zeta(x),x,1,plus);
(%o2) inf
(%i3) limit(zeta(x),x,1,minus);
(%o3) minf

Option variablezeta%pi
Default value: true

When zeta%pi is true, zeta returns an expression proportional to %pi^n for even
integer n. Otherwise, zeta returns a noun form zeta (n) for even integer n.

Examples:

(%i1) zeta%pi: true$
(%i2) zeta (4);

4
%pi

(%o2) ----
90

(%i3) zeta%pi: false$
(%i4) zeta (4);
(%o4) zeta(4)

Functionzn add table (n)
Shows an addition table of all elements in (Z/nZ).

See also zn_mult_table, zn_power_table.

Functionzn determinant (matrix, p)
Uses the technique of LU-decomposition to compute the determinant of matrix over
(Z/pZ). p must be a prime.

However if the determinant is equal to zero the LU-decomposition might fail. In that
case zn_determinant computes the determinant non-modular and reduces thereafter.

See also zn_invert_by_lu.

Examples:

(%i1) m : matrix([1,3],[2,4]);
[1 3]

(%o1) []
[2 4]

(%i2) zn_determinant(m, 5);
(%o2) 3
(%i3) m : matrix([2,4,1],[3,1,4],[4,3,2]);

[2 4 1]

Chapter 29: Number Theory 497

[]
(%o3) [3 1 4]

[]
[4 3 2]

(%i4) zn_determinant(m, 5);
(%o4) 0

Functionzn invert by lu (matrix, p)
Uses the technique of LU-decomposition to compute the modular inverse of matrix
over (Z/pZ). p must be a prime and matrix invertible. zn_invert_by_lu returns
false if matrix is not invertible.

See also zn_determinant.

Example:

(%i1) m : matrix([1,3],[2,4]);
[1 3]

(%o1) []
[2 4]

(%i2) zn_determinant(m, 5);
(%o2) 3
(%i3) mi : zn_invert_by_lu(m, 5);

[3 4]
(%o3) []

[1 2]
(%i4) matrixmap(lambda([a], mod(a, 5)), m . mi);

[1 0]
(%o4) []

[0 1]

Functionzn log
zn_log (a, g, n)
zn_log (a, g, n, [[p1, e1], . . . , [pk, ek]])

Computes the discrete logarithm. Let (Z/nZ)* be a cyclic group, g a primitive root
modulo n and let a be a member of this group. zn_log (a, g, n) then solves the
congruence g^x = a mod n.

The applied algorithm needs a prime factorization of totient(n). This factorization
might be time consuming as well and in some cases it can be useful to factor first
and then to pass the list of factors to zn_log as the fourth argument. The list must
be of the same form as the list returned by ifactors(totient(n)) using the default
option factors_only : false.

The algorithm uses a Pohlig-Hellman-reduction and Pollard’s Rho-method for discrete
logarithms. The run time of zn_log primarily depends on the bitlength of the totient’s
greatest prime factor.

See also zn_primroot, zn_order, ifactors, totient.

Examples:

zn_log (a, g, n) solves the congruence g^x = a mod n.

498 Maxima 5.35.1 Manual

(%i1) n : 22$
(%i2) g : zn_primroot(n);
(%o2) 7
(%i3) ord_7 : zn_order(7, n);
(%o3) 10
(%i4) powers_7 : makelist(power_mod(g, x, n), x, 0, ord_7 - 1);
(%o4) [1, 7, 5, 13, 3, 21, 15, 17, 9, 19]
(%i5) zn_log(21, g, n);
(%o5) 5
(%i6) map(lambda([x], zn_log(x, g, n)), powers_7);
(%o6) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The optional fourth argument must be of the same form as the list returned by
ifactors(totient(n)). The run time primarily depends on the bitlength of the
totient’s greatest prime factor.

(%i1) (p : 2^127-1, primep(p));
(%o1) true
(%i2) ifs : ifactors(p - 1)$
(%i3) g : zn_primroot(p, ifs);
(%o3) 43
(%i4) a : power_mod(g, 1234567890, p)$
(%i5) zn_log(a, g, p, ifs);
(%o5) 1234567890
(%i6) time(%o5);
(%o6) [1.204]
(%i7) f_max : last(ifs);
(%o7) [77158673929, 1]
(%i8) slength(printf(false, "~b", f_max[1]));
(%o8) 37

Functionzn mult table
zn_mult_table (n)
zn_mult_table (n, all)

Without the optional argument all zn_mult_table(n) shows a multiplication table
of all elements in (Z/nZ)* which are all elements invertible modulo n.

The optional argument all causes the table to be printed for all non-zero elements.

See also zn_add_table, zn_power_table.

Examples:

(%i1) zn_mult_table(4);
[1 3]

(%o1) []
[3 1]

(%i2) zn_mult_table(4, all);
[1 2 3]
[]

(%o2) [2 0 2]
[]
[3 2 1]

Chapter 29: Number Theory 499

Functionzn order
zn_order (x, n)
zn_order (x, n, [[p1, e1], . . . , [pk, ek]])

Returns the order of x if it is a unit of the finite group (Z/nZ)* or returns false. x
is a unit modulo n if it is coprime to n.

The applied algorithm needs a prime factorization of totient(n). This factorization
might be time consuming in some cases and it can be useful to factor first and then
to pass the list of factors to zn_log as the third argument. The list must be of the
same form as the list returned by ifactors(totient(n)) using the default option
factors_only : false.

See also zn_primroot, ifactors, totient.

Examples:

zn_order computes the order of the unit x in (Z/nZ)*.

(%i1) n : 22$
(%i2) g : zn_primroot(n);
(%o2) 7
(%i3) units_22 : sublist(makelist(i,i,1,21), lambda([x], gcd(x, n) = 1));
(%o3) [1, 3, 5, 7, 9, 13, 15, 17, 19, 21]
(%i4) (ord_7 : zn_order(7, n)) = totient(n);
(%o4) 10 = 10
(%i5) powers_7 : makelist(power_mod(g,i,n), i,0,ord_7 - 1);
(%o5) [1, 7, 5, 13, 3, 21, 15, 17, 9, 19]
(%i6) map(lambda([x], zn_order(x, n)), powers_7);
(%o6) [1, 10, 5, 10, 5, 2, 5, 10, 5, 10]
(%i7) map(lambda([x], ord_7/gcd(x, ord_7)), makelist(i, i,0,ord_7 - 1));
(%o7) [1, 10, 5, 10, 5, 2, 5, 10, 5, 10]
(%i8) totient(totient(n));
(%o8) 4

The optional third argument must be of the same form as the list returned by
ifactors(totient(n)).

(%i1) (p : 2^142 + 217, primep(p));
(%o1) true
(%i2) ifs : ifactors(totient(p))$
(%i3) g : zn_primroot(p, ifs);
(%o3) 3
(%i4) is((ord_3 : zn_order(g, p, ifs)) = totient(p));
(%o4) true
(%i5) map(lambda([x], ord_3/zn_order(x, p, ifs)), makelist(i,i,2,15));
(%o5) [22, 1, 44, 10, 5, 2, 22, 2, 8, 2, 1, 1, 20, 1]

Functionzn power table
zn_power_table (n)
zn_power_table (n, all)

Without the optional argument all zn_power_table(n) shows a power table of all
elements in (Z/nZ)* which are all elements invertible modulo n. The exponent loops

500 Maxima 5.35.1 Manual

from 1 to the greatest characteristic factor of totient(n) and the table ends with a
column of ones on the right side.

The optional argument all causes the table to be printed for all non-zero elements.
The exponent now loops from 1 to totient(n) + 1 and in case the modulus factors
into different primes the last column is equal to the first.

See also zn_add_table, zn_mult_table.

Examples:

(%i1) zn_power_table(6);
[1 1]

(%o1) []
[5 1]

(%i2) zn_power_table(6, all);
[1 1 1]
[]
[2 4 2]
[]

(%o2) [3 3 3]
[]
[4 4 4]
[]
[5 1 5]

Functionzn primroot
zn_primroot (n)
zn_primroot (n, [[p1, e1], . . . , [pk, ek]])

If the multiplicative group (Z/nZ)* is cyclic, zn_primroot computes the smallest
primitive root modulo n. (Z/nZ)* is cyclic if n is equal to 2, 4, p^k or 2*p^k, where
p is prime and greater than 2 and k is a natural number. zn_primroot performs an
according pretest if the option variable zn_primroot_pretest (default: false) is set
to true. In any case the computation is limited by the upper bound zn_primroot_

limit.

If (Z/nZ)* is not cyclic or if there is no primitive root up to zn_primroot_limit,
zn_primroot returns false.

The applied algorithm needs a prime factorization of totient(n). This factorization
might be time consuming in some cases and it can be useful to factor first and then to
pass the list of factors to zn_log as an additional argument. The list must be of the
same form as the list returned by ifactors(totient(n)) using the default option
factors_only : false.

See also zn_primroot_p, zn_order, ifactors, totient.

Examples:

zn_primroot computes the smallest primitive root modulo n or returns false.

(%i1) n : 14$
(%i2) g : zn_primroot(n);
(%o2) 3
(%i3) zn_order(g, n) = totient(n);

Chapter 29: Number Theory 501

(%o3) 6 = 6
(%i4) n : 15$
(%i5) zn_primroot(n);
(%o5) false

The optional second argument must be of the same form as the list returned by
ifactors(totient(n)).

(%i1) (p : 2^142 + 217, primep(p));
(%o1) true
(%i2) ifs : ifactors(totient(p))$
(%i3) g : zn_primroot(p, ifs);
(%o3) 3
(%i4) [time(%o2), time(%o3)];
(%o4) [[15.556972], [0.004]]
(%i5) is(zn_order(g, p, ifs) = p - 1);
(%o5) true
(%i6) n : 2^142 + 216$
(%i7) ifs : ifactors(totient(n))$
(%i8) zn_primroot(n, ifs),

zn_primroot_limit : 200, zn_primroot_verbose : true;
‘zn_primroot’ stopped at zn_primroot_limit = 200
(%o8) false

Option variablezn primroot limit
Default value: 1000

If zn_primroot cannot find a primitve root, it stops at this upper bound. If the
option variable zn_primroot_verbose (default: false) is set to true, a message will
be printed when zn_primroot_limit is reached.

Functionzn primroot p
zn_primroot_p (x, n)
zn_primroot_p (x, n, [[p1, e1], . . . , [pk, ek]])

Checks whether x is a primitive root in the multiplicative group (Z/nZ)*.

The applied algorithm needs a prime factorization of totient(n). This factorization
might be time consuming and in case zn_primroot_p will be consecutively applied to
a list of candidates it can be useful to factor first and then to pass the list of factors
to zn_log as a third argument. The list must be of the same form as the list returned
by ifactors(totient(n)) using the default option factors_only : false.

See also zn_primroot, zn_order, ifactors, totient.

Examples:

zn_primroot_p as a predicate function.

(%i1) n : 14$
(%i2) units_14 : sublist(makelist(i,i,1,13), lambda([i], gcd(i, n) = 1));
(%o2) [1, 3, 5, 9, 11, 13]
(%i3) zn_primroot_p(13, n);
(%o3) false

502 Maxima 5.35.1 Manual

(%i4) sublist(units_14, lambda([x], zn_primroot_p(x, n)));
(%o4) [3, 5]
(%i5) map(lambda([x], zn_order(x, n)), units_14);
(%o5) [1, 6, 6, 3, 3, 2]

The optional third argument must be of the same form as the list returned by
ifactors(totient(n)).

(%i1) (p : 2^142 + 217, primep(p));
(%o1) true
(%i2) ifs : ifactors(totient(p))$
(%i3) sublist(makelist(i,i,1,50), lambda([x], zn_primroot_p(x, p, ifs)));
(%o3) [3, 12, 13, 15, 21, 24, 26, 27, 29, 33, 38, 42, 48]
(%i4) [time(%o2), time(%o3)];
(%o4) [[7.748484], [0.036002]]

Option variablezn primroot pretest
Default value: false

The multiplicative group (Z/nZ)* is cyclic if n is equal to 2, 4, p^k or 2*p^k, where
p is prime and greater than 2 and k is a natural number.

zn_primroot_pretest controls whether zn_primroot will check if one of these cases
occur before it computes the smallest primitive root. Only if zn_primroot_pretest
is set to true this pretest will be performed.

Option variablezn primroot verbose
Default value: false

Controls whether zn_primroot prints a message when reaching zn_primroot_limit.

Chapter 30: Symmetries 503

30 Symmetries

30.1 Introduction to Symmetries

sym is a package for working with symmetric groups of polynomials.

It was written for Macsyma-Symbolics by Annick Valibouze1. The algorithms are de-
scribed in the following papers:

1. Fonctions symétriques et changements de bases2. Annick Valibouze. EUROCAL’87
(Leipzig, 1987), 323–332, Lecture Notes in Comput. Sci 378. Springer, Berlin, 1989.

2. Résolvantes et fonctions symétriques3. Annick Valibouze. Proceedings of the ACM-
SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, IS-
SAC’89 (Portland, Oregon). ACM Press, 390-399, 1989.

3. Symbolic computation with symmetric polynomials, an extension to Macsyma4. Annick
Valibouze. Computers and Mathematics (MIT, USA, June 13-17, 1989), Springer-
Verlag, New York Berlin, 308-320, 1989.

4. Théorie de Galois Constructive. Annick Valibouze. Mémoire d’habilitation à diriger
les recherches (HDR), Université P. et M. Curie (Paris VI), 1994.

30.2 Functions and Variables for Symmetries

30.2.1 Changing bases

Functioncomp2pui (n, L)
implements passing from the complete symmetric functions given in the list L to the
elementary symmetric functions from 0 to n. If the list L contains fewer than n+1
elements, it will be completed with formal values of the type h1, h2, etc. If the first
element of the list L exists, it specifies the size of the alphabet, otherwise the size is
set to n.

(%i1) comp2pui (3, [4, g]);
2 2

(%o1) [4, g, 2 h2 - g , 3 h3 - g h2 + g (g - 2 h2)]

Functionele2pui (m, L)
goes from the elementary symmetric functions to the complete functions. Similar to
comp2ele and comp2pui.

Other functions for changing bases: comp2ele.

1 www-calfor.lip6.fr/~avb
2 www.stix.polytechnique.fr/publications/1984-1994.html
3 www-calfor.lip6.fr/~avb/DonneesTelechargeables/MesArticles/issac89ACMValibouze.pdf
4 www.stix.polytechnique.fr/publications/1984-1994.html

504 Maxima 5.35.1 Manual

Functionele2comp (m, L)
Goes from the elementary symmetric functions to the compete functions. Similar to
comp2ele and comp2pui.

Other functions for changing bases: comp2ele.

Functionelem (ele, sym, lvar)
decomposes the symmetric polynomial sym, in the variables contained in the list lvar,
in terms of the elementary symmetric functions given in the list ele. If the first element
of ele is given, it will be the size of the alphabet, otherwise the size will be the degree
of the polynomial sym. If values are missing in the list ele, formal values of the type
e1, e2, etc. will be added. The polynomial sym may be given in three different forms:
contracted (elem should then be 1, its default value), partitioned (elem should be 3),
or extended (i.e. the entire polynomial, and elem should then be 2). The function
pui is used in the same way.

On an alphabet of size 3 with e1, the first elementary symmetric function, with
value 7, the symmetric polynomial in 3 variables whose contracted form (which here
depends on only two of its variables) is x^4-2*x*y decomposes as follows in elementary
symmetric functions:

(%i1) elem ([3, 7], x^4 - 2*x*y, [x, y]);
(%o1) 7 (e3 - 7 e2 + 7 (49 - e2)) + 21 e3

+ (- 2 (49 - e2) - 2) e2

(%i2) ratsimp (%);
2

(%o2) 28 e3 + 2 e2 - 198 e2 + 2401

Other functions for changing bases: comp2ele.

Functionmon2schur (L)
The list L represents the Schur function SL: we have L = [i1, i2, . . . , iq], with i1 ≤
i2 ≤ . . . ≤ iq. The Schur function Si1,i2,...,iq is the minor of the infinite matrix hi−j,
i ≥ 1, j ≥ 1, consisting of the q first rows and the columns i1 + 1, i2 + 2, . . . , iq + q.

This Schur function can be written in terms of monomials by using treinat and
kostka. The form returned is a symmetric polynomial in a contracted representation
in the variables x1, x2, . . .

(%i1) mon2schur ([1, 1, 1]);
(%o1) x1 x2 x3

(%i2) mon2schur ([3]);
2 3

(%o2) x1 x2 x3 + x1 x2 + x1

(%i3) mon2schur ([1, 2]);
2

(%o3) 2 x1 x2 x3 + x1 x2

which means that for 3 variables this gives:

2 x1 x2 x3 + x1^2 x2 + x2^2 x1 + x1^2 x3 + x3^2 x1
+ x2^2 x3 + x3^2 x2

Other functions for changing bases: comp2ele.

Chapter 30: Symmetries 505

Functionmulti elem (l elem, multi pc, l var)
decomposes a multi-symmetric polynomial in the multi-contracted form multi pc in
the groups of variables contained in the list of lists l var in terms of the elementary
symmetric functions contained in l elem.

(%i1) multi_elem ([[2, e1, e2], [2, f1, f2]], a*x + a^2 + x^3,
[[x, y], [a, b]]);

3
(%o1) - 2 f2 + f1 (f1 + e1) - 3 e1 e2 + e1

(%i2) ratsimp (%);
2 3

(%o2) - 2 f2 + f1 + e1 f1 - 3 e1 e2 + e1

Other functions for changing bases: comp2ele.

Functionmulti pui
is to the function pui what the function multi_elem is to the function elem.

(%i1) multi_pui ([[2, p1, p2], [2, t1, t2]], a*x + a^2 + x^3,
[[x, y], [a, b]]);

3
3 p1 p2 p1

(%o1) t2 + p1 t1 + ------- - ---
2 2

Functionpui (L, sym, lvar)
decomposes the symmetric polynomial sym, in the variables in the list lvar, in terms
of the power functions in the list L. If the first element of L is given, it will be the
size of the alphabet, otherwise the size will be the degree of the polynomial sym. If
values are missing in the list L, formal values of the type p1, p2 , etc. will be added.
The polynomial sym may be given in three different forms: contracted (elem should
then be 1, its default value), partitioned (elem should be 3), or extended (i.e. the
entire polynomial, and elem should then be 2). The function pui is used in the same
way.

(%i1) pui;
(%o1) 1

(%i2) pui ([3, a, b], u*x*y*z, [x, y, z]);
2

a (a - b) u (a b - p3) u
(%o2) ------------ - ------------

6 3

(%i3) ratsimp (%);
3

(2 p3 - 3 a b + a) u
(%o3) ---------------------

6

Other functions for changing bases: comp2ele.

506 Maxima 5.35.1 Manual

Functionpui2comp (n, lpui)
renders the list of the first n complete functions (with the length first) in terms of
the power functions given in the list lpui. If the list lpui is empty, the cardinal is n,
otherwise it is its first element (as in comp2ele and comp2pui).

(%i1) pui2comp (2, []);
2

p2 + p1
(%o1) [2, p1, --------]

2

(%i2) pui2comp (3, [2, a1]);
2

a1 (p2 + a1)
2 p3 + ------------- + a1 p2

p2 + a1 2
(%o2) [2, a1, --------, --------------------------]

2 3

(%i3) ratsimp (%);
2 3

p2 + a1 2 p3 + 3 a1 p2 + a1
(%o3) [2, a1, --------, --------------------]

2 6

Other functions for changing bases: comp2ele.

Functionpui2ele (n, lpui)
effects the passage from power functions to the elementary symmetric functions. If
the flag pui2ele is girard, it will return the list of elementary symmetric functions
from 1 to n, and if the flag is close, it will return the n-th elementary symmetric
function.

Other functions for changing bases: comp2ele.

Functionpuireduc (n, lpui)
lpui is a list whose first element is an integer m. puireduc gives the first n power
functions in terms of the first m.

(%i1) puireduc (3, [2]);
2

p1 (p1 - p2)
(%o1) [2, p1, p2, p1 p2 - -------------]

2

(%i2) ratsimp (%);
3

3 p1 p2 - p1
(%o2) [2, p1, p2, -------------]

2

Functionschur2comp (P, l var)
P is a polynomial in the variables of the list l var. Each of these variables represents
a complete symmetric function. In l var the i-th complete symmetric function is

Chapter 30: Symmetries 507

represented by the concatenation of the letter h and the integer i: hi. This function
expresses P in terms of Schur functions.

(%i1) schur2comp (h1*h2 - h3, [h1, h2, h3]);
(%o1) s

1, 2

(%i2) schur2comp (a*h3, [h3]);
(%o2) s a

3

30.2.2 Changing representations

Functioncont2part (pc, lvar)
returns the partitioned polynomial associated to the contracted form pc whose vari-
ables are in lvar.

(%i1) pc: 2*a^3*b*x^4*y + x^5;
3 4 5

(%o1) 2 a b x y + x

(%i2) cont2part (pc, [x, y]);
3

(%o2) [[1, 5, 0], [2 a b, 4, 1]]

Functioncontract (psym, lvar)
returns a contracted form (i.e. a monomial orbit under the action of the symmetric
group) of the polynomial psym in the variables contained in the list lvar. The function
explose performs the inverse operation. The function tcontract tests the symmetry
of the polynomial.

(%i1) psym: explose (2*a^3*b*x^4*y, [x, y, z]);
3 4 3 4 3 4 3 4

(%o1) 2 a b y z + 2 a b x z + 2 a b y z + 2 a b x z

3 4 3 4
+ 2 a b x y + 2 a b x y

(%i2) contract (psym, [x, y, z]);
3 4

(%o2) 2 a b x y

Functionexplose (pc, lvar)
returns the symmetric polynomial associated with the contracted form pc. The list
lvar contains the variables.

(%i1) explose (a*x + 1, [x, y, z]);
(%o1) a z + a y + a x + 1

Functionpart2cont (ppart, lvar)
goes from the partitioned form to the contracted form of a symmetric polynomial.
The contracted form is rendered with the variables in lvar.

508 Maxima 5.35.1 Manual

(%i1) part2cont ([[2*a^3*b, 4, 1]], [x, y]);
3 4

(%o1) 2 a b x y

Functionpartpol (psym, lvar)
psym is a symmetric polynomial in the variables of the list lvar. This function retturns
its partitioned representation.

(%i1) partpol (-a*(x + y) + 3*x*y, [x, y]);
(%o1) [[3, 1, 1], [- a, 1, 0]]

Functiontcontract (pol, lvar)
tests if the polynomial pol is symmetric in the variables of the list lvar. If so, it
returns a contracted representation like the function contract.

Functiontpartpol (pol, lvar)
tests if the polynomial pol is symmetric in the variables of the list lvar. If so, it
returns its partitioned representation like the function partpol.

30.2.3 Groups and orbits

Functiondirect ([p 1, ..., p n], y, f, [lvar 1, ..., lvar n])
calculates the direct image (see M. Giusti, D. Lazard et A. Valibouze, ISSAC 1988,
Rome) associated to the function f, in the lists of variables lvar 1, ..., lvar n, and in
the polynomials p 1, ..., p n in a variable y. The arity of the function f is important
for the calulation. Thus, if the expression for f does not depend on some variable, it
is useless to include this variable, and not including it will also considerably reduce
the amount of computation.

(%i1) direct ([z^2 - e1* z + e2, z^2 - f1* z + f2],
z, b*v + a*u, [[u, v], [a, b]]);

2
(%o1) y - e1 f1 y

2 2 2 2
- 4 e2 f2 - (e1 - 2 e2) (f1 - 2 f2) + e1 f1

+ ---
2

(%i2) ratsimp (%);
2 2 2

(%o2) y - e1 f1 y + (e1 - 4 e2) f2 + e2 f1

Chapter 30: Symmetries 509

(%i3) ratsimp (direct ([z^3-e1*z^2+e2*z-e3,z^2 - f1* z + f2],
z, b*v + a*u, [[u, v], [a, b]]));

6 5 2 2 2 4
(%o3) y - 2 e1 f1 y + ((2 e1 - 6 e2) f2 + (2 e2 + e1) f1) y

3 3 3
+ ((9 e3 + 5 e1 e2 - 2 e1) f1 f2 + (- 2 e3 - 2 e1 e2) f1) y

2 2 4 2
+ ((9 e2 - 6 e1 e2 + e1) f2

2 2 2 2 4
+ (- 9 e1 e3 - 6 e2 + 3 e1 e2) f1 f2 + (2 e1 e3 + e2) f1)

2 2 2 3 2
y + (((9 e1 - 27 e2) e3 + 3 e1 e2 - e1 e2) f1 f2

2 2 3 5
+ ((15 e2 - 2 e1) e3 - e1 e2) f1 f2 - 2 e2 e3 f1) y

2 3 3 2 2 3
+ (- 27 e3 + (18 e1 e2 - 4 e1) e3 - 4 e2 + e1 e2) f2

2 3 3 2 2
+ (27 e3 + (e1 - 9 e1 e2) e3 + e2) f1 f2

2 4 2 6
+ (e1 e2 e3 - 9 e3) f1 f2 + e3 f1

Finding the polynomial whose roots are the sums a+u where a is a root of z2−e1z+e2
and u is a root of z2 − f1z + f2.

(%i1) ratsimp (direct ([z^2 - e1* z + e2, z^2 - f1* z + f2],
z, a + u, [[u], [a]]));

4 3 2
(%o1) y + (- 2 f1 - 2 e1) y + (2 f2 + f1 + 3 e1 f1 + 2 e2

2 2 2 2
+ e1) y + ((- 2 f1 - 2 e1) f2 - e1 f1 + (- 2 e2 - e1) f1

2 2 2
- 2 e1 e2) y + f2 + (e1 f1 - 2 e2 + e1) f2 + e2 f1 + e1 e2 f1

2
+ e2

direct accepts two flags: elementaires and puissances (default) which allow de-
composing the symmetric polynomials appearing in the calculation into elementary
symmetric functions, or power functions, respectively.

Functions of sym used in this function:

510 Maxima 5.35.1 Manual

multi_orbit (so orbit), pui_direct, multi_elem (so elem), multi_pui (so pui),
pui2ele, ele2pui (if the flag direct is in puissances).

Functionmulti orbit (P, [lvar 1, lvar 2,..., lvar p])
P is a polynomial in the set of variables contained in the lists lvar 1, lvar 2, ..., lvar p.
This function returns the orbit of the polynomial P under the action of the product
of the symmetric groups of the sets of variables represented in these p lists.

(%i1) multi_orbit (a*x + b*y, [[x, y], [a, b]]);
(%o1) [b y + a x, a y + b x]

(%i2) multi_orbit (x + y + 2*a, [[x, y], [a, b, c]]);
(%o2) [y + x + 2 c, y + x + 2 b, y + x + 2 a]

Also see: orbit for the action of a single symmetric group.

Functionmultsym (ppart 1, ppart 2, n)
returns the product of the two symmetric polynomials in n variables by working only
modulo the action of the symmetric group of order n. The polynomials are in their
partitioned form.

Given the 2 symmetric polynomials in x, y : 3*(x + y) + 2*x*y and 5*(x^2 + y^2)

whose partitioned forms are [[3, 1], [2, 1, 1]] and [[5, 2]], their product will
be

(%i1) multsym ([[3, 1], [2, 1, 1]], [[5, 2]], 2);
(%o1) [[10, 3, 1], [15, 3, 0], [15, 2, 1]]

that is 10*(x^3*y + y^3*x) + 15*(x^2*y + y^2*x) + 15*(x^3 + y^3).

Functions for changing the representations of a symmetric polynomial:

contract, cont2part, explose, part2cont, partpol, tcontract, tpartpol.

Functionorbit (P, lvar)
computes the orbit of the polynomial P in the variables in the list lvar under the
action of the symmetric group of the set of variables in the list lvar.

(%i1) orbit (a*x + b*y, [x, y]);
(%o1) [a y + b x, b y + a x]

(%i2) orbit (2*x + x^2, [x, y]);
2 2

(%o2) [y + 2 y, x + 2 x]

See also multi_orbit for the action of a product of symmetric groups on a polynomial.

Functionpui direct (orbite, [lvar 1, ..., lvar n], [d 1, d 2, ..., d n])
Let f be a polynomial in n blocks of variables lvar 1, ..., lvar n. Let c i be the number
of variables in lvar i, and SC be the product of n symmetric groups of degree c 1,
..., c n. This group acts naturally on f. The list orbite is the orbit, denoted SC(f),
of the function f under the action of SC. (This list may be obtained by the function
multi_orbit.) The di are integers s.t. $c 1 \le d 1, c 2 \le d 2, \ldots, c n \le d n$.

Let SD be the product of the symmetric groups Sd1 × Sd2 × · · · × Sdn . The function
pui_direct returns the first n power functions of SD(f) deduced from the power
functions of SC(f), where n is the size of SD(f).

Chapter 30: Symmetries 511

The result is in multi-contracted form w.r.t. SD, i.e. only one element is kept per
orbit, under the action of SD.

(%i1) l: [[x, y], [a, b]];
(%o1) [[x, y], [a, b]]

(%i2) pui_direct (multi_orbit (a*x + b*y, l), l, [2, 2]);
2 2

(%o2) [a x, 4 a b x y + a x]

(%i3) pui_direct (multi_orbit (a*x + b*y, l), l, [3, 2]);
2 2 2 2 3 3

(%o3) [2 a x, 4 a b x y + 2 a x , 3 a b x y + 2 a x ,

2 2 2 2 3 3 4 4
12 a b x y + 4 a b x y + 2 a x ,

3 2 3 2 4 4 5 5
10 a b x y + 5 a b x y + 2 a x ,

3 3 3 3 4 2 4 2 5 5 6 6
40 a b x y + 15 a b x y + 6 a b x y + 2 a x]

(%i4) pui_direct ([y + x + 2*c, y + x + 2*b, y + x + 2*a],
[[x, y], [a, b, c]], [2, 3]);

2 2
(%o4) [3 x + 2 a, 6 x y + 3 x + 4 a x + 4 a ,

2 3 2 2 3
9 x y + 12 a x y + 3 x + 6 a x + 12 a x + 8 a]

30.2.4 Partitions

Functionkostka (part 1, part 2)
written by P. Esperet, calculates the Kostka number of the partition part 1 and
part 2.

(%i1) kostka ([3, 3, 3], [2, 2, 2, 1, 1, 1]);
(%o1) 6

Functionlgtreillis (n, m)
returns the list of partitions of weight n and length m.

(%i1) lgtreillis (4, 2);
(%o1) [[3, 1], [2, 2]]

Also see: ltreillis, treillis and treinat.

Functionltreillis (n, m)
returns the list of partitions of weight n and length less than or equal to m.

(%i1) ltreillis (4, 2);
(%o1) [[4, 0], [3, 1], [2, 2]]

Also see: lgtreillis, treillis and treinat.

512 Maxima 5.35.1 Manual

Functiontreillis (n)
returns all partitions of weight n.

(%i1) treillis (4);
(%o1) [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

See also: lgtreillis, ltreillis and treinat.

Functiontreinat (part)
retruns the list of partitions inferior to the partition part w.r.t. the natural order.

(%i1) treinat ([5]);
(%o1) [[5]]

(%i2) treinat ([1, 1, 1, 1, 1]);
(%o2) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],

[1, 1, 1, 1, 1]]

(%i3) treinat ([3, 2]);
(%o3) [[5], [4, 1], [3, 2]]

See also: lgtreillis, ltreillis and treillis.

30.2.5 Polynomials and their roots

Functionele2polynome (L, z)
returns the polynomial in z s.t. the elementary symmetric functions of its roots are
in the list L = [n, e 1, ..., e n], where n is the degree of the polynomial and e i
the i-th elementary symmetric function.

(%i1) ele2polynome ([2, e1, e2], z);
2

(%o1) z - e1 z + e2

(%i2) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x);
(%o2) [7, 0, - 14, 0, 56, 0, - 56, - 22]

(%i3) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x);
7 5 3

(%o3) x - 14 x + 56 x - 56 x + 22

The inverse: polynome2ele (P, z).

Also see: polynome2ele, pui2polynome.

Functionpolynome2ele (P, x)
gives the list l = [n, e 1, ..., e n] where n is the degree of the polynomial P in the
variable x and e i is the i-the elementary symmetric function of the roots of P.

(%i1) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x);
(%o1) [7, 0, - 14, 0, 56, 0, - 56, - 22]

(%i2) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x);
7 5 3

(%o2) x - 14 x + 56 x - 56 x + 22

The inverse: ele2polynome (l, x)

Chapter 30: Symmetries 513

Functionprodrac (L, k)
L is a list containing the elementary symmetric functions on a set A. prodrac returns
the polynomial whose roots are the k by k products of the elements of A.

Also see somrac.

Functionpui2polynome (x, lpui)
calculates the polynomial in x whose power functions of the roots are given in the list
lpui.

(%i1) pui;
(%o1) 1

(%i2) kill(labels);
(%o0) done

(%i1) polynome2ele (x^3 - 4*x^2 + 5*x - 1, x);
(%o1) [3, 4, 5, 1]

(%i2) ele2pui (3, %);
(%o2) [3, 4, 6, 7]

(%i3) pui2polynome (x, %);
3 2

(%o3) x - 4 x + 5 x - 1

See also: polynome2ele, ele2polynome.

Functionsomrac (L, k)
The list L contains elementary symmetric functions of a polynomial P . The function
computes the polynomial whose roots are the k by k distinct sums of the roots of P.

Also see prodrac.

30.2.6 Resolvents

Functionresolvante (P, x, f, [x 1,..., x d])
calculates the resolvent of the polynomial P in x of degree n >= d by the function
f expressed in the variables x 1, ..., x d. For efficiency of computation it is impor-
tant to not include in the list [x 1, ..., x d] variables which do not appear in the
transformation function f.

To increase the efficiency of the computation one may set flags in resolvante so as
to use appropriate algorithms:

If the function f is unitary:

• A polynomial in a single variable,

• linear,

• alternating,

• a sum,

• symmetric,

• a product,

• the function of the Cayley resolvent (usable up to degree 5)

514 Maxima 5.35.1 Manual

(x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x1 -
(x1*x3 + x3*x5 + x5*x2 + x2*x4 + x4*x1))^2

general,

the flag of resolvante may be, respectively:

• unitaire,

• lineaire,

• alternee,

• somme,

• produit,

• cayley,

• generale.

(%i1) resolvante: unitaire$
(%i2) resolvante (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x, x^3 - 1,

[x]);

" resolvante unitaire " [7, 0, 28, 0, 168, 0, 1120, - 154, 7840,
- 2772, 56448, - 33880,

413952, - 352352, 3076668, - 3363360, 23114112, - 30494464,

175230832, - 267412992, 1338886528, - 2292126760]
3 6 3 9 6 3

[x - 1, x - 2 x + 1, x - 3 x + 3 x - 1,

12 9 6 3 15 12 9 6 3
x - 4 x + 6 x - 4 x + 1, x - 5 x + 10 x - 10 x + 5 x

18 15 12 9 6 3
- 1, x - 6 x + 15 x - 20 x + 15 x - 6 x + 1,

21 18 15 12 9 6 3
x - 7 x + 21 x - 35 x + 35 x - 21 x + 7 x - 1]
[- 7, 1127, - 6139, 431767, - 5472047, 201692519, - 3603982011]

7 6 5 4 3 2
(%o2) y + 7 y - 539 y - 1841 y + 51443 y + 315133 y

+ 376999 y + 125253
(%i3) resolvante: lineaire$
(%i4) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]);

" resolvante lineaire "
24 20 16 12 8

(%o4) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

Chapter 30: Symmetries 515

(%i5) resolvante: general$
(%i6) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]);

" resolvante generale "
24 20 16 12 8

(%o6) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i7) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3, x4]);

" resolvante generale "
24 20 16 12 8

(%o7) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i8) direct ([x^4 - 1], x, x1 + 2*x2 + 3*x3, [[x1, x2, x3]]);
24 20 16 12 8

(%o8) y + 80 y + 7520 y + 1107200 y + 49475840 y

4
+ 344489984 y + 655360000

(%i9) resolvante :lineaire$
(%i10) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

" resolvante lineaire "
4

(%o10) y - 1
(%i11) resolvante: symetrique$
(%i12) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

" resolvante symetrique "
4

(%o12) y - 1

(%i13) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]);

" resolvante symetrique "
6 2

(%o13) y - 4 y - 1
(%i14) resolvante: alternee$
(%i15) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]);

" resolvante alternee "
12 8 6 4 2

(%o15) y + 8 y + 26 y - 112 y + 216 y + 229
(%i16) resolvante: produit$

516 Maxima 5.35.1 Manual

(%i17) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

" resolvante produit "
35 33 29 28 27 26

(%o17) y - 7 y - 1029 y + 135 y + 7203 y - 756 y

24 23 22 21 20
+ 1323 y + 352947 y - 46305 y - 2463339 y + 324135 y

19 18 17 15
- 30618 y - 453789 y - 40246444 y + 282225202 y

14 12 11 10
- 44274492 y + 155098503 y + 12252303 y + 2893401 y

9 8 7 6
- 171532242 y + 6751269 y + 2657205 y - 94517766 y

5 3
- 3720087 y + 26040609 y + 14348907
(%i18) resolvante: symetrique$
(%i19) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

" resolvante symetrique "
35 33 29 28 27 26

(%o19) y - 7 y - 1029 y + 135 y + 7203 y - 756 y

24 23 22 21 20
+ 1323 y + 352947 y - 46305 y - 2463339 y + 324135 y

19 18 17 15
- 30618 y - 453789 y - 40246444 y + 282225202 y

14 12 11 10
- 44274492 y + 155098503 y + 12252303 y + 2893401 y

9 8 7 6
- 171532242 y + 6751269 y + 2657205 y - 94517766 y

5 3
- 3720087 y + 26040609 y + 14348907
(%i20) resolvante: cayley$
(%i21) resolvante (x^5 - 4*x^2 + x + 1, x, a, []);

" resolvante de Cayley "
6 5 4 3 2

(%o21) x - 40 x + 4080 x - 92928 x + 3772160 x + 37880832 x

+ 93392896

Chapter 30: Symmetries 517

For the Cayley resolvent, the 2 last arguments are neutral and the input polynomial
must necessarily be of degree 5.

See also:

resolvante_bipartite, resolvante_produit_sym,
resolvante_unitaire, resolvante_alternee1, resolvante_klein,
resolvante_klein3, resolvante_vierer, resolvante_diedrale.

Functionresolvante alternee1 (P, x)
calculates the transformation P(x) of degree n by the function

∏
1≤i<j≤n−1(xi − xj).

See also:

resolvante_produit_sym, resolvante_unitaire,
resolvante , resolvante_klein, resolvante_klein3,
resolvante_vierer, resolvante_diedrale, resolvante_bipartite.

Functionresolvante bipartite (P, x)
calculates the transformation of P(x) of even degree n by the function x1x2 · · ·xn/2 +
xn/2+1 · · ·xn.

(%i1) resolvante_bipartite (x^6 + 108, x);
10 8 6 4

(%o1) y - 972 y + 314928 y - 34012224 y

See also:

resolvante_produit_sym, resolvante_unitaire,
resolvante, resolvante_klein, resolvante_klein3,
resolvante_vierer, resolvante_diedrale, resolvante_alternee1.

Functionresolvante diedrale (P, x)
calculates the transformation of P(x) by the function x 1 x 2 + x 3 x 4.

(%i1) resolvante_diedrale (x^5 - 3*x^4 + 1, x);
15 12 11 10 9 8 7

(%o1) x - 21 x - 81 x - 21 x + 207 x + 1134 x + 2331 x

6 5 4 3 2
- 945 x - 4970 x - 18333 x - 29079 x - 20745 x - 25326 x

- 697

See also:

resolvante_produit_sym, resolvante_unitaire,
resolvante_alternee1, resolvante_klein, resolvante_klein3,
resolvante_vierer, resolvante.

Functionresolvante klein (P, x)
calculates the transformation of P(x) by the function x 1 x 2 x 4 + x 4.

See also:

resolvante_produit_sym, resolvante_unitaire,
resolvante_alternee1, resolvante, resolvante_klein3,
resolvante_vierer, resolvante_diedrale.

518 Maxima 5.35.1 Manual

Functionresolvante klein3 (P, x)
calculates the transformation of P(x) by the function x 1 x 2 x 4 + x 4.

See also:

resolvante_produit_sym, resolvante_unitaire,
resolvante_alternee1, resolvante_klein, resolvante,
resolvante_vierer, resolvante_diedrale.

Functionresolvante produit sym (P, x)
calculates the list of all product resolvents of the polynomial P(x).

(%i1) resolvante_produit_sym (x^5 + 3*x^4 + 2*x - 1, x);
5 4 10 8 7 6 5

(%o1) [y + 3 y + 2 y - 1, y - 2 y - 21 y - 31 y - 14 y

4 3 2 10 8 7 6 5 4
- y + 14 y + 3 y + 1, y + 3 y + 14 y - y - 14 y - 31 y

3 2 5 4
- 21 y - 2 y + 1, y - 2 y - 3 y - 1, y - 1]
(%i2) resolvante: produit$
(%i3) resolvante (x^5 + 3*x^4 + 2*x - 1, x, a*b*c, [a, b, c]);

" resolvante produit "
10 8 7 6 5 4 3 2

(%o3) y + 3 y + 14 y - y - 14 y - 31 y - 21 y - 2 y + 1

See also:

resolvante, resolvante_unitaire,
resolvante_alternee1, resolvante_klein,
resolvante_klein3, resolvante_vierer,
resolvante_diedrale.

Functionresolvante unitaire (P, Q, x)
computes the resolvent of the polynomial P(x) by the polynomial Q(x).

See also:

resolvante_produit_sym, resolvante,
resolvante_alternee1, resolvante_klein, resolvante_klein3,
resolvante_vierer, resolvante_diedrale.

Functionresolvante vierer (P, x)
computes the transformation of P(x) by the function x 1 x 2 - x 3 x 4.

See also:

resolvante_produit_sym, resolvante_unitaire,
resolvante_alternee1, resolvante_klein, resolvante_klein3,
resolvante, resolvante_diedrale.

Chapter 30: Symmetries 519

30.2.7 Miscellaneous

Functionmultinomial (r, part)
where r is the weight of the partition part. This function returns the associate multi-
nomial coefficient: if the parts of part are i 1, i 2, ..., i k, the result is r!/(i 1! i 2!
... i k!).

Functionpermut (L)
returns the list of permutations of the list L.

520 Maxima 5.35.1 Manual

Chapter 31: Groups 521

31 Groups

31.1 Functions and Variables for Groups

Functiontodd coxeter
todd_coxeter (relations, subgroup)
todd_coxeter (relations)

Find the order of G/H where G is the Free Group modulo relations, and H is the
subgroup of G generated by subgroup. subgroup is an optional argument, defaulting
to []. In doing this it produces a multiplication table for the right action of G on
G/H, where the cosets are enumerated [H,Hg2,Hg3,...]. This can be seen internally
in the variable todd_coxeter_state.

Example:

(%i1) symet(n):=create_list(
if (j - i) = 1 then (p(i,j))^^3 else

if (not i = j) then (p(i,j))^^2 else
p(i,i) , j, 1, n-1, i, 1, j);

<3>
(%o1) symet(n) := create_list(if j - i = 1 then p(i, j)

<2>
else (if not i = j then p(i, j) else p(i, i)), j, 1, n - 1,

i, 1, j)
(%i2) p(i,j) := concat(x,i).concat(x,j);
(%o2) p(i, j) := concat(x, i) . concat(x, j)
(%i3) symet(5);

<2> <3> <2> <2> <3>
(%o3) [x1 , (x1 . x2) , x2 , (x1 . x3) , (x2 . x3) ,

<2> <2> <2> <3> <2>
x3 , (x1 . x4) , (x2 . x4) , (x3 . x4) , x4]

(%i4) todd_coxeter(%o3);

Rows tried 426
(%o4) 120
(%i5) todd_coxeter(%o3,[x1]);

Rows tried 213
(%o5) 60
(%i6) todd_coxeter(%o3,[x1,x2]);

Rows tried 71
(%o6) 20

522 Maxima 5.35.1 Manual

Chapter 32: Runtime Environment 523

32 Runtime Environment

32.1 Introduction for Runtime Environment

maxima-init.mac is a file which is loaded automatically when Maxima starts. You can
use maxima-init.mac to customize your Maxima environment. maxima-init.mac, if it
exists, is typically placed in the directory named by maxima_userdir, although it can be
in any directory searched by the function file_search.

Here is an example maxima-init.mac file:

setup_autoload ("specfun.mac", ultraspherical, assoc_legendre_p);
showtime:all;

In this example, setup_autoload tells Maxima to load the specified file (specfun.mac)
if any of the functions (ultraspherical, assoc_legendre_p) are called but not yet defined.
Thus you needn’t remember to load the file before calling the functions.

The statement showtime: all tells Maxima to set the showtime variable. The maxima-

init.mac file can contain any other assignments or other Maxima statements.

32.2 Interrupts

The user can stop a time-consuming computation with the ^C (control-C) character.
The default action is to stop the computation and print another user prompt. In this case,
it is not possible to restart a stopped computation.

If the Lisp variable *debugger-hook* is set to nil, by executing

:lisp (setq *debugger-hook* nil)

then upon receiving ^C, Maxima will enter the Lisp debugger, and the user may use the
debugger to inspect the Lisp environment. The stopped computation can be restarted by
entering continue in the Lisp debugger. The means of returning to Maxima from the Lisp
debugger (other than running the computation to completion) is different for each version
of Lisp.

On Unix systems, the character ^Z (control-Z) causes Maxima to stop altogether, and
control is returned to the shell prompt. The fg command causes Maxima to resume from
the point at which it was stopped.

32.3 Functions and Variables for Runtime Environment

System variablemaxima tempdir
maxima_tempdir names the directory in which Maxima creates some temporary files.
In particular, temporary files for plotting are created in maxima_tempdir.

The initial value of maxima_tempdir is the user’s home directory, if Maxima can
locate it; otherwise Maxima makes a guess about a suitable directory.

maxima_tempdir may be assigned a string which names a directory.

524 Maxima 5.35.1 Manual

System variablemaxima userdir
maxima_userdir names a directory which Maxima searches to find Maxima and Lisp
files. (Maxima searches some other directories as well; file_search_maxima and
file_search_lisp are the complete lists.)

The initial value of maxima_userdir is a subdirectory of the user’s home directory, if
Maxima can locate it; otherwise Maxima makes a guess about a suitable directory.

maxima_userdir may be assigned a string which names a directory. However, as-
signing to maxima_userdir does not automatically change file_search_maxima and
file_search_lisp; those variables must be changed separately.

Functionroom
room ()
room (true)
room (false)

Prints out a description of the state of storage and stack management in Maxima.
room calls the Lisp function of the same name.

• room () prints out a moderate description.

• room (true) prints out a verbose description.

• room (false) prints out a terse description.

Functionsstatus (keyword, item)
When keyword is the symbol feature, item is put on the list of system features.
After sstatus (keyword, item) is executed, status (feature, item) returns true.
If keyword is the symbol nofeature, item is deleted from the list of system features.
This can be useful for package writers, to keep track of what features they have loaded
in.

See also status.

Functionstatus
status (feature)
status (feature, item)

Returns information about the presence or absence of certain system-dependent fea-
tures.

• status (feature) returns a list of system features. These include Lisp version,
operating system type, etc. The list may vary from one Lisp type to another.

• status (feature, item) returns true if item is on the list of items returned
by status (feature) and false otherwise. status quotes the argument item.
The quote-quote operator ’’ defeats quotation. A feature whose name contains
a special character, such as a hyphen, must be given as a string argument. For
example, status (feature, "ansi-cl").

See also sstatus.

The variable features contains a list of features which apply to mathematical ex-
pressions. See features and featurep for more information.

Chapter 32: Runtime Environment 525

Functionsystem (command)
Executes command as a separate process. The command is passed to the default shell
for execution. system is not supported by all operating systems, but generally exists
in Unix and Unix-like environments.

Supposing _hist.out is a list of frequencies which you wish to plot as a bar graph
using xgraph.

(%i1) (with_stdout("_hist.out",
for i:1 thru length(hist) do (

print(i,hist[i]))),
system("xgraph -bar -brw .7 -nl < _hist.out"));

In order to make the plot be done in the background (returning control to Maxima)
and remove the temporary file after it is done do:

system("(xgraph -bar -brw .7 -nl < _hist.out; rm -f _hist.out)&")

Functiontime (%o1, %o2, %o3, . . .)
Returns a list of the times, in seconds, taken to compute the output lines %o1, %o2,
%o3, . . . The time returned is Maxima’s estimate of the internal computation time,
not the elapsed time. time can only be applied to output line variables; for any other
variables, time returns unknown.

Set showtime: true to make Maxima print out the computation time and elapsed
time with each output line.

Functiontimedate
timedate ()
timedate (T)

timedate() with no argument returns a string representing the current time and
date. The string has the format YYYY-MM-DD HH:MM:SS[+|-]ZZ:ZZ, where the fields
are year, month, day, hours, minutes, seconds, and time zone offset in hours and
minutes.

timedate(T) returns the time T as a string with the format YYYY-MM-DD

HH:MM:SS[+|-]ZZ:ZZ. T is interpreted as the number of seconds since midnight,
January 1, 1900, as returned by absolute_real_time.

Example:

timedate with no argument returns a string representing the current time and date.

(%i1) d : timedate ();
(%o1) 2010-06-08 04:08:09+01:00
(%i2) print ("timedate reports current time", d) $
timedate reports current time 2010-06-08 04:08:09+01:00

timedate with an argument returns a string representing the argument.

(%i1) timedate (0);
(%o1) 1900-01-01 01:00:00+01:00
(%i2) timedate (absolute_real_time () - 7*24*3600);
(%o2) 2010-06-01 04:19:51+01:00

526 Maxima 5.35.1 Manual

Functionabsolute real time ()
Returns the number of seconds since midnight, January 1, 1900 UTC. The return
value is an integer.

See also elapsed_real_time and elapsed_run_time.

Example:

(%i1) absolute_real_time ();
(%o1) 3385045277
(%i2) 1900 + absolute_real_time () / (365.25 * 24 * 3600);
(%o2) 2007.265612087104

Functionelapsed real time ()
Returns the number of seconds (including fractions of a second) since Maxima was
most recently started or restarted. The return value is a floating-point number.

See also absolute_real_time and elapsed_run_time.

Example:

(%i1) elapsed_real_time ();
(%o1) 2.559324
(%i2) expand ((a + b)^500)$
(%i3) elapsed_real_time ();
(%o3) 7.552087

Functionelapsed run time ()
Returns an estimate of the number of seconds (including fractions of a second)
which Maxima has spent in computations since Maxima was most recently started or
restarted. The return value is a floating-point number.

See also absolute_real_time and elapsed_real_time.

Example:

(%i1) elapsed_run_time ();
(%o1) 0.04
(%i2) expand ((a + b)^500)$
(%i3) elapsed_run_time ();
(%o3) 1.26

Chapter 33: Miscellaneous Options 527

33 Miscellaneous Options

33.1 Introduction to Miscellaneous Options

In this section various options are discussed which have a global effect on the operation
of Maxima. Also various lists such as the list of all user defined functions, are discussed.

33.2 Share

The Maxima "share" directory contains programs and other files of interest to Maxima
users, but not part of the core implementation of Maxima. These programs are typically
loaded via load or setup_autoload.

:lisp *maxima-sharedir* displays the location of the share directory within the user’s
file system.

printfile ("share.usg") prints an out-of-date list of share packages. Users may find
it more informative to browse the share directory using a file system browser.

33.3 Functions and Variables for Miscellaneous Options

System variableaskexp
When asksign is called, askexp is the expression asksign is testing.

At one time, it was possible for a user to inspect askexp by entering a Maxima break
with control-A.

Option variablegenindex
Default value: i

genindex is the alphabetic prefix used to generate the next variable of summation
when necessary.

Option variablegensumnum
Default value: 0

gensumnum is the numeric suffix used to generate the next variable of summation. If
it is set to false then the index will consist only of genindex with no numeric suffix.

Functiongensym
gensym ()
gensym (x)

gensym() creates and returns a fresh symbol.

The name of the new-symbol is the concatenation of a prefix, which defaults to "g",
and a suffix, which is the decimal representation of a number that defaults to the
value of a Lisp internal counter.

528 Maxima 5.35.1 Manual

If x is supplied, and is a string, then that string is used as a prefix instead of "g" for
this call to gensym only.

If x is supplied, and is a nonnegative integer, then that integer, instead of the value
of the internal Lisp integer, is used as the suffix for this call to gensym only.

If and only if no explicit suffix is supplied, the Lisp internal integer is incremented
after it is used.

Examples:

(%i1) gensym();
(%o1) g887
(%i2) gensym("new");
(%o2) new888
(%i3) gensym(123);
(%o3) g123

Option variablepackagefile
Default value: false

Package designers who use save or translate to create packages (files) for others to
use may want to set packagefile: true to prevent information from being added to
Maxima’s information-lists (e.g. values, functions) except where necessary when
the file is loaded in. In this way, the contents of the package will not get in the user’s
way when he adds his own data. Note that this will not solve the problem of possible
name conflicts. Also note that the flag simply affects what is output to the package
file. Setting the flag to true is also useful for creating Maxima init files.

Functionremvalue
remvalue (name 1, . . . , name n)
remvalue remvalue (all)

Removes the values of user variables name 1, . . . , name n (which can be subscripted)
from the system.

remvalue (all) removes the values of all variables in values, the list of all variables
given names by the user (as opposed to those which are automatically assigned by
Maxima).

See also values.

Functionrncombine (expr)
Transforms expr by combining all terms of expr that have identical denominators or
denominators that differ from each other by numerical factors only. This is slightly
different from the behavior of combine, which collects terms that have identical de-
nominators.

Setting pfeformat: true and using combine yields results similar to those that can
be obtained with rncombine, but rncombine takes the additional step of cross-
multiplying numerical denominator factors. This results in neater forms, and the
possibility of recognizing some cancellations.

load(rncomb) loads this function.

Chapter 33: Miscellaneous Options 529

Functionsetup autoload (filename, function 1, . . . , function n)
Specifies that if any of function 1, . . . , function n are referenced and not yet defined,
filename is loaded via load. filename usually contains definitions for the functions
specified, although that is not enforced.

setup_autoload does not work for array functions.

setup_autoload quotes its arguments.

Example:

(%i1) legendre_p (1, %pi);
(%o1) legendre_p(1, %pi)
(%i2) setup_autoload ("specfun.mac", legendre_p, ultraspherical);
(%o2) done
(%i3) ultraspherical (2, 1/2, %pi);
Warning - you are redefining the Macsyma function ultraspherical
Warning - you are redefining the Macsyma function legendre_p

2
3 (%pi - 1)

(%o3) ------------ + 3 (%pi - 1) + 1
2

(%i4) legendre_p (1, %pi);
(%o4) %pi
(%i5) legendre_q (1, %pi);

%pi + 1
%pi log(-------)

1 - %pi
(%o5) ---------------- - 1

2

Functiontcl output
tcl_output (list, i0, skip)
tcl_output (list, i0)
tcl_output ([list 1, . . . , list n], i)

Prints elements of a list enclosed by curly braces { }, suitable as part of a program
in the Tcl/Tk language.

tcl_output (list, i0, skip) prints list, beginning with element i0 and printing ele-
ments i0 + skip, i0 + 2 skip, etc.

tcl_output (list, i0) is equivalent to tcl_output (list, i0, 2).

tcl_output ([list 1, ..., list n], i) prints the i’th elements of list 1, . . . , list n.

Examples:

(%i1) tcl_output ([1, 2, 3, 4, 5, 6], 1, 3)$

{1.000000000 4.000000000
}
(%i2) tcl_output ([1, 2, 3, 4, 5, 6], 2, 3)$

{2.000000000 5.000000000
}

530 Maxima 5.35.1 Manual

(%i3) tcl_output ([3/7, 5/9, 11/13, 13/17], 1)$

{((RAT SIMP) 3 7) ((RAT SIMP) 11 13)
}
(%i4) tcl_output ([x1, y1, x2, y2, x3, y3], 2)$

{$Y1 $Y2 $Y3
}
(%i5) tcl_output ([[1, 2, 3], [11, 22, 33]], 1)$

{SIMP 1.000000000 11.00000000
}

Chapter 34: Rules and Patterns 531

34 Rules and Patterns

34.1 Introduction to Rules and Patterns

This section describes user-defined pattern matching and simplification rules. There are
two groups of functions which implement somewhat different pattern matching schemes.
In one group are tellsimp, tellsimpafter, defmatch, defrule, apply1, applyb1, and
apply2. In the other group are let and letsimp. Both schemes define patterns in terms
of pattern variables declared by matchdeclare.

Pattern-matching rules defined by tellsimp and tellsimpafter are applied automati-
cally by the Maxima simplifier. Rules defined by defmatch, defrule, and let are applied
by an explicit function call.

There are additional mechanisms for rules applied to polynomials by tellrat, and for
commutative and noncommutative algebra in affine package.

34.2 Functions and Variables for Rules and Patterns

Functionapply1 (expr, rule 1, . . . , rule n)
Repeatedly applies rule 1 to expr until it fails, then repeatedly applies the same rule
to all subexpressions of expr, left to right, until rule 1 has failed on all subexpressions.
Call the result of transforming expr in this manner expr 2. Then rule 2 is applied
in the same fashion starting at the top of expr 2. When rule n fails on the final
subexpression, the result is returned.

maxapplydepth is the depth of the deepest subexpressions processed by apply1 and
apply2.

See also applyb1, apply2, and let.

Functionapply2 (expr, rule 1, . . . , rule n)
If rule 1 fails on a given subexpression, then rule 2 is repeatedly applied, etc. Only
if all rules fail on a given subexpression is the whole set of rules repeatedly applied
to the next subexpression. If one of the rules succeeds, then the same subexpression
is reprocessed, starting with the first rule.

maxapplydepth is the depth of the deepest subexpressions processed by apply1 and
apply2.

See also apply1 and let.

Functionapplyb1 (expr, rule 1, . . . , rule n)
Repeatedly applies rule 1 to the deepest subexpression of expr until it fails, then
repeatedly applies the same rule one level higher (i.e., larger subexpressions), until
rule 1 has failed on the top-level expression. Then rule 2 is applied in the same fashion
to the result of rule 1. After rule n has been applied to the top-level expression, the
result is returned.

532 Maxima 5.35.1 Manual

applyb1 is similar to apply1 but works from the bottom up instead of from the top
down.

maxapplyheight is the maximum height which applyb1 reaches before giving up.

See also apply1, apply2, and let.

Option variablecurrent let rule package
Default value: default_let_rule_package

current_let_rule_package is the name of the rule package that is used by functions
in the let package (letsimp, etc.) if no other rule package is specified. This variable
may be assigned the name of any rule package defined via the let command.

If a call such as letsimp (expr, rule_pkg_name) is made, the rule package rule_

pkg_name is used for that function call only, and the value of current_let_rule_
package is not changed.

Option variabledefault let rule package
Default value: default_let_rule_package

default_let_rule_package is the name of the rule package used when one is not
explicitly set by the user with let or by changing the value of current_let_rule_
package.

Functiondefmatch
defmatch (progname, pattern, x 1, . . . , x n)
defmatch (progname, pattern)

Defines a function progname(expr, x 1, ..., x n) which tests expr to see if it
matches pattern.

pattern is an expression containing the pattern arguments x 1, . . . , x n (if any)
and some pattern variables (if any). The pattern arguments are given explicitly as
arguments to defmatch while the pattern variables are declared by the matchdeclare
function. Any variable not declared as a pattern variable in matchdeclare or as a
pattern argument in defmatch matches only itself.

The first argument to the created function progname is an expression to be matched
against the pattern and the other arguments are the actual arguments which corre-
spond to the dummy variables x 1, . . . , x n in the pattern.

If the match is successful, progname returns a list of equations whose left sides are the
pattern arguments and pattern variables, and whose right sides are the subexpressions
which the pattern arguments and variables matched. The pattern variables, but not
the pattern arguments, are assigned the subexpressions they match. If the match
fails, progname returns false.

A literal pattern (that is, a pattern which contains neither pattern arguments nor
pattern variables) returns true if the match succeeds.

See also matchdeclare, defrule, tellsimp, and tellsimpafter.

Examples:

Chapter 34: Rules and Patterns 533

Define a function linearp(expr, x) which tests expr to see if it is of the form a*x +

b such that a and b do not contain x and a is nonzero. This match function matches
expressions which are linear in any variable, because the pattern argument x is given
to defmatch.

(%i1) matchdeclare (a, lambda ([e], e#0 and freeof(x, e)), b,
freeof(x));

(%o1) done
(%i2) defmatch (linearp, a*x + b, x);
(%o2) linearp
(%i3) linearp (3*z + (y + 1)*z + y^2, z);

2
(%o3) [b = y , a = y + 4, x = z]
(%i4) a;
(%o4) y + 4
(%i5) b;

2
(%o5) y
(%i6) x;
(%o6) x

Define a function linearp(expr) which tests expr to see if it is of the form a*x +

b such that a and b do not contain x and a is nonzero. This match function only
matches expressions linear in x, not any other variable, because no pattern argument
is given to defmatch.

(%i1) matchdeclare (a, lambda ([e], e#0 and freeof(x, e)), b,
freeof(x));

(%o1) done
(%i2) defmatch (linearp, a*x + b);
(%o2) linearp
(%i3) linearp (3*z + (y + 1)*z + y^2);
(%o3) false
(%i4) linearp (3*x + (y + 1)*x + y^2);

2
(%o4) [b = y , a = y + 4]

Define a function checklimits(expr) which tests expr to see if it is a definite integral.

(%i1) matchdeclare ([a, f], true);
(%o1) done
(%i2) constinterval (l, h) := constantp (h - l);
(%o2) constinterval(l, h) := constantp(h - l)
(%i3) matchdeclare (b, constinterval (a));
(%o3) done
(%i4) matchdeclare (x, atom);
(%o4) done
(%i5) simp : false;
(%o5) false
(%i6) defmatch (checklimits, ’integrate (f, x, a, b));
(%o6) checklimits
(%i7) simp : true;
(%o7) true

534 Maxima 5.35.1 Manual

(%i8) ’integrate (sin(t), t, %pi + x, 2*%pi + x);
x + 2 %pi
/
[

(%o8) I sin(t) dt
]
/
x + %pi

(%i9) checklimits (%);
(%o9) [b = x + 2 %pi, a = x + %pi, x = t, f = sin(t)]

Functiondefrule (rulename, pattern, replacement)
Defines and names a replacement rule for the given pattern. If the rule named ru-
lename is applied to an expression (by apply1, applyb1, or apply2), every subex-
pression matching the pattern will be replaced by the replacement. All variables in
the replacement which have been assigned values by the pattern match are assigned
those values in the replacement which is then simplified.

The rules themselves can be treated as functions which transform an expression by
one operation of the pattern match and replacement. If the match fails, the rule
function returns false.

Functiondisprule
disprule (rulename 1, . . . , rulename 2)
disprule (all)

Display rules with the names rulename 1, . . . , rulename n, as returned by defrule,
tellsimp, or tellsimpafter, or a pattern defined by defmatch. Each rule is dis-
played with an intermediate expression label (%t).

disprule (all) displays all rules.

disprule quotes its arguments. disprule returns the list of intermediate expression
labels corresponding to the displayed rules.

See also letrules, which displays rules defined by let.

Examples:

(%i1) tellsimpafter (foo (x, y), bar (x) + baz (y));
(%o1) [foorule1, false]
(%i2) tellsimpafter (x + y, special_add (x, y));
(%o2) [+rule1, simplus]
(%i3) defmatch (quux, mumble (x));
(%o3) quux
(%i4) disprule (foorule1, "+rule1", quux);
(%t4) foorule1 : foo(x, y) -> baz(y) + bar(x)

(%t5) +rule1 : y + x -> special_add(x, y)

(%t6) quux : mumble(x) -> []

(%o6) [%t4, %t5, %t6]

Chapter 34: Rules and Patterns 535

(%i6) ’’%;
(%o6) [foorule1 : foo(x, y) -> baz(y) + bar(x),

+rule1 : y + x -> special_add(x, y), quux : mumble(x) -> []]

Functionlet
let (prod, repl, predname, arg 1, . . . , arg n)
let ([prod, repl, predname, arg 1, . . . , arg n], package name)

Defines a substitution rule for letsimp such that prod is replaced by repl. prod is a
product of positive or negative powers of the following terms:

• Atoms which letsimp will search for literally unless previous to calling letsimp

the matchdeclare function is used to associate a predicate with the atom. In
this case letsimp will match the atom to any term of a product satisfying the
predicate.

• Kernels such as sin(x), n!, f(x,y), etc. As with atoms above letsimp will look
for a literal match unless matchdeclare is used to associate a predicate with the
argument of the kernel.

A term to a positive power will only match a term having at least that power. A
term to a negative power on the other hand will only match a term with a power at
least as negative. In the case of negative powers in prod the switch letrat must be
set to true. See also letrat.

If a predicate is included in the let function followed by a list of arguments, a
tentative match (i.e. one that would be accepted if the predicate were omitted) is
accepted only if predname (arg_1’, ..., arg_n’) evaluates to true where arg i’ is
the value matched to arg i. The arg i may be the name of any atom or the argument
of any kernel appearing in prod. repl may be any rational expression. If any of the
atoms or arguments from prod appear in repl the appropriate substitutions are made.

The global flag letrat controls the simplification of quotients by letsimp. When
letrat is false, letsimp simplifies the numerator and denominator of expr sepa-
rately, and does not simplify the quotient. Substitutions such as n!/n goes to (n-1)!

then fail. When letrat is true, then the numerator, denominator, and the quotient
are simplified in that order.

These substitution functions allow you to work with several rule packages at
once. Each rule package can contain any number of let rules and is referenced
by a user-defined name. The command let ([prod, repl, predname, arg 1, ...,

arg n], package name) adds the rule predname to the rule package package name.
The command letsimp (expr, package name) applies the rules in package name.
letsimp (expr, package name1, package name2, ...) is equivalent to letsimp

(expr, package name1) followed by letsimp (%, package name2), . . .

current_let_rule_package is the name of the rule package that is presently be-
ing used. This variable may be assigned the name of any rule package defined via
the let command. Whenever any of the functions comprising the let package are
called with no package name, the package named by current_let_rule_package is
used. If a call such as letsimp (expr, rule pkg name) is made, the rule package

536 Maxima 5.35.1 Manual

rule pkg name is used for that letsimp command only, and current_let_rule_

package is not changed. If not otherwise specified, current_let_rule_package de-
faults to default_let_rule_package.

(%i1) matchdeclare ([a, a1, a2], true)$
(%i2) oneless (x, y) := is (x = y-1)$
(%i3) let (a1*a2!, a1!, oneless, a2, a1);
(%o3) a1 a2! --> a1! where oneless(a2, a1)
(%i4) letrat: true$
(%i5) let (a1!/a1, (a1-1)!);

a1!
(%o5) --- --> (a1 - 1)!

a1
(%i6) letsimp (n*m!*(n-1)!/m);
(%o6) (m - 1)! n!
(%i7) let (sin(a)^2, 1 - cos(a)^2);

2 2
(%o7) sin (a) --> 1 - cos (a)
(%i8) letsimp (sin(x)^4);

4 2
(%o8) cos (x) - 2 cos (x) + 1

Option variableletrat
Default value: false

When letrat is false, letsimp simplifies the numerator and denominator of a ratio
separately, and does not simplify the quotient.

When letrat is true, the numerator, denominator, and their quotient are simplified
in that order.

(%i1) matchdeclare (n, true)$
(%i2) let (n!/n, (n-1)!);

n!
(%o2) -- --> (n - 1)!

n
(%i3) letrat: false$
(%i4) letsimp (a!/a);

a!
(%o4) --

a
(%i5) letrat: true$
(%i6) letsimp (a!/a);
(%o6) (a - 1)!

Functionletrules
letrules ()
letrules (package name)

Displays the rules in a rule package. letrules () displays the rules in the current
rule package. letrules (package name) displays the rules in package name.

Chapter 34: Rules and Patterns 537

The current rule package is named by current_let_rule_package. If not otherwise
specified, current_let_rule_package defaults to default_let_rule_package.

See also disprule, which displays rules defined by tellsimp and tellsimpafter.

Functionletsimp
letsimp (expr)
letsimp (expr, package name)
letsimp (expr, package name 1, . . . , package name n)

Repeatedly applies the substitution rules defined by let until no further change is
made to expr.

letsimp (expr) uses the rules from current_let_rule_package.

letsimp (expr, package name) uses the rules from package name without changing
current_let_rule_package.

letsimp (expr, package name 1, ..., package name n) is equivalent to letsimp

(expr, package name 1), followed by letsimp (%, package name 2), and so on.

Option variablelet rule packages
Default value: [default_let_rule_package]

let_rule_packages is a list of all user-defined let rule packages plus the default
package default_let_rule_package.

Functionmatchdeclare (a 1, pred 1, . . . , a n, pred n)
Associates a predicate pred k with a variable or list of variables a k so that a k
matches expressions for which the predicate returns anything other than false.

A predicate is the name of a function, or a lambda expression, or a function call or
lambda call missing the last argument, or true or all. Any expression matches true
or all. If the predicate is specified as a function call or lambda call, the expression
to be tested is appended to the list of arguments; the arguments are evaluated at
the time the match is evaluated. Otherwise, the predicate is specified as a function
name or lambda expression, and the expression to be tested is the sole argument. A
predicate function need not be defined when matchdeclare is called; the predicate is
not evaluated until a match is attempted.

A predicate may return a Boolean expression as well as true or false. Boolean
expressions are evaluated by is within the constructed rule function, so it is not
necessary to call is within the predicate.

If an expression satisfies a match predicate, the match variable is assigned the expres-
sion, except for match variables which are operands of addition + or multiplication *.
Only addition and multiplication are handled specially; other n-ary operators (both
built-in and user-defined) are treated like ordinary functions.

In the case of addition and multiplication, the match variable may be assigned a single
expression which satisfies the match predicate, or a sum or product (respectively) of
such expressions. Such multiple-term matching is greedy: predicates are evaluated
in the order in which their associated variables appear in the match pattern, and a

538 Maxima 5.35.1 Manual

term which satisfies more than one predicate is taken by the first predicate which it
satisfies. Each predicate is tested against all operands of the sum or product before
the next predicate is evaluated. In addition, if 0 or 1 (respectively) satisfies a match
predicate, and there are no other terms which satisfy the predicate, 0 or 1 is assigned
to the match variable associated with the predicate.

The algorithm for processing addition and multiplication patterns makes some match
results (for example, a pattern in which a "match anything" variable appears) de-
pendent on the ordering of terms in the match pattern and in the expression to be
matched. However, if all match predicates are mutually exclusive, the match result
is insensitive to ordering, as one match predicate cannot accept terms matched by
another.

Calling matchdeclare with a variable a as an argument changes the matchdeclare

property for a, if one was already declared; only the most recent matchdeclare is
in effect when a rule is defined. Later changes to the matchdeclare property (via
matchdeclare or remove) do not affect existing rules.

propvars (matchdeclare) returns the list of all variables for which there is a
matchdeclare property. printprops (a, matchdeclare) returns the predicate for
variable a. printprops (all, matchdeclare) returns the list of predicates for all
matchdeclare variables. remove (a, matchdeclare) removes the matchdeclare

property from a.

The functions defmatch, defrule, tellsimp, tellsimpafter, and let construct
rules which test expressions against patterns.

matchdeclare quotes its arguments. matchdeclare always returns done.

Examples:

A predicate is the name of a function, or a lambda expression, or a function call or
lambda call missing the last argument, or true or all.

(%i1) matchdeclare (aa, integerp);
(%o1) done
(%i2) matchdeclare (bb, lambda ([x], x > 0));
(%o2) done
(%i3) matchdeclare (cc, freeof (%e, %pi, %i));
(%o3) done
(%i4) matchdeclare (dd, lambda ([x, y], gcd (x, y) = 1) (1728));
(%o4) done
(%i5) matchdeclare (ee, true);
(%o5) done
(%i6) matchdeclare (ff, all);
(%o6) done

If an expression satisfies a match predicate, the match variable is assigned the expres-
sion.

(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) defrule (r1, bb^aa, ["integer" = aa, "atom" = bb]);

aa
(%o2) r1 : bb -> [integer = aa, atom = bb]
(%i3) r1 (%pi^8);

Chapter 34: Rules and Patterns 539

(%o3) [integer = 8, atom = %pi]

In the case of addition and multiplication, the match variable may be assigned a single
expression which satisfies the match predicate, or a sum or product (respectively) of
such expressions.

(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb + aa partitions ‘sum’
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + sin(x));
(%o3) [all atoms = 8, all nonatoms = sin(x) + a b]
(%i4) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb aa partitions ‘product’
(%o4) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i5) r2 (8 * (a + b) * sin(x));
(%o5) [all atoms = 8, all nonatoms = (b + a) sin(x)]

When matching arguments of + and *, if all match predicates are mutually exclusive,
the match result is insensitive to ordering, as one match predicate cannot accept terms
matched by another.

(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb + aa partitions ‘sum’
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + %pi + sin(x) - c + 2^n);

n
(%o3) [all atoms = %pi + 8, all nonatoms = sin(x) + 2 - c + a b]
(%i4) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" =

bb]);
bb aa partitions ‘product’
(%o4) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i5) r2 (8 * (a + b) * %pi * sin(x) / c * 2^n);

n
(b + a) 2 sin(x)

(%o5) [all atoms = 8 %pi, all nonatoms = -----------------]
c

The functions propvars and printprops return information about match variables.

(%i1) matchdeclare ([aa, bb, cc], atom, [dd, ee], integerp);
(%o1) done
(%i2) matchdeclare (ff, floatnump, gg, lambda ([x], x > 100));
(%o2) done
(%i3) propvars (matchdeclare);
(%o3) [aa, bb, cc, dd, ee, ff, gg]
(%i4) printprops (ee, matchdeclare);
(%o4) [integerp(ee)]

540 Maxima 5.35.1 Manual

(%i5) printprops (gg, matchdeclare);
(%o5) [lambda([x], x > 100, gg)]
(%i6) printprops (all, matchdeclare);
(%o6) [lambda([x], x > 100, gg), floatnump(ff), integerp(ee),

integerp(dd), atom(cc), atom(bb), atom(aa)]

Option variablemaxapplydepth
Default value: 10000

maxapplydepth is the maximum depth to which apply1 and apply2 will delve.

Option variablemaxapplyheight
Default value: 10000

maxapplyheight is the maximum height to which applyb1 will reach before giving
up.

Functionremlet
remlet (prod, name)
remlet ()
remlet (all)
remlet (all, name)

Deletes the substitution rule, prod –> repl, most recently defined by the let function.
If name is supplied the rule is deleted from the rule package name.

remlet() and remlet(all) delete all substitution rules from the current rule package.
If the name of a rule package is supplied, e.g. remlet (all, name), the rule package
name is also deleted.

If a substitution is to be changed using the same product, remlet need not be called,
just redefine the substitution using the same product (literally) with the let function
and the new replacement and/or predicate name. Should remlet (prod) now be
called the original substitution rule is revived.

See also remrule, which removes a rule defined by tellsimp or tellsimpafter.

Functionremrule
remrule (op, rulename)
remrule (op, all)

Removes rules defined by tellsimp or tellsimpafter.

remrule (op, rulename) removes the rule with the name rulename from the operator
op. When op is a built-in or user-defined operator (as defined by infix, prefix, etc.),
op and rulename must be enclosed in double quote marks.

remrule (op, all) removes all rules for the operator op.

See also remlet, which removes a rule defined by let.

Examples:

Chapter 34: Rules and Patterns 541

(%i1) tellsimp (foo (aa, bb), bb - aa);
(%o1) [foorule1, false]
(%i2) tellsimpafter (aa + bb, special_add (aa, bb));
(%o2) [+rule1, simplus]
(%i3) infix ("@@");
(%o3) @@
(%i4) tellsimp (aa @@ bb, bb/aa);
(%o4) [@@rule1, false]
(%i5) tellsimpafter (quux (%pi, %e), %pi - %e);
(%o5) [quuxrule1, false]
(%i6) tellsimpafter (quux (%e, %pi), %pi + %e);
(%o6) [quuxrule2, quuxrule1, false]
(%i7) [foo (aa, bb), aa + bb, aa @@ bb, quux (%pi, %e),

quux (%e, %pi)];
bb

(%o7) [bb - aa, special_add(aa, bb), --, %pi - %e, %pi + %e]
aa

(%i8) remrule (foo, foorule1);
(%o8) foo
(%i9) remrule ("+", ?\+rule1);
(%o9) +
(%i10) remrule ("@@", ?\@\@rule1);
(%o10) @@
(%i11) remrule (quux, all);
(%o11) quux
(%i12) [foo (aa, bb), aa + bb, aa @@ bb, quux (%pi, %e),

quux (%e, %pi)];
(%o12) [foo(aa, bb), bb + aa, aa @@ bb, quux(%pi, %e),

quux(%e, %pi)]

Functiontellsimp (pattern, replacement)
is similar to tellsimpafter but places new information before old so that it is applied
before the built-in simplification rules.

tellsimp is used when it is important to modify the expression before the simplifier
works on it, for instance if the simplifier "knows" something about the expression,
but what it returns is not to your liking. If the simplifier "knows" something about
the main operator of the expression, but is simply not doing enough for you, you
probably want to use tellsimpafter.

The pattern may not be a sum, product, single variable, or number.

The system variable rules is the list of rules defined by defrule, defmatch,
tellsimp, and tellsimpafter.

Examples:

(%i1) matchdeclare (x, freeof (%i));
(%o1) done
(%i2) %iargs: false$
(%i3) tellsimp (sin(%i*x), %i*sinh(x));
(%o3) [sinrule1, simp-%sin]

542 Maxima 5.35.1 Manual

(%i4) trigexpand (sin (%i*y + x));
(%o4) sin(x) cos(%i y) + %i cos(x) sinh(y)
(%i5) %iargs:true$
(%i6) errcatch(0^0);
0
0 has been generated
(%o6) []
(%i7) ev (tellsimp (0^0, 1), simp: false);
(%o7) [^rule1, simpexpt]
(%i8) 0^0;
(%o8) 1
(%i9) remrule ("^", %th(2)[1]);
(%o9) ^
(%i10) tellsimp (sin(x)^2, 1 - cos(x)^2);
(%o10) [^rule2, simpexpt]
(%i11) (1 + sin(x))^2;

2
(%o11) (sin(x) + 1)
(%i12) expand (%);

2
(%o12) 2 sin(x) - cos (x) + 2
(%i13) sin(x)^2;

2
(%o13) 1 - cos (x)
(%i14) kill (rules);
(%o14) done
(%i15) matchdeclare (a, true);
(%o15) done
(%i16) tellsimp (sin(a)^2, 1 - cos(a)^2);
(%o16) [^rule3, simpexpt]
(%i17) sin(y)^2;

2
(%o17) 1 - cos (y)

Functiontellsimpafter (pattern, replacement)
Defines a simplification rule which the Maxima simplifier applies after built-in sim-
plification rules. pattern is an expression, comprising pattern variables (declared by
matchdeclare) and other atoms and operators, considered literals for the purpose of
pattern matching. replacement is substituted for an actual expression which matches
pattern; pattern variables in replacement are assigned the values matched in the
actual expression.

pattern may be any nonatomic expression in which the main operator is not a pattern
variable; the simplification rule is associated with the main operator. The names of
functions (with one exception, described below), lists, and arrays may appear in
pattern as the main operator only as literals (not pattern variables); this rules out
expressions such as aa(x) and bb[y] as patterns, if aa and bb are pattern variables.
Names of functions, lists, and arrays which are pattern variables may appear as
operators other than the main operator in pattern.

Chapter 34: Rules and Patterns 543

There is one exception to the above rule concerning names of functions. The name of
a subscripted function in an expression such as aa[x](y) may be a pattern variable,
because the main operator is not aa but rather the Lisp atom mqapply. This is a
consequence of the representation of expressions involving subscripted functions.

Simplification rules are applied after evaluation (if not suppressed through quotation
or the flag noeval). Rules established by tellsimpafter are applied in the order
they were defined, and after any built-in rules. Rules are applied bottom-up, that is,
applied first to subexpressions before application to the whole expression. It may be
necessary to repeatedly simplify a result (for example, via the quote-quote operator
’’ or the flag infeval) to ensure that all rules are applied.

Pattern variables are treated as local variables in simplification rules. Once a rule is
defined, the value of a pattern variable does not affect the rule, and is not affected
by the rule. An assignment to a pattern variable which results from a successful rule
match does not affect the current assignment (or lack of it) of the pattern variable.
However, as with all atoms in Maxima, the properties of pattern variables (as declared
by put and related functions) are global.

The rule constructed by tellsimpafter is named after the main operator of pattern.
Rules for built-in operators, and user-defined operators defined by infix, prefix,
postfix, matchfix, and nofix, have names which are Lisp identifiers. Rules for
other functions have names which are Maxima identifiers.

The treatment of noun and verb forms is slightly confused. If a rule is defined for
a noun (or verb) form and a rule for the corresponding verb (or noun) form already
exists, the newly-defined rule applies to both forms (noun and verb). If a rule for the
corresponding verb (or noun) form does not exist, the newly-defined rule applies only
to the noun (or verb) form.

The rule constructed by tellsimpafter is an ordinary Lisp function. If the name of
the rule is $foorule1, the construct :lisp (trace $foorule1) traces the function,
and :lisp (symbol-function ’$foorule1) displays its definition.

tellsimpafter quotes its arguments. tellsimpafter returns the list of rules for the
main operator of pattern, including the newly established rule.

See also matchdeclare, defmatch, defrule, tellsimp, let, kill, remrule, and
clear_rules.

Examples:

pattern may be any nonatomic expression in which the main operator is not a pattern
variable.

(%i1) matchdeclare (aa, atom, [ll, mm], listp, xx, true)$
(%i2) tellsimpafter (sin (ll), map (sin, ll));
(%o2) [sinrule1, simp-%sin]
(%i3) sin ([1/6, 1/4, 1/3, 1/2, 1]*%pi);

1 sqrt(2) sqrt(3)
(%o3) [-, -------, -------, 1, 0]

2 2 2
(%i4) tellsimpafter (ll^mm, map ("^", ll, mm));
(%o4) [^rule1, simpexpt]
(%i5) [a, b, c]^[1, 2, 3];

544 Maxima 5.35.1 Manual

2 3
(%o5) [a, b , c]
(%i6) tellsimpafter (foo (aa (xx)), aa (foo (xx)));
(%o6) [foorule1, false]
(%i7) foo (bar (u - v));
(%o7) bar(foo(u - v))

Rules are applied in the order they were defined. If two rules can match an expression,
the rule which was defined first is applied.

(%i1) matchdeclare (aa, integerp);
(%o1) done
(%i2) tellsimpafter (foo (aa), bar_1 (aa));
(%o2) [foorule1, false]
(%i3) tellsimpafter (foo (aa), bar_2 (aa));
(%o3) [foorule2, foorule1, false]
(%i4) foo (42);
(%o4) bar_1(42)

Pattern variables are treated as local variables in simplification rules. (Compare to
defmatch, which treats pattern variables as global variables.)

(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) tellsimpafter (foo(aa, bb), bar(’aa=aa, ’bb=bb));
(%o2) [foorule1, false]
(%i3) bb: 12345;
(%o3) 12345
(%i4) foo (42, %e);
(%o4) bar(aa = 42, bb = %e)
(%i5) bb;
(%o5) 12345

As with all atoms, properties of pattern variables are global even though values are
local. In this example, an assignment property is declared via define_variable.
This is a property of the atom bb throughout Maxima.

(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) tellsimpafter (foo(aa, bb), bar(’aa=aa, ’bb=bb));
(%o2) [foorule1, false]
(%i3) foo (42, %e);
(%o3) bar(aa = 42, bb = %e)
(%i4) define_variable (bb, true, boolean);
(%o4) true
(%i5) foo (42, %e);
Error: bb was declared mode boolean, has value: %e
-- an error. Quitting. To debug this try debugmode(true);

Rules are named after main operators. Names of rules for built-in and user-defined
operators are Lisp identifiers, while names for other functions are Maxima identifiers.

(%i1) tellsimpafter (foo (%pi + %e), 3*%pi);
(%o1) [foorule1, false]
(%i2) tellsimpafter (foo (%pi * %e), 17*%e);

Chapter 34: Rules and Patterns 545

(%o2) [foorule2, foorule1, false]
(%i3) tellsimpafter (foo (%i ^ %e), -42*%i);
(%o3) [foorule3, foorule2, foorule1, false]
(%i4) tellsimpafter (foo (9) + foo (13), quux (22));
(%o4) [+rule1, simplus]
(%i5) tellsimpafter (foo (9) * foo (13), blurf (22));
(%o5) [*rule1, simptimes]
(%i6) tellsimpafter (foo (9) ^ foo (13), mumble (22));
(%o6) [^rule1, simpexpt]
(%i7) rules;
(%o7) [foorule1, foorule2, foorule3, +rule1, *rule1, ^rule1]
(%i8) foorule_name: first (%o1);
(%o8) foorule1
(%i9) plusrule_name: first (%o4);
(%o9) +rule1
(%i10) remrule (foo, foorule1);
(%o10) foo
(%i11) remrule ("^", ?\^rule1);
(%o11) ^
(%i12) rules;
(%o12) [foorule2, foorule3, +rule1, *rule1]

A worked example: anticommutative multiplication.

(%i1) gt (i, j) := integerp(j) and i < j;
(%o1) gt(i, j) := integerp(j) and i < j
(%i2) matchdeclare (i, integerp, j, gt(i));
(%o2) done
(%i3) tellsimpafter (s[i]^^2, 1);
(%o3) [^^rule1, simpncexpt]
(%i4) tellsimpafter (s[i] . s[j], -s[j] . s[i]);
(%o4) [.rule1, simpnct]
(%i5) s[1] . (s[1] + s[2]);
(%o5) s . (s + s)

1 2 1
(%i6) expand (%);
(%o6) 1 - s . s

2 1
(%i7) factor (expand (sum (s[i], i, 0, 9)^^5));
(%o7) 100 (s + s + s + s + s + s + s + s + s + s)

9 8 7 6 5 4 3 2 1 0

Functionclear rules ()
Executes kill (rules) and then resets the next rule number to 1 for addition +,
multiplication *, and exponentiation ^.

546 Maxima 5.35.1 Manual

Chapter 35: Sets 547

35 Sets

35.1 Introduction to Sets

Maxima provides set functions, such as intersection and union, for finite sets that are
defined by explicit enumeration. Maxima treats lists and sets as distinct objects. This
feature makes it possible to work with sets that have members that are either lists or sets.

In addition to functions for finite sets, Maxima provides some functions related to com-
binatorics; these include the Stirling numbers of the first and second kind, the Bell numbers,
multinomial coefficients, partitions of nonnegative integers, and a few others. Maxima also
defines a Kronecker delta function.

35.1.1 Usage

To construct a set with members a_1, ..., a_n, write set(a_1, ..., a_n) or {a_1,

..., a_n}; to construct the empty set, write set() or {}. In input, set(...) and { ... }

are equivalent. Sets are always displayed with curly braces.

If a member is listed more than once, simplification eliminates the redundant member.

(%i1) set();
(%o1) {}
(%i2) set(a, b, a);
(%o2) {a, b}
(%i3) set(a, set(b));
(%o3) {a, {b}}
(%i4) set(a, [b]);
(%o4) {a, [b]}
(%i5) {};
(%o5) {}
(%i6) {a, b, a};
(%o6) {a, b}
(%i7) {a, {b}};
(%o7) {a, {b}}
(%i8) {a, [b]};
(%o8) {a, [b]}

Two would-be elements x and y are redundant (i.e., considered the same for the purpose
of set construction) if and only if is(x = y) yields true. Note that is(equal(x, y)) can
yield true while is(x = y) yields false; in that case the elements x and y are considered
distinct.

(%i1) x: a/c + b/c;
b a

(%o1) - + -
c c

(%i2) y: a/c + b/c;
b a

(%o2) - + -
c c

548 Maxima 5.35.1 Manual

(%i3) z: (a + b)/c;
b + a

(%o3) -----
c

(%i4) is (x = y);
(%o4) true
(%i5) is (y = z);
(%o5) false
(%i6) is (equal (y, z));
(%o6) true
(%i7) y - z;

b + a b a
(%o7) - ----- + - + -

c c c
(%i8) ratsimp (%);
(%o8) 0
(%i9) {x, y, z};

b + a b a
(%o9) {-----, - + -}

c c c

To construct a set from the elements of a list, use setify.

(%i1) setify ([b, a]);
(%o1) {a, b}

Set members x and y are equal provided is(x = y) evaluates to true. Thus rat(x) and
x are equal as set members; consequently,

(%i1) {x, rat(x)};
(%o1) {x}

Further, since is((x - 1)*(x + 1) = x^2 - 1) evaluates to false, (x - 1)*(x + 1) and
x^2 - 1 are distinct set members; thus

(%i1) {(x - 1)*(x + 1), x^2 - 1};
2

(%o1) {(x - 1) (x + 1), x - 1}

To reduce this set to a singleton set, apply rat to each set member:

(%i1) {(x - 1)*(x + 1), x^2 - 1};
2

(%o1) {(x - 1) (x + 1), x - 1}
(%i2) map (rat, %);

2
(%o2)/R/ {x - 1}

To remove redundancies from other sets, you may need to use other simplification func-
tions. Here is an example that uses trigsimp:

(%i1) {1, cos(x)^2 + sin(x)^2};
2 2

(%o1) {1, sin (x) + cos (x)}
(%i2) map (trigsimp, %);
(%o2) {1}

Chapter 35: Sets 549

A set is simplified when its members are non-redundant and sorted. The current version
of the set functions uses the Maxima function orderlessp to order sets; however, future
versions of the set functions might use a different ordering function.

Some operations on sets, such as substitution, automatically force a re-simplification;
for example,

(%i1) s: {a, b, c}$
(%i2) subst (c=a, s);
(%o2) {a, b}
(%i3) subst ([a=x, b=x, c=x], s);
(%o3) {x}
(%i4) map (lambda ([x], x^2), set (-1, 0, 1));
(%o4) {0, 1}

Maxima treats lists and sets as distinct objects; functions such as union and
intersection complain if any argument is not a set. If you need to apply a set function
to a list, use the setify function to convert it to a set. Thus

(%i1) union ([1, 2], {a, b});
Function union expects a set, instead found [1,2]
-- an error. Quitting. To debug this try debugmode(true);
(%i2) union (setify ([1, 2]), {a, b});
(%o2) {1, 2, a, b}

To extract all set elements of a set s that satisfy a predicate f, use subset(s, f). (A
predicate is a boolean-valued function.) For example, to find the equations in a given set
that do not depend on a variable z, use

(%i1) subset ({x + y + z, x - y + 4, x + y - 5},
lambda ([e], freeof (z, e)));

(%o1) {- y + x + 4, y + x - 5}

The section Section 35.2 [Functions and Variables for Sets], page 551 has a complete list
of the set functions in Maxima.

35.1.2 Set Member Iteration

There two ways to to iterate over set members. One way is the use map; for example:

(%i1) map (f, {a, b, c});
(%o1) {f(a), f(b), f(c)}

The other way is to use for x in s do

(%i1) s: {a, b, c};
(%o1) {a, b, c}
(%i2) for si in s do print (concat (si, 1));
a1
b1
c1
(%o2) done

The Maxima functions first and rest work correctly on sets. Applied to a set, first
returns the first displayed element of a set; which element that is may be implementation-
dependent. If s is a set, then rest(s) is equivalent to disjoin(first(s), s). Currently,
there are other Maxima functions that work correctly on sets. In future versions of the set
functions, first and rest may function differently or not at all.

550 Maxima 5.35.1 Manual

35.1.3 Bugs

The set functions use the Maxima function orderlessp to order set members and the
(Lisp-level) function like to test for set member equality. Both of these functions have
known bugs that may manifest if you attempt to use sets with members that are lists or
matrices that contain expressions in canonical rational expression (CRE) form. An example
is

(%i1) {[x], [rat (x)]};
Maxima encountered a Lisp error:

The value #:X1440 is not of type LIST.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

This expression causes Maxima to halt with an error (the error message depends on
which version of Lisp your Maxima uses). Another example is

(%i1) setify ([[rat(a)], [rat(b)]]);
Maxima encountered a Lisp error:

The value #:A1440 is not of type LIST.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

These bugs are caused by bugs in orderlessp and like; they are not caused by bugs
in the set functions. To illustrate, try the expressions

(%i1) orderlessp ([rat(a)], [rat(b)]);
Maxima encountered a Lisp error:

The value #:B1441 is not of type LIST.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i2) is ([rat(a)] = [rat(a)]);
(%o2) false

Until these bugs are fixed, do not construct sets with members that are lists or matrices
containing expressions in CRE form; a set with a member in CRE form, however, shouldn’t
be a problem:

(%i1) {x, rat (x)};
(%o1) {x}

Maxima’s orderlessp has another bug that can cause problems with set functions,
namely that the ordering predicate orderlessp is not transitive. The simplest known
example that shows this is

(%i1) q: x^2$
(%i2) r: (x + 1)^2$
(%i3) s: x*(x + 2)$
(%i4) orderlessp (q, r);
(%o4) true

Chapter 35: Sets 551

(%i5) orderlessp (r, s);
(%o5) true
(%i6) orderlessp (q, s);
(%o6) false

This bug can cause trouble with all set functions as well as with Maxima functions in
general. It is probable, but not certain, that this bug can be avoided if all set members are
either in CRE form or have been simplified using ratsimp.

Maxima’s orderless and ordergreat mechanisms are incompatible with the set func-
tions. If you need to use either orderless or ordergreat, call those functions before
constructing any sets, and do not call unorder.

If you find something that you think might be a set function bug, please report it to the
Maxima bug database. See bug_report.

35.1.4 Authors

Stavros Macrakis of Cambridge, Massachusetts and Barton Willis of the University of
Nebraska at Kearney (UNK) wrote the Maxima set functions and their documentation.

35.2 Functions and Variables for Sets

Functionadjoin (x, a)
Returns the union of the set a with {x}.

adjoin complains if a is not a literal set.

adjoin(x, a) and union(set(x), a) are equivalent; however, adjoin may be some-
what faster than union.

See also disjoin.

Examples:

(%i1) adjoin (c, {a, b});
(%o1) {a, b, c}
(%i2) adjoin (a, {a, b});
(%o2) {a, b}

Functionbelln (n)
Represents the n-th Bell number. belln(n) is the number of partitions of a set with
n members.

For nonnegative integers n, belln(n) simplifies to the n-th Bell number. belln does
not simplify for any other arguments.

belln distributes over equations, lists, matrices, and sets.

Examples:

belln applied to nonnegative integers.

(%i1) makelist (belln (i), i, 0, 6);
(%o1) [1, 1, 2, 5, 15, 52, 203]
(%i2) is (cardinality (set_partitions ({})) = belln (0));

552 Maxima 5.35.1 Manual

(%o2) true
(%i3) is (cardinality (set_partitions ({1, 2, 3, 4, 5, 6})) =

belln (6));
(%o3) true

belln applied to arguments which are not nonnegative integers.

(%i1) [belln (x), belln (sqrt(3)), belln (-9)];
(%o1) [belln(x), belln(sqrt(3)), belln(- 9)]

Functioncardinality (a)
Returns the number of distinct elements of the set a.

cardinality ignores redundant elements even when simplification is disabled.

Examples:

(%i1) cardinality ({});
(%o1) 0
(%i2) cardinality ({a, a, b, c});
(%o2) 3
(%i3) simp : false;
(%o3) false
(%i4) cardinality ({a, a, b, c});
(%o4) 3

Functioncartesian product (b 1, ... , b n)
Returns a set of lists of the form [x 1, ..., x n], where x 1, ..., x n are elements of
the sets b 1, ... , b n, respectively.

cartesian_product complains if any argument is not a literal set.

Examples:

(%i1) cartesian_product ({0, 1});
(%o1) {[0], [1]}
(%i2) cartesian_product ({0, 1}, {0, 1});
(%o2) {[0, 0], [0, 1], [1, 0], [1, 1]}
(%i3) cartesian_product ({x}, {y}, {z});
(%o3) {[x, y, z]}
(%i4) cartesian_product ({x}, {-1, 0, 1});
(%o4) {[x, - 1], [x, 0], [x, 1]}

Functiondisjoin (x, a)
Returns the set a without the member x. If x is not a member of a, return a un-
changed.

disjoin complains if a is not a literal set.

disjoin(x, a), delete(x, a), and setdifference(a, set(x)) are all equivalent.
Of these, disjoin is generally faster than the others.

Examples:

Chapter 35: Sets 553

(%i1) disjoin (a, {a, b, c, d});
(%o1) {b, c, d}
(%i2) disjoin (a + b, {5, z, a + b, %pi});
(%o2) {5, %pi, z}
(%i3) disjoin (a - b, {5, z, a + b, %pi});
(%o3) {5, %pi, b + a, z}

Functiondisjointp (a, b)
Returns true if and only if the sets a and b are disjoint.

disjointp complains if either a or b is not a literal set.

Examples:

(%i1) disjointp ({a, b, c}, {1, 2, 3});
(%o1) true
(%i2) disjointp ({a, b, 3}, {1, 2, 3});
(%o2) false

Functiondivisors (n)
Represents the set of divisors of n.

divisors(n) simplifies to a set of integers when n is a nonzero integer. The set of
divisors includes the members 1 and n. The divisors of a negative integer are the
divisors of its absolute value.

divisors distributes over equations, lists, matrices, and sets.

Examples:

We can verify that 28 is a perfect number: the sum of its divisors (except for itself)
is 28.

(%i1) s: divisors(28);
(%o1) {1, 2, 4, 7, 14, 28}
(%i2) lreduce ("+", args(s)) - 28;
(%o2) 28

divisors is a simplifying function. Substituting 8 for a in divisors(a) yields the
divisors without reevaluating divisors(8).

(%i1) divisors (a);
(%o1) divisors(a)
(%i2) subst (8, a, %);
(%o2) {1, 2, 4, 8}

divisors distributes over equations, lists, matrices, and sets.

(%i1) divisors (a = b);
(%o1) divisors(a) = divisors(b)
(%i2) divisors ([a, b, c]);
(%o2) [divisors(a), divisors(b), divisors(c)]
(%i3) divisors (matrix ([a, b], [c, d]));

[divisors(a) divisors(b)]
(%o3) []

[divisors(c) divisors(d)]
(%i4) divisors ({a, b, c});
(%o4) {divisors(a), divisors(b), divisors(c)}

554 Maxima 5.35.1 Manual

Functionelementp (x, a)
Returns true if and only if x is a member of the set a.

elementp complains if a is not a literal set.

Examples:

(%i1) elementp (sin(1), {sin(1), sin(2), sin(3)});
(%o1) true
(%i2) elementp (sin(1), {cos(1), cos(2), cos(3)});
(%o2) false

Functionemptyp (a)
Return true if and only if a is the empty set or the empty list.

Examples:

(%i1) map (emptyp, [{}, []]);
(%o1) [true, true]
(%i2) map (emptyp, [a + b, {{}}, %pi]);
(%o2) [false, false, false]

Functionequiv classes (s, F)
Returns a set of the equivalence classes of the set s with respect to the equivalence
relation F.

F is a function of two variables defined on the Cartesian product of s with s. The
return value of F is either true or false, or an expression expr such that is(expr)
is either true or false.

When F is not an equivalence relation, equiv_classes accepts it without complaint,
but the result is generally incorrect in that case.

Examples:

The equivalence relation is a lambda expression which returns true or false.

(%i1) equiv_classes ({1, 1.0, 2, 2.0, 3, 3.0},
lambda ([x, y], is (equal (x, y))));

(%o1) {{1, 1.0}, {2, 2.0}, {3, 3.0}}

The equivalence relation is the name of a relational function which is evaluates to
true or false.

(%i1) equiv_classes ({1, 1.0, 2, 2.0, 3, 3.0}, equal);
(%o1) {{1, 1.0}, {2, 2.0}, {3, 3.0}}

The equivalence classes are numbers which differ by a multiple of 3.

(%i1) equiv_classes ({1, 2, 3, 4, 5, 6, 7},
lambda ([x, y], remainder (x - y, 3) = 0));

(%o1) {{1, 4, 7}, {2, 5}, {3, 6}}

Functionevery
every (f, s)
every (f, L 1, ..., L n)

Returns true if the predicate f is true for all given arguments.

Chapter 35: Sets 555

Given one set as the second argument, every(f, s) returns true if is(f (a i)) returns
true for all a i in s. every may or may not evaluate f for all a i in s. Since sets are
unordered, every may evaluate f (a i) in any order.

Given one or more lists as arguments, every(f, L 1, ..., L n) returns true if
is(f (x 1, ..., x n)) returns true for all x 1, ..., x n in L 1, ..., L n, respectively.
every may or may not evaluate f for every combination x 1, ..., x n. every evaluates
lists in the order of increasing index.

Given an empty set {} or empty lists [] as arguments, every returns false.

When the global flag maperror is true, all lists L 1, ..., L n must have equal lengths.
When maperror is false, list arguments are effectively truncated to the length of the
shortest list.

Return values of the predicate f which evaluate (via is) to something other than
true or false are governed by the global flag prederror. When prederror is true,
such values are treated as false, and the return value from every is false. When
prederror is false, such values are treated as unknown, and the return value from
every is unknown.

Examples:

every applied to a single set. The predicate is a function of one argument.

(%i1) every (integerp, {1, 2, 3, 4, 5, 6});
(%o1) true
(%i2) every (atom, {1, 2, sin(3), 4, 5 + y, 6});
(%o2) false

every applied to two lists. The predicate is a function of two arguments.

(%i1) every ("=", [a, b, c], [a, b, c]);
(%o1) true
(%i2) every ("#", [a, b, c], [a, b, c]);
(%o2) false

Return values of the predicate f which evaluate to something other than true or
false are governed by the global flag prederror.

(%i1) prederror : false;
(%o1) false
(%i2) map (lambda ([a, b], is (a < b)), [x, y, z],

[x^2, y^2, z^2]);
(%o2) [unknown, unknown, unknown]
(%i3) every ("<", [x, y, z], [x^2, y^2, z^2]);
(%o3) unknown
(%i4) prederror : true;
(%o4) true
(%i5) every ("<", [x, y, z], [x^2, y^2, z^2]);
(%o5) false

Functionextremal subset
extremal_subset (s, f, max)
extremal_subset (s, f, min)

Returns the subset of s for which the function f takes on maximum or minimum
values.

556 Maxima 5.35.1 Manual

extremal_subset(s, f, max) returns the subset of the set or list s for which the
real-valued function f takes on its maximum value.

extremal_subset(s, f, min) returns the subset of the set or list s for which the
real-valued function f takes on its minimum value.

Examples:

(%i1) extremal_subset ({-2, -1, 0, 1, 2}, abs, max);
(%o1) {- 2, 2}
(%i2) extremal_subset ({sqrt(2), 1.57, %pi/2}, sin, min);
(%o2) {sqrt(2)}

Functionflatten (expr)
Collects arguments of subexpressions which have the same operator as expr and
constructs an expression from these collected arguments.

Subexpressions in which the operator is different from the main operator of expr are
copied without modification, even if they, in turn, contain some subexpressions in
which the operator is the same as for expr.

It may be possible for flatten to construct expressions in which the number of
arguments differs from the declared arguments for an operator; this may provoke an
error message from the simplifier or evaluator. flatten does not try to detect such
situations.

Expressions with special representations, for example, canonical rational expressions
(CRE), cannot be flattened; in such cases, flatten returns its argument unchanged.

Examples:

Applied to a list, flatten gathers all list elements that are lists.

(%i1) flatten ([a, b, [c, [d, e], f], [[g, h]], i, j]);
(%o1) [a, b, c, d, e, f, g, h, i, j]

Applied to a set, flatten gathers all members of set elements that are sets.

(%i1) flatten ({a, {b}, {{c}}});
(%o1) {a, b, c}
(%i2) flatten ({a, {[a], {a}}});
(%o2) {a, [a]}

flatten is similar to the effect of declaring the main operator n-ary. However,
flatten has no effect on subexpressions which have an operator different from the
main operator, while an n-ary declaration affects those.

(%i1) expr: flatten (f (g (f (f (x)))));
(%o1) f(g(f(f(x))))
(%i2) declare (f, nary);
(%o2) done
(%i3) ev (expr);
(%o3) f(g(f(x)))

flatten treats subscripted functions the same as any other operator.

(%i1) flatten (f[5] (f[5] (x, y), z));
(%o1) f (x, y, z)

5

Chapter 35: Sets 557

It may be possible for flatten to construct expressions in which the number of
arguments differs from the declared arguments for an operator;

(%i1) ’mod (5, ’mod (7, 4));
(%o1) mod(5, mod(7, 4))
(%i2) flatten (%);
(%o2) mod(5, 7, 4)
(%i3) ’’%, nouns;
Wrong number of arguments to mod
-- an error. Quitting. To debug this try debugmode(true);

Functionfull listify (a)
Replaces every set operator in a by a list operator, and returns the result. full_

listify replaces set operators in nested subexpressions, even if the main operator is
not set.

listify replaces only the main operator.

Examples:

(%i1) full_listify ({a, b, {c, {d, e, f}, g}});
(%o1) [a, b, [c, [d, e, f], g]]
(%i2) full_listify (F (G ({a, b, H({c, d, e})})));
(%o2) F(G([a, b, H([c, d, e])]))

Functionfullsetify (a)
When a is a list, replaces the list operator with a set operator, and applies fullsetify
to each member which is a set. When a is not a list, it is returned unchanged.

setify replaces only the main operator.

Examples:

In line (%o2), the argument of f isn’t converted to a set because the main operator
of f([b]) isn’t a list.

(%i1) fullsetify ([a, [a]]);
(%o1) {a, {a}}
(%i2) fullsetify ([a, f([b])]);
(%o2) {a, f([b])}

Functionidentity (x)
Returns x for any argument x.

Examples:

identity may be used as a predicate when the arguments are already Boolean values.

(%i1) every (identity, [true, true]);
(%o1) true

Functioninteger partitions
integer_partitions (n)
integer_partitions (n, len)

Returns integer partitions of n, that is, lists of integers which sum to n.

558 Maxima 5.35.1 Manual

integer_partitions(n) returns the set of all partitions of the integer n. Each
partition is a list sorted from greatest to least.

integer_partitions(n, len) returns all partitions that have length len or less; in
this case, zeros are appended to each partition with fewer than len terms to make
each partition have exactly len terms. Each partition is a list sorted from greatest to
least.

A list [a1, ..., am] is a partition of a nonnegative integer n when (1) each ai is a nonzero
integer, and (2) a1 + ...+ am = n. Thus 0 has no partitions.

Examples:

(%i1) integer_partitions (3);
(%o1) {[1, 1, 1], [2, 1], [3]}
(%i2) s: integer_partitions (25)$
(%i3) cardinality (s);
(%o3) 1958
(%i4) map (lambda ([x], apply ("+", x)), s);
(%o4) {25}
(%i5) integer_partitions (5, 3);
(%o5) {[2, 2, 1], [3, 1, 1], [3, 2, 0], [4, 1, 0], [5, 0, 0]}
(%i6) integer_partitions (5, 2);
(%o6) {[3, 2], [4, 1], [5, 0]}

To find all partitions that satisfy a condition, use the function subset; here is an
example that finds all partitions of 10 that consist of prime numbers.

(%i1) s: integer_partitions (10)$
(%i2) cardinality (s);
(%o2) 42
(%i3) xprimep(x) := integerp(x) and (x > 1) and primep(x)$
(%i4) subset (s, lambda ([x], every (xprimep, x)));
(%o4) {[2, 2, 2, 2, 2], [3, 3, 2, 2], [5, 3, 2], [5, 5], [7, 3]}

Functionintersect (a 1, ..., a n)
intersect is the same as intersection, which see.

Functionintersection (a 1, ..., a n)
Returns a set containing the elements that are common to the sets a 1 through a n.

intersection complains if any argument is not a literal set.

Examples:

(%i1) S_1 : {a, b, c, d};
(%o1) {a, b, c, d}
(%i2) S_2 : {d, e, f, g};
(%o2) {d, e, f, g}
(%i3) S_3 : {c, d, e, f};
(%o3) {c, d, e, f}
(%i4) S_4 : {u, v, w};
(%o4) {u, v, w}
(%i5) intersection (S_1, S_2);

Chapter 35: Sets 559

(%o5) {d}
(%i6) intersection (S_2, S_3);
(%o6) {d, e, f}
(%i7) intersection (S_1, S_2, S_3);
(%o7) {d}
(%i8) intersection (S_1, S_2, S_3, S_4);
(%o8) {}

Functionkron delta (x1, x2, . . . , xp)
Represents the Kronecker delta function.

kron_delta simplifies to 1 when xi and yj are equal for all pairs of arguments, and it
simplifies to 0 when xi and yj are not equal for some pair of arguments. Equality is
determined using is(equal(xi,xj)) and inequality by is(notequal(xi,xj)). For
exactly one argument, kron_delta signals an error.

Examples:

(%i1) kron_delta(a,a);
(%o1) 1
(%i2) kron_delta(a,b,a,b);
(%o2) kron_delta(a, b)
(%i3) kron_delta(a,a,b,a+1);
(%o3) 0
(%i4) assume(equal(x,y));
(%o4) [equal(x, y)]
(%i5) kron_delta(x,y);
(%o5) 1

Functionlistify (a)
Returns a list containing the members of a when a is a set. Otherwise, listify

returns a.

full_listify replaces all set operators in a by list operators.

Examples:

(%i1) listify ({a, b, c, d});
(%o1) [a, b, c, d]
(%i2) listify (F ({a, b, c, d}));
(%o2) F({a, b, c, d})

Functionlreduce
lreduce (F, s)
lreduce (F, s, s 0)

Extends the binary function F to an n-ary function by composition, where s is a list.

lreduce(F, s) returns F(... F(F(s_1, s_2), s_3), ... s_n). When the optional
argument s 0 is present, the result is equivalent to lreduce(F, cons(s 0, s)).

The function F is first applied to the leftmost list elements, thus the name "lreduce".

See also rreduce, xreduce, and tree_reduce.

Examples:

lreduce without the optional argument.

560 Maxima 5.35.1 Manual

(%i1) lreduce (f, [1, 2, 3]);
(%o1) f(f(1, 2), 3)
(%i2) lreduce (f, [1, 2, 3, 4]);
(%o2) f(f(f(1, 2), 3), 4)

lreduce with the optional argument.

(%i1) lreduce (f, [1, 2, 3], 4);
(%o1) f(f(f(4, 1), 2), 3)

lreduce applied to built-in binary operators. / is the division operator.

(%i1) lreduce ("^", args ({a, b, c, d}));
b c d

(%o1) ((a))
(%i2) lreduce ("/", args ({a, b, c, d}));

a
(%o2) -----

b c d

Functionmakeset (expr, x, s)
Returns a set with members generated from the expression expr, where x is a list of
variables in expr, and s is a set or list of lists. To generate each set member, expr is
evaluated with the variables x bound in parallel to a member of s.

Each member of s must have the same length as x. The list of variables x must be a
list of symbols, without subscripts. Even if there is only one symbol, x must be a list
of one element, and each member of s must be a list of one element.

See also makelist.

Examples:

(%i1) makeset (i/j, [i, j], [[1, a], [2, b], [3, c], [4, d]]);
1 2 3 4

(%o1) {-, -, -, -}
a b c d

(%i2) S : {x, y, z}$
(%i3) S3 : cartesian_product (S, S, S);
(%o3) {[x, x, x], [x, x, y], [x, x, z], [x, y, x], [x, y, y],
[x, y, z], [x, z, x], [x, z, y], [x, z, z], [y, x, x],
[y, x, y], [y, x, z], [y, y, x], [y, y, y], [y, y, z],
[y, z, x], [y, z, y], [y, z, z], [z, x, x], [z, x, y],
[z, x, z], [z, y, x], [z, y, y], [z, y, z], [z, z, x],
[z, z, y], [z, z, z]}
(%i4) makeset (i + j + k, [i, j, k], S3);
(%o4) {3 x, 3 y, y + 2 x, 2 y + x, 3 z, z + 2 x, z + y + x,

z + 2 y, 2 z + x, 2 z + y}
(%i5) makeset (sin(x), [x], {[1], [2], [3]});
(%o5) {sin(1), sin(2), sin(3)}

Functionmoebius (n)
Represents the Moebius function.

Chapter 35: Sets 561

When n is product of k distinct primes, moebius(n) simplifies to (−1)k; when n = 1,
it simplifies to 1; and it simplifies to 0 for all other positive integers.

moebius distributes over equations, lists, matrices, and sets.

Examples:

(%i1) moebius (1);
(%o1) 1
(%i2) moebius (2 * 3 * 5);
(%o2) - 1
(%i3) moebius (11 * 17 * 29 * 31);
(%o3) 1
(%i4) moebius (2^32);
(%o4) 0
(%i5) moebius (n);
(%o5) moebius(n)
(%i6) moebius (n = 12);
(%o6) moebius(n) = 0
(%i7) moebius ([11, 11 * 13, 11 * 13 * 15]);
(%o7) [- 1, 1, 1]
(%i8) moebius (matrix ([11, 12], [13, 14]));

[- 1 0]
(%o8) []

[- 1 1]
(%i9) moebius ({21, 22, 23, 24});
(%o9) {- 1, 0, 1}

Functionmultinomial coeff
multinomial_coeff (a 1, ..., a n)
multinomial_coeff ()

Returns the multinomial coefficient.

When each a k is a nonnegative integer, the multinomial coefficient gives the number
of ways of placing a 1 + ... + a n distinct objects into n boxes with a k elements in
the k’th box. In general, multinomial_coeff (a 1, ..., a n) evaluates to (a 1 +

... + a n)!/(a 1! ... a n!).

multinomial_coeff() (with no arguments) evaluates to 1.

minfactorial may be able to simplify the value returned by multinomial_coeff.

Examples:

(%i1) multinomial_coeff (1, 2, x);
(x + 3)!

(%o1) --------
2 x!

(%i2) minfactorial (%);
(x + 1) (x + 2) (x + 3)

(%o2) -----------------------
2

(%i3) multinomial_coeff (-6, 2);
(- 4)!

562 Maxima 5.35.1 Manual

(%o3) --------
2 (- 6)!

(%i4) minfactorial (%);
(%o4) 10

Functionnum distinct partitions
num_distinct_partitions (n)
num_distinct_partitions (n, list)

Returns the number of distinct integer partitions of n when n is a nonnegative integer.
Otherwise, num_distinct_partitions returns a noun expression.

num_distinct_partitions(n, list) returns a list of the number of distinct parti-
tions of 1, 2, 3, ..., n.

A distinct partition of n is a list of distinct positive integers k1, ..., km such that
n = k1 + ...+ km.

Examples:

(%i1) num_distinct_partitions (12);
(%o1) 15
(%i2) num_distinct_partitions (12, list);
(%o2) [1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15]
(%i3) num_distinct_partitions (n);
(%o3) num_distinct_partitions(n)

Functionnum partitions
num_partitions (n)
num_partitions (n, list)

Returns the number of integer partitions of n when n is a nonnegative integer. Oth-
erwise, num_partitions returns a noun expression.

num_partitions(n, list) returns a list of the number of integer partitions of 1, 2,
3, ..., n.

For a nonnegative integer n, num_partitions(n) is equal to cardinality(integer_

partitions(n)); however, num_partitions does not actually construct the set of
partitions, so it is much faster.

Examples:

(%i1) num_partitions (5) = cardinality (integer_partitions (5));
(%o1) 7 = 7
(%i2) num_partitions (8, list);
(%o2) [1, 1, 2, 3, 5, 7, 11, 15, 22]
(%i3) num_partitions (n);
(%o3) num_partitions(n)

Functionpartition set (a, f)
Partitions the set a according to the predicate f.

partition_set returns a list of two sets. The first set comprises the elements of a
for which f evaluates to false, and the second comprises any other elements of a.
partition_set does not apply is to the return value of f.

Chapter 35: Sets 563

partition_set complains if a is not a literal set.

See also subset.

Examples:

(%i1) partition_set ({2, 7, 1, 8, 2, 8}, evenp);
(%o1) [{1, 7}, {2, 8}]
(%i2) partition_set ({x, rat(y), rat(y) + z, 1},

lambda ([x], ratp(x)));
(%o2)/R/ [{1, x}, {y, y + z}]

Functionpermutations (a)
Returns a set of all distinct permutations of the members of the list or set a. Each
permutation is a list, not a set.

When a is a list, duplicate members of a are included in the permutations.

permutations complains if a is not a literal list or set.

See also random_permutation.

Examples:

(%i1) permutations ([a, a]);
(%o1) {[a, a]}
(%i2) permutations ([a, a, b]);
(%o2) {[a, a, b], [a, b, a], [b, a, a]}

Functionpowerset
powerset (a)
powerset (a, n)

Returns the set of all subsets of a, or a subset of that set.

powerset(a) returns the set of all subsets of the set a. powerset(a) has
2^cardinality(a) members.

powerset(a, n) returns the set of all subsets of a that have cardinality n.

powerset complains if a is not a literal set, or if n is not a nonnegative integer.

Examples:

(%i1) powerset ({a, b, c});
(%o1) {{}, {a}, {a, b}, {a, b, c}, {a, c}, {b}, {b, c}, {c}}
(%i2) powerset ({w, x, y, z}, 4);
(%o2) {{w, x, y, z}}
(%i3) powerset ({w, x, y, z}, 3);
(%o3) {{w, x, y}, {w, x, z}, {w, y, z}, {x, y, z}}
(%i4) powerset ({w, x, y, z}, 2);
(%o4) {{w, x}, {w, y}, {w, z}, {x, y}, {x, z}, {y, z}}
(%i5) powerset ({w, x, y, z}, 1);
(%o5) {{w}, {x}, {y}, {z}}
(%i6) powerset ({w, x, y, z}, 0);
(%o6) {{}}

564 Maxima 5.35.1 Manual

Functionrandom permutation (a)
Returns a random permutation of the set or list a, as constructed by the Knuth shuffle
algorithm.

The return value is a new list, which is distinct from the argument even if all elements
happen to be the same. However, the elements of the argument are not copied.

Examples:

(%i1) random_permutation ([a, b, c, 1, 2, 3]);
(%o1) [c, 1, 2, 3, a, b]
(%i2) random_permutation ([a, b, c, 1, 2, 3]);
(%o2) [b, 3, 1, c, a, 2]
(%i3) random_permutation ({x + 1, y + 2, z + 3});
(%o3) [y + 2, z + 3, x + 1]
(%i4) random_permutation ({x + 1, y + 2, z + 3});
(%o4) [x + 1, y + 2, z + 3]

Functionrreduce
rreduce (F, s)
rreduce (F, s, s {n + 1})

Extends the binary function F to an n-ary function by composition, where s is a list.

rreduce(F, s) returns F(s_1, ... F(s_{n - 2}, F(s_{n - 1}, s_n))). When the
optional argument s {n + 1} is present, the result is equivalent to rreduce(F,
endcons(s {n + 1}, s)).

The function F is first applied to the rightmost list elements, thus the name "rreduce".

See also lreduce, tree_reduce, and xreduce.

Examples:

rreduce without the optional argument.

(%i1) rreduce (f, [1, 2, 3]);
(%o1) f(1, f(2, 3))
(%i2) rreduce (f, [1, 2, 3, 4]);
(%o2) f(1, f(2, f(3, 4)))

rreduce with the optional argument.

(%i1) rreduce (f, [1, 2, 3], 4);
(%o1) f(1, f(2, f(3, 4)))

rreduce applied to built-in binary operators. / is the division operator.

(%i1) rreduce ("^", args ({a, b, c, d}));
d
c
b

(%o1) a
(%i2) rreduce ("/", args ({a, b, c, d}));

a c
(%o2) ---

b d

Chapter 35: Sets 565

Functionsetdifference (a, b)
Returns a set containing the elements in the set a that are not in the set b.

setdifference complains if either a or b is not a literal set.

Examples:

(%i1) S_1 : {a, b, c, x, y, z};
(%o1) {a, b, c, x, y, z}
(%i2) S_2 : {aa, bb, c, x, y, zz};
(%o2) {aa, bb, c, x, y, zz}
(%i3) setdifference (S_1, S_2);
(%o3) {a, b, z}
(%i4) setdifference (S_2, S_1);
(%o4) {aa, bb, zz}
(%i5) setdifference (S_1, S_1);
(%o5) {}
(%i6) setdifference (S_1, {});
(%o6) {a, b, c, x, y, z}
(%i7) setdifference ({}, S_1);
(%o7) {}

Functionsetequalp (a, b)
Returns true if sets a and b have the same number of elements and is(x = y) is
true for x in the elements of a and y in the elements of b, considered in the order
determined by listify. Otherwise, setequalp returns false.

Examples:

(%i1) setequalp ({1, 2, 3}, {1, 2, 3});
(%o1) true
(%i2) setequalp ({a, b, c}, {1, 2, 3});
(%o2) false
(%i3) setequalp ({x^2 - y^2}, {(x + y) * (x - y)});
(%o3) false

Functionsetify (a)
Constructs a set from the elements of the list a. Duplicate elements of the list a are
deleted and the elements are sorted according to the predicate orderlessp.

setify complains if a is not a literal list.

Examples:

(%i1) setify ([1, 2, 3, a, b, c]);
(%o1) {1, 2, 3, a, b, c}
(%i2) setify ([a, b, c, a, b, c]);
(%o2) {a, b, c}
(%i3) setify ([7, 13, 11, 1, 3, 9, 5]);
(%o3) {1, 3, 5, 7, 9, 11, 13}

Functionsetp (a)
Returns true if and only if a is a Maxima set.

566 Maxima 5.35.1 Manual

setp returns true for unsimplified sets (that is, sets with redundant members) as
well as simplified sets.

setp is equivalent to the Maxima function setp(a) := not atom(a) and op(a) =

’set.

Examples:

(%i1) simp : false;
(%o1) false
(%i2) {a, a, a};
(%o2) {a, a, a}
(%i3) setp (%);
(%o3) true

Function partitionsset
set_partitions (a)
set_partitions (a, n)

Returns the set of all partitions of a, or a subset of that set.

set_partitions(a, n) returns a set of all decompositions of a into n nonempty
disjoint subsets.

set_partitions(a) returns the set of all partitions.

stirling2 returns the cardinality of the set of partitions of a set.

A set of sets P is a partition of a set S when

1. each member of P is a nonempty set,

2. distinct members of P are disjoint,

3. the union of the members of P equals S.

Examples:

The empty set is a partition of itself, the conditions 1 and 2 being vacuously true.

(%i1) set_partitions ({});
(%o1) {{}}

The cardinality of the set of partitions of a set can be found using stirling2.

(%i1) s: {0, 1, 2, 3, 4, 5}$
(%i2) p: set_partitions (s, 3)$
(%i3) cardinality(p) = stirling2 (6, 3);
(%o3) 90 = 90

Each member of p should have n = 3 members; let’s check.

(%i1) s: {0, 1, 2, 3, 4, 5}$
(%i2) p: set_partitions (s, 3)$
(%i3) map (cardinality, p);
(%o3) {3}

Finally, for each member of p, the union of its members should equal s; again let’s
check.

(%i1) s: {0, 1, 2, 3, 4, 5}$
(%i2) p: set_partitions (s, 3)$
(%i3) map (lambda ([x], apply (union, listify (x))), p);
(%o3) {{0, 1, 2, 3, 4, 5}}

Chapter 35: Sets 567

Functionsome
some (f, a)
some (f, L 1, ..., L n)

Returns true if the predicate f is true for one or more given arguments.

Given one set as the second argument, some(f, s) returns true if is(f (a i)) returns
true for one or more a i in s. some may or may not evaluate f for all a i in s. Since
sets are unordered, some may evaluate f (a i) in any order.

Given one or more lists as arguments, some(f, L 1, ..., L n) returns true if
is(f (x 1, ..., x n)) returns true for one or more x 1, ..., x n in L 1, ..., L n,
respectively. some may or may not evaluate f for some combinations x 1, ..., x n.
some evaluates lists in the order of increasing index.

Given an empty set {} or empty lists [] as arguments, some returns false.

When the global flag maperror is true, all lists L 1, ..., L n must have equal lengths.
When maperror is false, list arguments are effectively truncated to the length of the
shortest list.

Return values of the predicate f which evaluate (via is) to something other than
true or false are governed by the global flag prederror. When prederror is true,
such values are treated as false. When prederror is false, such values are treated
as unknown.

Examples:

some applied to a single set. The predicate is a function of one argument.

(%i1) some (integerp, {1, 2, 3, 4, 5, 6});
(%o1) true
(%i2) some (atom, {1, 2, sin(3), 4, 5 + y, 6});
(%o2) true

some applied to two lists. The predicate is a function of two arguments.

(%i1) some ("=", [a, b, c], [a, b, c]);
(%o1) true
(%i2) some ("#", [a, b, c], [a, b, c]);
(%o2) false

Return values of the predicate f which evaluate to something other than true or
false are governed by the global flag prederror.

(%i1) prederror : false;
(%o1) false
(%i2) map (lambda ([a, b], is (a < b)), [x, y, z],

[x^2, y^2, z^2]);
(%o2) [unknown, unknown, unknown]
(%i3) some ("<", [x, y, z], [x^2, y^2, z^2]);
(%o3) unknown
(%i4) some ("<", [x, y, z], [x^2, y^2, z + 1]);
(%o4) true
(%i5) prederror : true;
(%o5) true
(%i6) some ("<", [x, y, z], [x^2, y^2, z^2]);
(%o6) false

568 Maxima 5.35.1 Manual

(%i7) some ("<", [x, y, z], [x^2, y^2, z + 1]);
(%o7) true

Functionstirling1 (n, m)
Represents the Stirling number of the first kind.

When n and m are nonnegative integers, the magnitude of stirling1 (n, m) is the
number of permutations of a set with n members that have m cycles.

stirling1 is a simplifying function. Maxima knows the following identities:

1. stirling1(1, k) = krondelta(1, k), k >= 0,(see http://dlmf.nist.gov/26.8.E2)

2. stirling1(n, n) = 1, n >= 0 (see http://dlmf.nist.gov/26.8.E1)

3. stirling1(n, n−1) = −binomial(n, 2), n >= 1, (see http://dlmf.nist.gov/26.8.E16)

4. stirling1(n, 0) = krondelta(n, 0), n >= 0 (see http://dlmf.nist.gov/26.8.E14
and http://dlmf.nist.gov/26.8.E1)

5. stirling1(n, 1) = (−1)(n−1)(n−1)!, n >= 1 (see http://dlmf.nist.gov/26.8.E14)

6. stirling1(n, k) = 0, n >= 0 and k > n.

These identities are applied when the arguments are literal integers or symbols de-
clared as integers, and the first argument is nonnegative. stirling1 does not simplify
for non-integer arguments.

Examples:

(%i1) declare (n, integer)$
(%i2) assume (n >= 0)$
(%i3) stirling1 (n, n);
(%o3) 1

Functionstirling2 (n, m)
Represents the Stirling number of the second kind.

When n and m are nonnegative integers, stirling2 (n, m) is the number of ways a
set with cardinality n can be partitioned into m disjoint subsets.

stirling2 is a simplifying function. Maxima knows the following identities.

1. stirling2(n, 0) = 1, n >= 1 (see http://dlmf.nist.gov/26.8.E17 and stir-
ling2(0,0) = 1)

2. stirling2(n, n) = 1, n >= 0, (see http://dlmf.nist.gov/26.8.E4)

3. stirling2(n, 1) = 1, n >= 1, (see http://dlmf.nist.gov/26.8.E17 and stir-
ling2(0,1) = 0)

4. stirling2(n, 2) = 2(n− 1)− 1, n >= 1, (see http://dlmf.nist.gov/26.8.E17)

5. stirling2(n, n−1) = binomial(n, 2), n >= 1 (see http://dlmf.nist.gov/26.8.E16)

6. stirling2(n, k) = 0, n >= 0 and k > n.

These identities are applied when the arguments are literal integers or symbols de-
clared as integers, and the first argument is nonnegative. stirling2 does not simplify
for non-integer arguments.

Examples:

Chapter 35: Sets 569

(%i1) declare (n, integer)$
(%i2) assume (n >= 0)$
(%i3) stirling2 (n, n);
(%o3) 1

stirling2 does not simplify for non-integer arguments.

(%i1) stirling2 (%pi, %pi);
(%o1) stirling2(%pi, %pi)

Functionsubset (a, f)
Returns the subset of the set a that satisfies the predicate f.

subset returns a set which comprises the elements of a for which f returns anything
other than false. subset does not apply is to the return value of f.

subset complains if a is not a literal set.

See also partition_set.

Examples:

(%i1) subset ({1, 2, x, x + y, z, x + y + z}, atom);
(%o1) {1, 2, x, z}
(%i2) subset ({1, 2, 7, 8, 9, 14}, evenp);
(%o2) {2, 8, 14}

Functionsubsetp (a, b)
Returns true if and only if the set a is a subset of b.

subsetp complains if either a or b is not a literal set.

Examples:

(%i1) subsetp ({1, 2, 3}, {a, 1, b, 2, c, 3});
(%o1) true
(%i2) subsetp ({a, 1, b, 2, c, 3}, {1, 2, 3});
(%o2) false

Functionsymmdifference (a 1, . . . , a n)
Returns the symmetric difference of sets a 1, . . . , a n.

Given two arguments, symmdifference (a, b) is the same as union (setdifference

(a, b), setdifference (b, a)).

symmdifference complains if any argument is not a literal set.

Examples:

(%i1) S_1 : {a, b, c};
(%o1) {a, b, c}
(%i2) S_2 : {1, b, c};
(%o2) {1, b, c}
(%i3) S_3 : {a, b, z};
(%o3) {a, b, z}
(%i4) symmdifference ();
(%o4) {}

570 Maxima 5.35.1 Manual

(%i5) symmdifference (S_1);
(%o5) {a, b, c}
(%i6) symmdifference (S_1, S_2);
(%o6) {1, a}
(%i7) symmdifference (S_1, S_2, S_3);
(%o7) {1, b, z}
(%i8) symmdifference ({}, S_1, S_2, S_3);
(%o8) {1,b, z}

Functiontree reduce
tree_reduce (F, s)
tree_reduce (F, s, s 0)

Extends the binary function F to an n-ary function by composition, where s is a set
or list.

tree_reduce is equivalent to the following: Apply F to successive pairs of elements
to form a new list [F(s 1, s 2), F(s 3, s 4), ...], carrying the final element un-
changed if there are an odd number of elements. Then repeat until the list is reduced
to a single element, which is the return value.

When the optional argument s 0 is present, the result is equivalent tree_reduce(F,
cons(s 0, s)).

For addition of floating point numbers, tree_reduce may return a sum that has a
smaller rounding error than either rreduce or lreduce.

The elements of s and the partial results may be arranged in a minimum-depth binary
tree, thus the name "tree reduce".

Examples:

tree_reduce applied to a list with an even number of elements.

(%i1) tree_reduce (f, [a, b, c, d]);
(%o1) f(f(a, b), f(c, d))

tree_reduce applied to a list with an odd number of elements.

(%i1) tree_reduce (f, [a, b, c, d, e]);
(%o1) f(f(f(a, b), f(c, d)), e)

Functionunion (a 1, ..., a n)
Returns the union of the sets a 1 through a n.

union() (with no arguments) returns the empty set.

union complains if any argument is not a literal set.

Examples:

(%i1) S_1 : {a, b, c + d, %e};
(%o1) {%e, a, b, d + c}
(%i2) S_2 : {%pi, %i, %e, c + d};
(%o2) {%e, %i, %pi, d + c}
(%i3) S_3 : {17, 29, 1729, %pi, %i};
(%o3) {17, 29, 1729, %i, %pi}
(%i4) union ();

Chapter 35: Sets 571

(%o4) {}
(%i5) union (S_1);
(%o5) {%e, a, b, d + c}
(%i6) union (S_1, S_2);
(%o6) {%e, %i, %pi, a, b, d + c}
(%i7) union (S_1, S_2, S_3);
(%o7) {17, 29, 1729, %e, %i, %pi, a, b, d + c}
(%i8) union ({}, S_1, S_2, S_3);
(%o8) {17, 29, 1729, %e, %i, %pi, a, b, d + c}

Functionxreduce
xreduce (F, s)
xreduce (F, s, s 0)

Extends the function F to an n-ary function by composition, or, if F is already n-ary,
applies F to s. When F is not n-ary, xreduce is the same as lreduce. The argument
s is a list.

Functions known to be n-ary include addition +, multiplication *, and, or, max, min,
and append. Functions may also be declared n-ary by declare(F, nary). For these
functions, xreduce is expected to be faster than either rreduce or lreduce.

When the optional argument s 0 is present, the result is equivalent to xreduce(s,
cons(s 0, s)).

Floating point addition is not exactly associative; be that as it may, xreduce applies
Maxima’s n-ary addition when s contains floating point numbers.

Examples:

xreduce applied to a function known to be n-ary. F is called once, with all arguments.

(%i1) declare (F, nary);
(%o1) done
(%i2) F ([L]) := L;
(%o2) F([L]) := L
(%i3) xreduce (F, [a, b, c, d, e]);
(%o3) [[[[[("[", simp), a], b], c], d], e]

xreduce applied to a function not known to be n-ary. G is called several times, with
two arguments each time.

(%i1) G ([L]) := L;
(%o1) G([L]) := L
(%i2) xreduce (G, [a, b, c, d, e]);
(%o2) [[[[[("[", simp), a], b], c], d], e]
(%i3) lreduce (G, [a, b, c, d, e]);
(%o3) [[[[a, b], c], d], e]

572 Maxima 5.35.1 Manual

Chapter 36: Function Definition 573

36 Function Definition

36.1 Introduction to Function Definition

36.2 Function

36.2.1 Ordinary functions

To define a function in Maxima you use the := operator. E.g.

f(x) := sin(x)

defines a function f. Anonymous functions may also be created using lambda. For example

lambda ([i, j], ...)

can be used instead of f where

f(i,j) := block ([], ...);
map (lambda ([i], i+1), l)

would return a list with 1 added to each term.

You may also define a function with a variable number of arguments, by having a final
argument which is assigned to a list of the extra arguments:

(%i1) f ([u]) := u;
(%o1) f([u]) := u
(%i2) f (1, 2, 3, 4);
(%o2) [1, 2, 3, 4]
(%i3) f (a, b, [u]) := [a, b, u];
(%o3) f(a, b, [u]) := [a, b, u]
(%i4) f (1, 2, 3, 4, 5, 6);
(%o4) [1, 2, [3, 4, 5, 6]]

The right hand side of a function is an expression. Thus if you want a sequence of
expressions, you do

f(x) := (expr1, expr2,, exprn);

and the value of exprn is what is returned by the function.

If you wish to make a return from some expression inside the function then you must
use block and return.

block ([], expr1, ..., if (a > 10) then return(a), ..., exprn)

is itself an expression, and so could take the place of the right hand side of a function
definition. Here it may happen that the return happens earlier than the last expression.

The first [] in the block, may contain a list of variables and variable assignments, such
as [a: 3, b, c: []], which would cause the three variables a,b,and c to not refer to their
global values, but rather have these special values for as long as the code executes inside
the block, or inside functions called from inside the block. This is called dynamic binding,
since the variables last from the start of the block to the time it exits. Once you return
from the block, or throw out of it, the old values (if any) of the variables will be restored.
It is certainly a good idea to protect your variables in this way. Note that the assignments

574 Maxima 5.35.1 Manual

in the block variables, are done in parallel. This means, that if you had used c: a in the
above, the value of c would have been the value of a at the time you just entered the block,
but before a was bound. Thus doing something like

block ([a: a], expr1, ... a: a+3, ..., exprn)

will protect the external value of a from being altered, but would let you access what
that value was. Thus the right hand side of the assignments, is evaluated in the entering
context, before any binding occurs. Using just block ([x], ...) would cause the x to have
itself as value, just as if it would have if you entered a fresh Maxima session.

The actual arguments to a function are treated in exactly same way as the variables in
a block. Thus in

f(x) := (expr1, ..., exprn);

and

f(1);

we would have a similar context for evaluation of the expressions as if we had done

block ([x: 1], expr1, ..., exprn)

Inside functions, when the right hand side of a definition, may be computed at runtime,
it is useful to use define and possibly buildq.

36.2.2 Array functions

An array function stores the function value the first time it is called with a given argu-
ment, and returns the stored value, without recomputing it, when that same argument is
given. Such a function is often called a memoizing function.

Array function names are appended to the global list arrays (not the global list
functions). arrayinfo returns the list of arguments for which there are stored values,
and listarray returns the stored values. dispfun and fundef return the array function
definition.

arraymake constructs an array function call, analogous to funmake for ordinary func-
tions. arrayapply applies an array function to its arguments, analogous to apply for
ordinary functions. There is nothing exactly analogous to map for array functions, although
map(lambda([x], a[x]), L) or makelist(a[x], x, L), where L is a list, are not too far
off the mark.

remarray removes an array function definition (including any stored function values),
analogous to remfunction for ordinary functions.

kill(a[x]) removes the value of the array function a stored for the argument x; the
next time a is called with argument x, the function value is recomputed. However, there
is no way to remove all of the stored values at once, except for kill(a) or remarray(a),
which also remove the function definition.

36.3 Macros

Functionbuildq (L, expr)
Substitutes variables named by the list L into the expression expr, in parallel, with-
out evaluating expr. The resulting expression is simplified, but not evaluated, after
buildq carries out the substitution.

Chapter 36: Function Definition 575

The elements of L are symbols or assignment expressions symbol: value, evaluated
in parallel. That is, the binding of a variable on the right-hand side of an assignment
is the binding of that variable in the context from which buildq was called, not the
binding of that variable in the variable list L. If some variable in L is not given an
explicit assignment, its binding in buildq is the same as in the context from which
buildq was called.

Then the variables named by L are substituted into expr in parallel. That is, the
substitution for every variable is determined before any substitution is made, so the
substitution for one variable has no effect on any other.

If any variable x appears as splice (x) in expr, then x must be bound to a list, and
the list is spliced (interpolated) into expr instead of substituted.

Any variables in expr not appearing in L are carried into the result verbatim, even if
they have bindings in the context from which buildq was called.

Examples

a is explicitly bound to x, while b has the same binding (namely 29) as in the calling
context, and c is carried through verbatim. The resulting expression is not evaluated
until the explicit evaluation ’’%.

(%i1) (a: 17, b: 29, c: 1729)$
(%i2) buildq ([a: x, b], a + b + c);
(%o2) x + c + 29
(%i3) ’’%;
(%o3) x + 1758

e is bound to a list, which appears as such in the arguments of foo, and interpolated
into the arguments of bar.

(%i1) buildq ([e: [a, b, c]], foo (x, e, y));
(%o1) foo(x, [a, b, c], y)
(%i2) buildq ([e: [a, b, c]], bar (x, splice (e), y));
(%o2) bar(x, a, b, c, y)

The result is simplified after substitution. If simplification were applied before sub-
stitution, these two results would be the same.

(%i1) buildq ([e: [a, b, c]], splice (e) + splice (e));
(%o1) 2 c + 2 b + 2 a
(%i2) buildq ([e: [a, b, c]], 2 * splice (e));
(%o2) 2 a b c

The variables in L are bound in parallel; if bound sequentially, the first result would
be foo (b, b). Substitutions are carried out in parallel; compare the second result
with the result of subst, which carries out substitutions sequentially.

(%i1) buildq ([a: b, b: a], foo (a, b));
(%o1) foo(b, a)
(%i2) buildq ([u: v, v: w, w: x, x: y, y: z, z: u],

bar (u, v, w, x, y, z));
(%o2) bar(v, w, x, y, z, u)
(%i3) subst ([u=v, v=w, w=x, x=y, y=z, z=u],

bar (u, v, w, x, y, z));
(%o3) bar(u, u, u, u, u, u)

576 Maxima 5.35.1 Manual

Construct a list of equations with some variables or expressions on the left-hand side
and their values on the right-hand side. macroexpand shows the expression returned
by show_values.

(%i1) show_values ([L]) ::= buildq ([L], map ("=", ’L, L));
(%o1) show_values([L]) ::= buildq([L], map("=", ’L, L))
(%i2) (a: 17, b: 29, c: 1729)$
(%i3) show_values (a, b, c - a - b);
(%o3) [a = 17, b = 29, c - b - a = 1683]
(%i4) macroexpand (show_values (a, b, c - a - b));
(%o4) map(=, ’([a, b, c - b - a]), [a, b, c - b - a])

Given a function of several arguments, create another function for which some of the
arguments are fixed.

(%i1) curry (f, [a]) :=
buildq ([f, a], lambda ([[x]], apply (f, append (a, x))))$

(%i2) by3 : curry ("*", 3);
(%o2) lambda([[x]], apply(*, append([3], x)))
(%i3) by3 (a + b);
(%o3) 3 (b + a)

Functionmacroexpand (expr)
Returns the macro expansion of expr without evaluating it, when expr is a macro
function call. Otherwise, macroexpand returns expr.

If the expansion of expr yields another macro function call, that macro function call
is also expanded.

macroexpand quotes its argument. However, if the expansion of a macro function call
has side effects, those side effects are executed.

See also ::=, macros, and macroexpand1.

Examples

(%i1) g (x) ::= x / 99;
x

(%o1) g(x) ::= --
99

(%i2) h (x) ::= buildq ([x], g (x - a));
(%o2) h(x) ::= buildq([x], g(x - a))
(%i3) a: 1234;
(%o3) 1234
(%i4) macroexpand (h (y));

y - a
(%o4) -----

99
(%i5) h (y);

y - 1234
(%o5) --------

99

Chapter 36: Function Definition 577

Functionmacroexpand1 (expr)
Returns the macro expansion of expr without evaluating it, when expr is a macro
function call. Otherwise, macroexpand1 returns expr.

macroexpand1 quotes its argument. However, if the expansion of a macro function
call has side effects, those side effects are executed.

If the expansion of expr yields another macro function call, that macro function call
is not expanded.

See also ::=, macros, and macroexpand.

Examples

(%i1) g (x) ::= x / 99;
x

(%o1) g(x) ::= --
99

(%i2) h (x) ::= buildq ([x], g (x - a));
(%o2) h(x) ::= buildq([x], g(x - a))
(%i3) a: 1234;
(%o3) 1234
(%i4) macroexpand1 (h (y));
(%o4) g(y - a)
(%i5) h (y);

y - 1234
(%o5) --------

99

Global variablemacros
Default value: []

macros is the list of user-defined macro functions. The macro function definition oper-
ator ::= puts a new macro function onto this list, and kill, remove, and remfunction

remove macro functions from the list.

See also infolists.

Functionsplice (a)
Splices (interpolates) the list named by the atom a into an expression, but only if
splice appears within buildq; otherwise, splice is treated as an undefined func-
tion. If appearing within buildq as a alone (without splice), a is substituted (not
interpolated) as a list into the result. The argument of splice can only be an atom;
it cannot be a literal list or an expression which yields a list.

Typically splice supplies the arguments for a function or operator. For a function
f, the expression f (splice (a)) within buildq expands to f (a[1], a[2], a[3],
...). For an operator o, the expression "o" (splice (a)) within buildq expands to
"o" (a[1], a[2], a[3], ...), where o may be any type of operator (typically one
which takes multiple arguments). Note that the operator must be enclosed in double
quotes ".

Examples

578 Maxima 5.35.1 Manual

(%i1) buildq ([x: [1, %pi, z - y]], foo (splice (x)) / length (x));
foo(1, %pi, z - y)

(%o1) -----------------------
length([1, %pi, z - y])

(%i2) buildq ([x: [1, %pi]], "/" (splice (x)));
1

(%o2) ---
%pi

(%i3) matchfix ("<>", "<>");
(%o3) <>
(%i4) buildq ([x: [1, %pi, z - y]], "<>" (splice (x)));
(%o4) <>1, %pi, z - y<>

36.4 Functions and Variables for Function Definition

Functionapply (F, [x 1, . . . , x n])
Constructs and evaluates an expression F(arg 1, ..., arg n).

apply does not attempt to distinguish array functions from ordinary functions; when
F is the name of an array function, apply evaluates F(...) (that is, a function call
with parentheses instead of square brackets). arrayapply evaluates a function call
with square brackets in this case.

Examples:

apply evaluates its arguments. In this example, min is applied to the value of L.

(%i1) L : [1, 5, -10.2, 4, 3];
(%o1) [1, 5, - 10.2, 4, 3]
(%i2) apply (min, L);
(%o2) - 10.2

apply evaluates arguments, even if the function F quotes them.

(%i1) F (x) := x / 1729;
x

(%o1) F(x) := ----
1729

(%i2) fname : F;
(%o2) F
(%i3) dispfun (F);

x
(%t3) F(x) := ----

1729

(%o3) [%t3]
(%i4) dispfun (fname);
fname is not the name of a user function.
-- an error. Quitting. To debug this try debugmode(true);
(%i5) apply (dispfun, [fname]);

x
(%t5) F(x) := ----

1729

Chapter 36: Function Definition 579

(%o5) [%t5]

apply evaluates the function name F. Single quote ’ defeats evaluation. demoivre is
the name of a global variable and also a function.

(%i1) demoivre;
(%o1) false
(%i2) demoivre (exp (%i * x));
(%o2) %i sin(x) + cos(x)
(%i3) apply (demoivre, [exp (%i * x)]);
demoivre evaluates to false
Improper name or value in functional position.
-- an error. Quitting. To debug this try debugmode(true);
(%i4) apply (’demoivre, [exp (%i * x)]);
(%o4) %i sin(x) + cos(x)

Functionblock
block ([v 1, . . . , v m], expr 1, . . . , expr n)
block (expr 1, . . . , expr n)

block evaluates expr 1, . . . , expr n in sequence and returns the value of the last
expression evaluated. The sequence can be modified by the go, throw, and return

functions. The last expression is expr n unless return or an expression containing
throw is evaluated. Some variables v 1, . . . , v m can be declared local to the block;
these are distinguished from global variables of the same names. If no variables are
declared local then the list may be omitted. Within the block, any variable other
than v 1, . . . , v m is a global variable.

block saves the current values of the variables v 1, . . . , v m (if any) upon entry to
the block, then unbinds the variables so that they evaluate to themselves. The local
variables may be bound to arbitrary values within the block but when the block is
exited the saved values are restored, and the values assigned within the block are lost.

The declaration local(v 1, ..., v m) within block saves the properties associated
with the symbols v 1, . . . , v m, removes any properties before evaluating other expres-
sions, and restores any saved properties on exit from the block. Some declarations are
implemented as properties of a symbol, including :=, array, dependencies, atvalue,
matchdeclare, atomgrad, constant, nonscalar, assume, and some others. The ef-
fect of local is to make such declarations effective only within the block; otherwise
declarations within a block are actually global declarations.

block may appear within another block. Local variables are established each time a
new block is evaluated. Local variables appear to be global to any enclosed blocks.
If a variable is non-local in a block, its value is the value most recently assigned
by an enclosing block, if any, otherwise, it is the value of the variable in the global
environment. This policy may coincide with the usual understanding of "dynamic
scope".

The value of the block is the value of the last statement or the value of the argument
to the function return which may be used to exit explicitly from the block. The
function go may be used to transfer control to the statement of the block that is
tagged with the argument to go. To tag a statement, precede it by an atomic argument

580 Maxima 5.35.1 Manual

as another statement in the block. For example: block ([x], x:1, loop, x: x+1,

..., go(loop), ...). The argument to go must be the name of a tag appearing
within the block. One cannot use go to transfer to a tag in a block other than the
one containing the go.

Blocks typically appear on the right side of a function definition but can be used in
other places as well.

Functionbreak (expr 1, . . . , expr n)
Evaluates and prints expr 1, . . . , expr n and then causes a Maxima break at which
point the user can examine and change his environment. Upon typing exit; the
computation resumes.

Functioncatch (expr 1, . . . , expr n)
Evaluates expr 1, . . . , expr n one by one; if any leads to the evaluation of an ex-
pression of the form throw (arg), then the value of the catch is the value of throw
(arg), and no further expressions are evaluated. This "non-local return" thus goes
through any depth of nesting to the nearest enclosing catch. If there is no catch

enclosing a throw, an error message is printed.

If the evaluation of the arguments does not lead to the evaluation of any throw then
the value of catch is the value of expr n.

(%i1) lambda ([x], if x < 0 then throw(x) else f(x))$
(%i2) g(l) := catch (map (’’%, l))$
(%i3) g ([1, 2, 3, 7]);
(%o3) [f(1), f(2), f(3), f(7)]
(%i4) g ([1, 2, -3, 7]);
(%o4) - 3

The function g returns a list of f of each element of l if l consists only of non-negative
numbers; otherwise, g "catches" the first negative element of l and "throws" it up.

Functioncompfile
compfile (filename, f 1, . . . , f n)
compfile (filename, functions)
compfile (filename, all)

Translates Maxima functions into Lisp and writes the translated code into the file
filename.

compfile(filename, f 1, ..., f n) translates the specified functions. compfile (file-
name, functions) and compfile (filename, all) translate all user-defined func-
tions.

The Lisp translations are not evaluated, nor is the output file processed by the Lisp
compiler. translate creates and evaluates Lisp translations. compile_file trans-
lates Maxima into Lisp, and then executes the Lisp compiler.

See also translate, translate_file, and compile_file.

Chapter 36: Function Definition 581

Functioncompile
compile (f 1, . . . , f n)
compile (functions)
compile (all)

Translates Maxima functions f 1, . . . , f n into Lisp, evaluates the Lisp translations,
and calls the Lisp function COMPILE on each translated function. compile returns a
list of the names of the compiled functions.

compile (all) or compile (functions) compiles all user-defined functions.

compile quotes its arguments; the quote-quote operator ’’ defeats quotation.

Functiondefine
define (f (x 1, . . . , x n), expr)
define (f [x 1, . . . , x n], expr)
define (f [x 1, . . . , x n](y 1, . . . , y m), expr)
define (funmake (f, [x 1, . . . , x n]), expr)
define (arraymake (f, [x 1, . . . , x n]), expr)

define (ev (expr 1), expr 2)

Defines a function named f with arguments x 1, . . . , x n and function body expr.
define always evaluates its second argument (unless explicitly quoted). The func-
tion so defined may be an ordinary Maxima function (with arguments enclosed in
parentheses) or an array function (with arguments enclosed in square brackets).

When the last or only function argument x n is a list of one element, the function
defined by define accepts a variable number of arguments. Actual arguments are
assigned one-to-one to formal arguments x 1, . . . , x (n - 1), and any further actual
arguments, if present, are assigned to x n as a list.

When the first argument of define is an expression of the form f (x 1, ..., x n) or
f [x 1, ..., x n], the function arguments are evaluated but f is not evaluated, even
if there is already a function or variable by that name.

When the first argument is an expression with operator funmake, arraymake, or ev,
the first argument is evaluated; this allows for the function name to be computed, as
well as the body.

All function definitions appear in the same namespace; defining a function f within an-
other function g does not automatically limit the scope of f to g. However, local(f)
makes the definition of function f effective only within the block or other compound
expression in which local appears.

If some formal argument x k is a quoted symbol (after evaluation), the function
defined by define does not evaluate the corresponding actual argument. Otherwise
all actual arguments are evaluated.

See also := and ::=.

Examples:

define always evaluates its second argument (unless explicitly quoted).

(%i1) expr : cos(y) - sin(x);
(%o1) cos(y) - sin(x)

582 Maxima 5.35.1 Manual

(%i2) define (F1 (x, y), expr);
(%o2) F1(x, y) := cos(y) - sin(x)
(%i3) F1 (a, b);
(%o3) cos(b) - sin(a)
(%i4) F2 (x, y) := expr;
(%o4) F2(x, y) := expr
(%i5) F2 (a, b);
(%o5) cos(y) - sin(x)

The function defined by define may be an ordinary Maxima function or an array
function.

(%i1) define (G1 (x, y), x.y - y.x);
(%o1) G1(x, y) := x . y - y . x
(%i2) define (G2 [x, y], x.y - y.x);
(%o2) G2 := x . y - y . x

x, y

When the last or only function argument x n is a list of one element, the function
defined by define accepts a variable number of arguments.

(%i1) define (H ([L]), ’(apply ("+", L)));
(%o1) H([L]) := apply("+", L)
(%i2) H (a, b, c);
(%o2) c + b + a

When the first argument is an expression with operator funmake, arraymake, or ev,
the first argument is evaluated.

(%i1) [F : I, u : x];
(%o1) [I, x]
(%i2) funmake (F, [u]);
(%o2) I(x)
(%i3) define (funmake (F, [u]), cos(u) + 1);
(%o3) I(x) := cos(x) + 1
(%i4) define (arraymake (F, [u]), cos(u) + 1);
(%o4) I := cos(x) + 1

x
(%i5) define (foo (x, y), bar (y, x));
(%o5) foo(x, y) := bar(y, x)
(%i6) define (ev (foo (x, y)), sin(x) - cos(y));
(%o6) bar(y, x) := sin(x) - cos(y)

Functiondefine variable (name, default value, mode)
Introduces a global variable into the Maxima environment. define_variable is useful
in user-written packages, which are often translated or compiled.

define_variable carries out the following steps:

1. mode_declare (name, mode) declares the mode of name to the translator. See
mode_declare for a list of the possible modes.

2. If the variable is unbound, default value is assigned to name.

3. Associates name with a test function to ensure that name is only assigned values
of the declared mode.

Chapter 36: Function Definition 583

The value_check property can be assigned to any variable which has been defined
via define_variable with a mode other than any. The value_check property is a
lambda expression or the name of a function of one variable, which is called when an
attempt is made to assign a value to the variable. The argument of the value_check

function is the would-be assigned value.

define_variable evaluates default_value, and quotes name and mode. define_

variable returns the current value of name, which is default_value if name was
unbound before, and otherwise it is the previous value of name.

Examples:

foo is a Boolean variable, with the initial value true.

(%i1) define_variable (foo, true, boolean);
(%o1) true
(%i2) foo;
(%o2) true
(%i3) foo: false;
(%o3) false
(%i4) foo: %pi;
Error: foo was declared mode boolean, has value: %pi
-- an error. Quitting. To debug this try debugmode(true);
(%i5) foo;
(%o5) false

bar is an integer variable, which must be prime.

(%i1) define_variable (bar, 2, integer);
(%o1) 2
(%i2) qput (bar, prime_test, value_check);
(%o2) prime_test
(%i3) prime_test (y) := if not primep(y) then

error (y, "is not prime.");
(%o3) prime_test(y) := if not primep(y)

then error(y, "is not prime.")
(%i4) bar: 1439;
(%o4) 1439
(%i5) bar: 1440;
1440 is not prime.
#0: prime_test(y=1440)
-- an error. Quitting. To debug this try debugmode(true);
(%i6) bar;
(%o6) 1439

baz_quux is a variable which cannot be assigned a value. The mode any_check is
like any, but any_check enables the value_check mechanism, and any does not.

(%i1) define_variable (baz_quux, ’baz_quux, any_check);
(%o1) baz_quux
(%i2) F: lambda ([y], if y # ’baz_quux then

error ("Cannot assign to ‘baz_quux’."));
(%o2) lambda([y], if y # ’baz_quux

584 Maxima 5.35.1 Manual

then error(Cannot assign to ‘baz_quux’.))
(%i3) qput (baz_quux, ’’F, value_check);
(%o3) lambda([y], if y # ’baz_quux

then error(Cannot assign to ‘baz_quux’.))
(%i4) baz_quux: ’baz_quux;
(%o4) baz_quux
(%i5) baz_quux: sqrt(2);
Cannot assign to ‘baz_quux’.
#0: lambda([y],if y # ’baz_quux then

error("Cannot assign to ‘baz_quux’."))(y=sqrt(2))
-- an error. Quitting. To debug this try debugmode(true);
(%i6) baz_quux;
(%o6) baz_quux

Functiondispfun
dispfun (f 1, . . . , f n)
dispfun (all)

Displays the definition of the user-defined functions f 1, . . . , f n. Each argument may
be the name of a macro (defined with ::=), an ordinary function (defined with := or
define), an array function (defined with := or define, but enclosing arguments in
square brackets []), a subscripted function, (defined with := or define, but enclosing
some arguments in square brackets and others in parentheses ()) one of a family
of subscripted functions selected by a particular subscript value, or a subscripted
function defined with a constant subscript.

dispfun (all) displays all user-defined functions as given by the functions, arrays,
and macros lists, omitting subscripted functions defined with constant subscripts.

dispfun creates an intermediate expression label (%t1, %t2, etc.) for each displayed
function, and assigns the function definition to the label. In contrast, fundef returns
the function definition.

dispfun quotes its arguments; the quote-quote operator ’’ defeats quotation.
dispfun returns the list of intermediate expression labels corresponding to the
displayed functions.

Examples:

(%i1) m(x, y) ::= x^(-y);
- y

(%o1) m(x, y) ::= x
(%i2) f(x, y) := x^(-y);

- y
(%o2) f(x, y) := x
(%i3) g[x, y] := x^(-y);

- y
(%o3) g := x

x, y
(%i4) h[x](y) := x^(-y);

- y
(%o4) h (y) := x

Chapter 36: Function Definition 585

x
(%i5) i[8](y) := 8^(-y);

- y
(%o5) i (y) := 8

8
(%i6) dispfun (m, f, g, h, h[5], h[10], i[8]);

- y
(%t6) m(x, y) ::= x

- y
(%t7) f(x, y) := x

- y
(%t8) g := x

x, y

- y
(%t9) h (y) := x

x

1
(%t10) h (y) := --

5 y
5

1
(%t11) h (y) := ---

10 y
10

- y
(%t12) i (y) := 8

8

(%o12) [%t6, %t7, %t8, %t9, %t10, %t11, %t12]
(%i12) ’’%;

- y - y - y
(%o12) [m(x, y) ::= x , f(x, y) := x , g := x ,

x, y
- y 1 1 - y

h (y) := x , h (y) := --, h (y) := ---, i (y) := 8]
x 5 y 10 y 8

5 10

Functionfullmap (f, expr 1, . . .)
Similar to map, but fullmap keeps mapping down all subexpressions until the main
operators are no longer the same.

fullmap is used by the Maxima simplifier for certain matrix manipulations; thus,
Maxima sometimes generates an error message concerning fullmap even though
fullmap was not explicitly called by the user.

586 Maxima 5.35.1 Manual

Examples:

(%i1) a + b * c;
(%o1) b c + a
(%i2) fullmap (g, %);
(%o2) g(b) g(c) + g(a)
(%i3) map (g, %th(2));
(%o3) g(b c) + g(a)

Functionfullmapl (f, list 1, . . .)
Similar to fullmap, but fullmapl only maps onto lists and matrices.

Example:

(%i1) fullmapl ("+", [3, [4, 5]], [[a, 1], [0, -1.5]]);
(%o1) [[a + 3, 4], [4, 3.5]]

System variablefunctions
Default value: []

functions is the list of ordinary Maxima functions in the current session. An ordinary
function is a function constructed by define or := and called with parentheses (). A
function may be defined at the Maxima prompt or in a Maxima file loaded by load

or batch.

Array functions (called with square brackets, e.g., F[x]) and subscripted functions
(called with square brackets and parentheses, e.g., F[x](y)) are listed by the global
variable arrays, and not by functions.

Lisp functions are not kept on any list.

Examples:

(%i1) F_1 (x) := x - 100;
(%o1) F_1(x) := x - 100
(%i2) F_2 (x, y) := x / y;

x
(%o2) F_2(x, y) := -

y
(%i3) define (F_3 (x), sqrt (x));
(%o3) F_3(x) := sqrt(x)
(%i4) G_1 [x] := x - 100;
(%o4) G_1 := x - 100

x
(%i5) G_2 [x, y] := x / y;

x
(%o5) G_2 := -

x, y y
(%i6) define (G_3 [x], sqrt (x));
(%o6) G_3 := sqrt(x)

x
(%i7) H_1 [x] (y) := x^y;

y

Chapter 36: Function Definition 587

(%o7) H_1 (y) := x
x

(%i8) functions;
(%o8) [F_1(x), F_2(x, y), F_3(x)]
(%i9) arrays;
(%o9) [G_1, G_2, G_3, H_1]

Functionfundef (f)
Returns the definition of the function f.

The argument may be the name of a macro (defined with ::=), an ordinary function
(defined with := or define), an array function (defined with := or define, but
enclosing arguments in square brackets []), a subscripted function, (defined with :=

or define, but enclosing some arguments in square brackets and others in parentheses
()) one of a family of subscripted functions selected by a particular subscript value,
or a subscripted function defined with a constant subscript.

fundef quotes its argument; the quote-quote operator ’’ defeats quotation.

fundef (f) returns the definition of f. In contrast, dispfun (f) creates an interme-
diate expression label and assigns the definition to the label.

Functionfunmake (F, [arg 1, . . . , arg n])
Returns an expression F(arg 1, ..., arg n). The return value is simplified, but not
evaluated, so the function F is not called, even if it exists.

funmake does not attempt to distinguish array functions from ordinary functions;
when F is the name of an array function, funmake returns F(...) (that is, a function
call with parentheses instead of square brackets). arraymake returns a function call
with square brackets in this case.

funmake evaluates its arguments.

Examples:

funmake applied to an ordinary Maxima function.

(%i1) F (x, y) := y^2 - x^2;
2 2

(%o1) F(x, y) := y - x
(%i2) funmake (F, [a + 1, b + 1]);
(%o2) F(a + 1, b + 1)
(%i3) ’’%;

2 2
(%o3) (b + 1) - (a + 1)

funmake applied to a macro.

(%i1) G (x) ::= (x - 1)/2;
x - 1

(%o1) G(x) ::= -----
2

(%i2) funmake (G, [u]);
(%o2) G(u)
(%i3) ’’%;

588 Maxima 5.35.1 Manual

u - 1
(%o3) -----

2

funmake applied to a subscripted function.

(%i1) H [a] (x) := (x - 1)^a;
a

(%o1) H (x) := (x - 1)
a

(%i2) funmake (H [n], [%e]);
n

(%o2) lambda([x], (x - 1))(%e)
(%i3) ’’%;

n
(%o3) (%e - 1)
(%i4) funmake (’(H [n]), [%e]);
(%o4) H (%e)

n
(%i5) ’’%;

n
(%o5) (%e - 1)

funmake applied to a symbol which is not a defined function of any kind.

(%i1) funmake (A, [u]);
(%o1) A(u)
(%i2) ’’%;
(%o2) A(u)

funmake evaluates its arguments, but not the return value.

(%i1) det(a,b,c) := b^2 -4*a*c;
2

(%o1) det(a, b, c) := b - 4 a c
(%i2) (x : 8, y : 10, z : 12);
(%o2) 12
(%i3) f : det;
(%o3) det
(%i4) funmake (f, [x, y, z]);
(%o4) det(8, 10, 12)
(%i5) ’’%;
(%o5) - 284

Maxima simplifies funmake’s return value.

(%i1) funmake (sin, [%pi / 2]);
(%o1) 1

Functionlambda
lambda ([x 1, . . . , x m], expr 1, . . . , expr n)
lambda ([[L]], expr 1, . . . , expr n)
lambda ([x 1, . . . , x m, [L]], expr 1, . . . , expr n)

Defines and returns a lambda expression (that is, an anonymous function). The
function may have required arguments x 1, . . . , x m and/or optional arguments L,

Chapter 36: Function Definition 589

which appear within the function body as a list. The return value of the function
is expr n. A lambda expression can be assigned to a variable and evaluated like an
ordinary function. A lambda expression may appear in some contexts in which a
function name is expected.

When the function is evaluated, unbound local variables x 1, . . . , x m are created.
lambda may appear within block or another lambda; local variables are established
each time another block or lambda is evaluated. Local variables appear to be global
to any enclosed block or lambda. If a variable is not local, its value is the value most
recently assigned in an enclosing block or lambda, if any, otherwise, it is the value
of the variable in the global environment. This policy may coincide with the usual
understanding of "dynamic scope".

After local variables are established, expr 1 through expr n are evaluated in turn. The
special variable %%, representing the value of the preceding expression, is recognized.
throw and catch may also appear in the list of expressions.

return cannot appear in a lambda expression unless enclosed by block, in which case
return defines the return value of the block and not of the lambda expression, unless
the block happens to be expr n. Likewise, go cannot appear in a lambda expression
unless enclosed by block.

lambda quotes its arguments; the quote-quote operator ’’ defeats quotation.

Examples:

• A lambda expression can be assigned to a variable and evaluated like an ordinary
function.

(%i1) f: lambda ([x], x^2);
2

(%o1) lambda([x], x)
(%i2) f(a);

2
(%o2) a

• A lambda expression may appear in contexts in which a function evaluation is
expected.

(%i3) lambda ([x], x^2) (a);
2

(%o3) a
(%i4) apply (lambda ([x], x^2), [a]);

2
(%o4) a
(%i5) map (lambda ([x], x^2), [a, b, c, d, e]);

2 2 2 2 2
(%o5) [a , b , c , d , e]

• Argument variables are local variables. Other variables appear to be global
variables. Global variables are evaluated at the time the lambda expression is
evaluated, unless some special evaluation is forced by some means, such as ’’.

(%i6) a: %pi$
(%i7) b: %e$
(%i8) g: lambda ([a], a*b);

590 Maxima 5.35.1 Manual

(%o8) lambda([a], a b)
(%i9) b: %gamma$
(%i10) g(1/2);

%gamma
(%o10) ------

2
(%i11) g2: lambda ([a], a*’’b);
(%o11) lambda([a], a %gamma)
(%i12) b: %e$
(%i13) g2(1/2);

%gamma
(%o13) ------

2

• Lambda expressions may be nested. Local variables within the outer lambda
expression appear to be global to the inner expression unless masked by local
variables of the same names.

(%i14) h: lambda ([a, b], h2: lambda ([a], a*b), h2(1/2));
1

(%o14) lambda([a, b], h2 : lambda([a], a b), h2(-))
2

(%i15) h(%pi, %gamma);
%gamma

(%o15) ------
2

• Since lambda quotes its arguments, lambda expression i below does not define
a "multiply by a" function. Such a function can be defined via buildq, as in
lambda expression i2 below.

(%i16) i: lambda ([a], lambda ([x], a*x));
(%o16) lambda([a], lambda([x], a x))
(%i17) i(1/2);
(%o17) lambda([x], a x)
(%i18) i2: lambda([a], buildq([a: a], lambda([x], a*x)));
(%o18) lambda([a], buildq([a : a], lambda([x], a x)))
(%i19) i2(1/2);

x
(%o19) lambda([x], -)

2
(%i20) i2(1/2)(%pi);

%pi
(%o20) ---

2

• A lambda expression may take a variable number of arguments, which are indi-
cated by [L] as the sole or final argument. The arguments appear within the
function body as a list.

(%i1) f : lambda ([aa, bb, [cc]], aa * cc + bb);
(%o1) lambda([aa, bb, [cc]], aa cc + bb)
(%i2) f (foo, %i, 17, 29, 256);
(%o2) [17 foo + %i, 29 foo + %i, 256 foo + %i]

Chapter 36: Function Definition 591

(%i3) g : lambda ([[aa]], apply ("+", aa));
(%o3) lambda([[aa]], apply(+, aa))
(%i4) g (17, 29, x, y, z, %e);
(%o4) z + y + x + %e + 46

Functionlocal (v 1, . . . , v n)
Saves the properties associated with the symbols v 1, . . . , v n, removes any properties
before evaluating other expressions, and restores any saved properties on exit from
the block or other compound expression in which local appears.

Some declarations are implemented as properties of a symbol, including :=, array,
dependencies, atvalue, matchdeclare, atomgrad, constant, nonscalar, assume,
and some others. The effect of local is to make such declarations effective only
within the block or other compound expression in which local appears; otherwise
such declarations are global declarations.

local can only appear in block or in the body of a function definition or lambda

expression, and only one occurrence is permitted in each.

local quotes its arguments. local returns done.

Example:

A local function definition.

(%i1) foo (x) := 1 - x;
(%o1) foo(x) := 1 - x
(%i2) foo (100);
(%o2) - 99
(%i3) block (local (foo), foo (x) := 2 * x, foo (100));
(%o3) 200
(%i4) foo (100);
(%o4) - 99

Option variablemacroexpansion
Default value: false

macroexpansion controls whether the expansion (that is, the return value) of a macro
function is substituted for the macro function call. A substitution may speed up
subsequent expression evaluations, at the cost of storing the expansion.

false The expansion of a macro function is not substituted for the macro func-
tion call.

expand The first time a macro function call is evaluated, the expansion is stored.
The expansion is not recomputed on subsequent calls; any side effects
(such as print or assignment to global variables) happen only when the
macro function call is first evaluated. Expansion in an expression does
not affect other expressions which have the same macro function call.

displace The first time a macro function call is evaluated, the expansion is substi-
tuted for the call, thus modifying the expression from which the macro
function was called. The expansion is not recomputed on subsequent

592 Maxima 5.35.1 Manual

calls; any side effects happen only when the macro function call is first
evaluated. Expansion in an expression does not affect other expressions
which have the same macro function call.

Examples

When macroexpansion is false, a macro function is called every time the calling
expression is evaluated, and the calling expression is not modified.

(%i1) f (x) := h (x) / g (x);
h(x)

(%o1) f(x) := ----
g(x)

(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
return (x + 99));

(%o2) g(x) ::= block(print("x + 99 is equal to", x),
return(x + 99))

(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
return (x - 99));

(%o3) h(x) ::= block(print("x - 99 is equal to", x),
return(x - 99))

(%i4) macroexpansion: false;
(%o4) false
(%i5) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o5) --------

a b + 99
(%i6) dispfun (f);

h(x)
(%t6) f(x) := ----

g(x)

(%o6) done
(%i7) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o7) --------

a b + 99

When macroexpansion is expand, a macro function is called once, and the calling
expression is not modified.

(%i1) f (x) := h (x) / g (x);
h(x)

(%o1) f(x) := ----
g(x)

(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
return (x + 99));

(%o2) g(x) ::= block(print("x + 99 is equal to", x),
return(x + 99))

Chapter 36: Function Definition 593

(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
return (x - 99));

(%o3) h(x) ::= block(print("x - 99 is equal to", x),
return(x - 99))

(%i4) macroexpansion: expand;
(%o4) expand
(%i5) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o5) --------

a b + 99
(%i6) dispfun (f);

h(x)
(%t6) f(x) := ----

g(x)

(%o6) done
(%i7) f (a * b);

a b - 99
(%o7) --------

a b + 99

When macroexpansion is expand, a macro function is called once, and the calling
expression is modified.

(%i1) f (x) := h (x) / g (x);
h(x)

(%o1) f(x) := ----
g(x)

(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
return (x + 99));

(%o2) g(x) ::= block(print("x + 99 is equal to", x),
return(x + 99))

(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
return (x - 99));

(%o3) h(x) ::= block(print("x - 99 is equal to", x),
return(x - 99))

(%i4) macroexpansion: displace;
(%o4) displace
(%i5) f (a * b);
x - 99 is equal to x
x + 99 is equal to x

a b - 99
(%o5) --------

a b + 99
(%i6) dispfun (f);

x - 99
(%t6) f(x) := ------

x + 99

594 Maxima 5.35.1 Manual

(%o6) done
(%i7) f (a * b);

a b - 99
(%o7) --------

a b + 99

Option variablemode checkp
Default value: true

When mode_checkp is true, mode_declare checks the modes of bound variables.

Option variablemode check errorp
Default value: false

When mode_check_errorp is true, mode_declare calls error.

Option variablemode check warnp
Default value: true

When mode_check_warnp is true, mode errors are described.

Functionmode declare (y 1, mode 1, . . . , y n, mode n)
mode_declare is used to declare the modes of variables and functions for subsequent
translation or compilation of functions. mode_declare is typically placed at the
beginning of a function definition, at the beginning of a Maxima script, or executed
at the interactive prompt.

The arguments of mode_declare are pairs consisting of a variable and a mode which
is one of boolean, fixnum, number, rational, or float. Each variable may also be
a list of variables all of which are declared to have the same mode.

If a variable is an array, and if every element of the array which is referenced has a
value then array (yi, complete, dim1, dim2, ...) rather than

array(yi, dim1, dim2, ...)

should be used when first declaring the bounds of the array. If all the elements of the
array are of mode fixnum (float), use fixnum (float) instead of complete. Also if
every element of the array is of the same mode, say m, then

mode_declare (completearray (yi), m))

should be used for efficient translation.

Numeric code using arrays might run faster by declaring the expected size of the
array, as in:

mode_declare (completearray (a [10, 10]), float)

for a floating point number array which is 10 x 10.

One may declare the mode of the result of a function by using function (f_1, f_2,

...) as an argument; here f_1, f_2, . . . are the names of functions. For example the
expression,

mode_declare ([function (f_1, f_2, ...)], fixnum)

declares that the values returned by f_1, f_2, . . . are single-word integers.

modedeclare is a synonym for mode_declare.

Chapter 36: Function Definition 595

Functionmode identity (arg 1, arg 2)
A special form used with mode_declare and macros to declare, e.g., a list of lists of
flonums, or other compound data object. The first argument to mode_identity is
a primitive value mode name as given to mode_declare (i.e., one of float, fixnum,
number, list, or any), and the second argument is an expression which is evaluated
and returned as the value of mode_identity. However, if the return value is not
allowed by the mode declared in the first argument, an error or warning is signalled.
The important thing is that the mode of the expression as determined by the Maxima
to Lisp translator, will be that given as the first argument, independent of anything
that goes on in the second argument. E.g., x: 3.3; mode_identity (fixnum, x);

yields an error. mode_identity (flonum, x) returns 3.3 . This has a number of
uses, e.g., if you knew that first (l) returned a number then you might write mode_
identity (number, first (l)). However, a more efficient way to do it would be to
define a new primitive,

firstnumb (x) ::= buildq ([x], mode_identity (number, first(x)));

and use firstnumb every time you take the first of a list of numbers.

Functionremfunction
remfunction (f 1, . . . , f n)
remfunction (all)

Unbinds the function definitions of the symbols f 1, . . . , f n. The arguments may
be the names of ordinary functions (created by := or define) or macro functions
(created by ::=).

remfunction (all) unbinds all function definitions.

remfunction quotes its arguments.

remfunction returns a list of the symbols for which the function definition was un-
bound. false is returned in place of any symbol for which there is no function
definition.

remfunction does not apply to array functions or subscripted functions. remarray

applies to those types of functions.

Option variablesavedef
Default value: true

When savedef is true, the Maxima version of a user function is preserved when the
function is translated. This permits the definition to be displayed by dispfun and
allows the function to be edited.

When savedef is false, the names of translated functions are removed from the
functions list.

Option variabletranscompile
Default value: true

When transcompile is true, translate and translate_file generate declarations
to make the translated code more suitable for compilation.

compfile sets transcompile: true for the duration.

596 Maxima 5.35.1 Manual

Functiontranslate
translate (f 1, . . . , f n)
translate (functions)
translate (all)

Translates the user-defined functions f 1, . . . , f n from the Maxima language into Lisp
and evaluates the Lisp translations. Typically the translated functions run faster than
the originals.

translate (all) or translate (functions) translates all user-defined functions.

Functions to be translated should include a call to mode_declare at the beginning
when possible in order to produce more efficient code. For example:

f (x_1, x_2, ...) := block ([v_1, v_2, ...],
mode_declare (v_1, mode_1, v_2, mode_2, ...), ...)

where the x 1, x 2, . . . are the parameters to the function and the v 1, v 2, . . . are
the local variables.

The names of translated functions are removed from the functions list if savedef is
false (see below) and are added to the props lists.

Functions should not be translated unless they are fully debugged.

Expressions are assumed simplified; if they are not, correct but non-optimal code gets
generated. Thus, the user should not set the simp switch to false which inhibits
simplification of the expressions to be translated.

The switch translate, if true, causes automatic translation of a user’s function to
Lisp.

Note that translated functions may not run identically to the way they did before
translation as certain incompatabilities may exist between the Lisp and Maxima ver-
sions. Principally, the rat function with more than one argument and the ratvars

function should not be used if any variables are mode_declare’d canonical rational
expressions (CRE). Also the prederror: false setting will not translate.

savedef - if true will cause the Maxima version of a user function to remain when
the function is translate’d. This permits the definition to be displayed by dispfun

and allows the function to be edited.

transrun - if false will cause the interpreted version of all functions to be run
(provided they are still around) rather than the translated version.

The result returned by translate is a list of the names of the functions translated.

Functiontranslate file
translate_file (maxima filename)
translate_file (maxima filename, lisp filename)

Translates a file of Maxima code into a file of Lisp code. translate_file returns a
list of three filenames: the name of the Maxima file, the name of the Lisp file, and the
name of file containing additional information about the translation. translate_file
evaluates its arguments.

translate_file ("foo.mac"); load("foo.LISP") is the same as the command
batch ("foo.mac") except for certain restrictions, the use of ’’ and %, for example.

Chapter 36: Function Definition 597

translate_file (maxima filename) translates a Maxima file maxima filename into
a similarly-named Lisp file. For example, foo.mac is translated into foo.LISP. The
Maxima filename may include a directory name or names, in which case the Lisp
output file is written to the same directory from which the Maxima input comes.

translate_file (maxima filename, lisp filename) translates a Maxima file max-
ima filename into a Lisp file lisp filename. translate_file ignores the filename
extension, if any, of lisp_filename; the filename extension of the Lisp output file is
always LISP. The Lisp filename may include a directory name or names, in which
case the Lisp output file is written to the specified directory.

translate_file also writes a file of translator warning messages of various degrees
of severity. The filename extension of this file is UNLISP. This file may contain
valuable information, though possibly obscure, for tracking down bugs in translated
code. The UNLISP file is always written to the same directory from which the Maxima
input comes.

translate_file emits Lisp code which causes some declarations and definitions to
take effect as soon as the Lisp code is compiled. See compile_file for more on this
topic.

See also

tr_array_as_ref,
tr_bound_function_applyp,
tr_exponent,
tr_file_tty_messagesp,
tr_float_can_branch_complex,
tr_function_call_default,
tr_numer,
tr_optimize_max_loop,
tr_semicompile,
tr_state_vars,
tr_warnings_get,
tr_warn_bad_function_calls,
tr_warn_fexpr,
tr_warn_meval,
tr_warn_mode,
tr_warn_undeclared,
and tr_warn_undefined_variable.

Option variabletransrun
Default value: true

When transrun is false will cause the interpreted version of all functions to be run
(provided they are still around) rather than the translated version.

Option variabletr array as ref
Default value: true

If translate_fast_arrays is false, array references in Lisp code emitted by
translate_file are affected by tr_array_as_ref. When tr_array_as_ref is

598 Maxima 5.35.1 Manual

true, array names are evaluated, otherwise array names appear as literal symbols in
translated code.

tr_array_as_ref has no effect if translate_fast_arrays is true.

Option variabletr bound function applyp
Default value: true

When tr_bound_function_applyp is true, Maxima gives a warning if a bound vari-
able (such as a function argument) is found being used as a function. tr_bound_

function_applyp does not affect the code generated in such cases.

For example, an expression such as g (f, x) := f (x+1) will trigger the warning
message.

Option variabletr file tty messagesp
Default value: false

When tr_file_tty_messagesp is true, messages generated by translate_file dur-
ing translation of a file are displayed on the console and inserted into the UNLISP
file. When false, messages about translation of the file are only inserted into the
UNLISP file.

Option variabletr float can branch complex
Default value: true

Tells the Maxima-to-Lisp translator to assume that the functions acos, asin, asec,
and acsc can return complex results.

The ostensible effect of tr_float_can_branch_complex is the following. However, it
appears that this flag has no effect on the translator output.

When it is true then acos(x) is of mode any even if x is of mode float (as set by
mode_declare). When false then acos(x) is of mode float if and only if x is of
mode float.

Option variabletr function call default
Default value: general

false means give up and call meval, expr means assume Lisp fixed arg function.
general, the default gives code good for mexprs and mlexprs but not macros.
general assures variable bindings are correct in compiled code. In general mode,
when translating F(X), if F is a bound variable, then it assumes that apply (f, [x])

is meant, and translates a such, with appropriate warning. There is no need to turn
this off. With the default settings, no warning messages implies full compatibility of
translated and compiled code with the Maxima interpreter.

Option variabletr numer
Default value: false

When tr_numer is true, numer properties are used for atoms which have them, e.g.
%pi.

Chapter 36: Function Definition 599

Option variabletr optimize max loop
Default value: 100

tr_optimize_max_loop is the maximum number of times the macro-expansion and
optimization pass of the translator will loop in considering a form. This is to catch
macro expansion errors, and non-terminating optimization properties.

Option variabletr semicompile
Default value: false

When tr_semicompile is true, translate_file and compfile output forms which
will be macroexpanded but not compiled into machine code by the Lisp compiler.

System variabletr state vars
Default value:

[transcompile, tr_semicompile, tr_warn_undeclared, tr_warn_meval,
tr_warn_fexpr, tr_warn_mode, tr_warn_undefined_variable,
tr_function_call_default, tr_array_as_ref,tr_numer]

The list of the switches that affect the form of the translated output. This information
is useful to system people when trying to debug the translator. By comparing the
translated product to what should have been produced for a given state, it is possible
to track down bugs.

Functiontr warnings get ()
Prints a list of warnings which have been given by the translator during the current
translation.

Option variabletr warn bad function calls
Default value: true

- Gives a warning when when function calls are being made which may not be correct
due to improper declarations that were made at translate time.

Option variabletr warn fexpr
Default value: compfile

- Gives a warning if any FEXPRs are encountered. FEXPRs should not normally be
output in translated code, all legitimate special program forms are translated.

Option variabletr warn meval
Default value: compfile

- Gives a warning if the function meval gets called. If meval is called that indicates
problems in the translation.

Option variabletr warn mode
Default value: all

- Gives a warning when variables are assigned values inappropriate for their mode.

600 Maxima 5.35.1 Manual

Option variabletr warn undeclared
Default value: compile

- Determines when to send warnings about undeclared variables to the TTY.

Option variabletr warn undefined variable
Default value: all

- Gives a warning when undefined global variables are seen.

Functioncompile file
compile_file (filename)
compile_file (filename, compiled filename)
compile_file (filename, compiled filename, lisp filename)

Translates the Maxima file filename into Lisp, executes the Lisp compiler, and, if the
translation and compilation succeed, loads the compiled code into Maxima.

compile_file returns a list of the names of four files: the original Maxima file, the
Lisp translation, notes on translation, and the compiled code. If the compilation fails,
the fourth item is false.

Some declarations and definitions take effect as soon as the Lisp code is compiled
(without loading the compiled code). These include functions defined with the :=

operator, macros define with the ::= operator, alias, declare, define_variable,
mode_declare, and infix, matchfix, nofix, postfix, prefix, and compfile.

Assignments and function calls are not evaluated until the compiled code is loaded.
In particular, within the Maxima file, assignments to the translation flags (tr_numer,
etc.) have no effect on the translation.

filename may not contain :lisp statements.

compile_file evaluates its arguments.

Functiondeclare translated (f 1, f 2, . . .)
When translating a file of Maxima code to Lisp, it is important for the translator
to know which functions it sees in the file are to be called as translated or compiled
functions, and which ones are just Maxima functions or undefined. Putting this
declaration at the top of the file, lets it know that although a symbol does which does
not yet have a Lisp function value, will have one at call time. (MFUNCTION-CALL fn

arg1 arg2 ...) is generated when the translator does not know fn is going to be a
Lisp function.

Chapter 37: Program Flow 601

37 Program Flow

37.1 Lisp and Maxima

Maxima is written in Lisp, and it is easy to access Lisp functions and variables from
Maxima and vice versa. Lisp and Maxima symbols are distinguished by a naming conven-
tion. A Lisp symbol which begins with a dollar sign $ corresponds to a Maxima symbol
without the dollar sign.

A Maxima symbol which begins with a question mark ? corresponds to a Lisp symbol
without the question mark. For example, the Maxima symbol foo corresponds to the Lisp
symbol $FOO, while the Maxima symbol ?foo corresponds to the Lisp symbol FOO. Note
that ?foo is written without a space between ? and foo; otherwise it might be mistaken
for describe ("foo").

Hyphen -, asterisk *, or other special characters in Lisp symbols must be escaped by
backslash \ where they appear in Maxima code. For example, the Lisp identifier *foo-bar*
is written ?*foo\-bar* in Maxima.

Lisp code may be executed from within a Maxima session. A single line of Lisp (con-
taining one or more forms) may be executed by the special command :lisp. For example,

(%i1) :lisp (foo $x $y)

calls the Lisp function foo with Maxima variables x and y as arguments. The :lisp

construct can appear at the interactive prompt or in a file processed by batch or demo, but
not in a file processed by load, batchload, translate_file, or compile_file.

The function to_lisp opens an interactive Lisp session. Entering (to-maxima) closes
the Lisp session and returns to Maxima.

Lisp functions and variables which are to be visible in Maxima as functions and variables
with ordinary names (no special punctuation) must have Lisp names beginning with the
dollar sign $.

Maxima is case-sensitive, distinguishing between lowercase and uppercase letters in iden-
tifiers. There are some rules governing the translation of names between Lisp and Maxima.

1. A Lisp identifier not enclosed in vertical bars corresponds to a Maxima identifier in
lowercase. Whether the Lisp identifier is uppercase, lowercase, or mixed case, is ignored.
E.g., Lisp $foo, $FOO, and $Foo all correspond to Maxima foo. But this is because
$foo, $FOO and $Foo are converted by the Lisp reader by default to the Lisp symbol
$FOO.

2. A Lisp identifier which is all uppercase or all lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with case reversed. That is, uppercase is changed
to lowercase and lowercase to uppercase. E.g., Lisp |$FOO| and |$foo| correspond to
Maxima foo and FOO, respectively.

3. A Lisp identifier which is mixed uppercase and lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with the same case. E.g., Lisp |$Foo| corresponds
to Maxima Foo.

The #$ Lisp macro allows the use of Maxima expressions in Lisp code. #$expr$ expands
to a Lisp expression equivalent to the Maxima expression expr.

602 Maxima 5.35.1 Manual

(msetq $foo #$[x, y]$)

This has the same effect as entering

(%i1) foo: [x, y];

The Lisp function displa prints an expression in Maxima format.

(%i1) :lisp #$[x, y, z]$
((MLIST SIMP) $X $Y $Z)
(%i1) :lisp (displa ’((MLIST SIMP) $X $Y $Z))
[x, y, z]
NIL

Functions defined in Maxima are not ordinary Lisp functions. The Lisp function
mfuncall calls a Maxima function. For example:

(%i1) foo(x,y) := x*y$
(%i2) :lisp (mfuncall ’$foo ’a ’b)
((MTIMES SIMP) A B)

Some Lisp functions are shadowed in the Maxima package, namely the following.

complement continue //
float functionp array
exp listen signum
atan asin acos
asinh acosh atanh
tanh cosh sinh
tan break gcd

37.2 Garbage Collection

Symbolic computation tends to create a good deal of garbage (temporary or interme-
diate results that are eventually not used), and effective handling of this can be crucial to
successful completion of some programs.

Under GCL, on UNIX systems where the mprotect system call is available (including
SUN OS 4.0 and some variants of BSD) a stratified garbage collection is available. This
limits the collection to pages which have been recently written to. See the GCL documen-
tation under ALLOCATE and GBC. At the Lisp level doing (setq si::*notify-gbc* t) will
help you determine which areas might need more space.

For other Lisps that run Maxima, we refer the reader to the documentation for that Lisp
on how to control GC.

37.3 Introduction to Program Flow

Maxima provides a do loop for iteration, as well as more primitive constructs such as
go.

Chapter 37: Program Flow 603

37.4 Functions and Variables for Program Flow

Functionbacktrace
backtrace ()
backtrace (n)

Prints the call stack, that is, the list of functions which called the currently active
function.

backtrace() prints the entire call stack.

backtrace (n) prints the n most recent functions, including the currently active
function.

backtrace can be called from a script, a function, or the interactive prompt (not only
in a debugging context).

Examples:

• backtrace() prints the entire call stack.

(%i1) h(x) := g(x/7)$
(%i2) g(x) := f(x-11)$
(%i3) f(x) := e(x^2)$
(%i4) e(x) := (backtrace(), 2*x + 13)$
(%i5) h(10);
#0: e(x=4489/49)
#1: f(x=-67/7)
#2: g(x=10/7)
#3: h(x=10)

9615
(%o5) ----

49

• backtrace (n) prints the n most recent functions, including the currently active
function.

(%i1) h(x) := (backtrace(1), g(x/7))$
(%i2) g(x) := (backtrace(1), f(x-11))$
(%i3) f(x) := (backtrace(1), e(x^2))$
(%i4) e(x) := (backtrace(1), 2*x + 13)$
(%i5) h(10);
#0: h(x=10)
#0: g(x=10/7)
#0: f(x=-67/7)
#0: e(x=4489/49)

9615
(%o5) ----

49

Special operatordo
Special operatorin

The do statement is used for performing iteration. Due to its great generality the do

statement will be described in two parts. First the usual form will be given which

604 Maxima 5.35.1 Manual

is analogous to that used in several other programming languages (Fortran, Algol,
PL/I, etc.); then the other features will be mentioned.

There are three variants of this form that differ only in their terminating conditions.
They are:

• for variable: initial value step increment thru limit do body

• for variable: initial value step increment while condition do body

• for variable: initial value step increment unless condition do body

(Alternatively, the step may be given after the termination condition or limit.)

initial value, increment, limit, and body can be any expressions. If the increment is
1 then "step 1" may be omitted.

The execution of the do statement proceeds by first assigning the initial value to the
variable (henceforth called the control-variable). Then: (1) If the control-variable has
exceeded the limit of a thru specification, or if the condition of the unless is true,
or if the condition of the while is false then the do terminates. (2) The body is
evaluated. (3) The increment is added to the control-variable. The process from (1)
to (3) is performed repeatedly until the termination condition is satisfied. One may
also give several termination conditions in which case the do terminates when any of
them is satisfied.

In general the thru test is satisfied when the control-variable is greater than the limit
if the increment was non-negative, or when the control-variable is less than the limit
if the increment was negative. The increment and limit may be non-numeric expres-
sions as long as this inequality can be determined. However, unless the increment
is syntactically negative (e.g. is a negative number) at the time the do statement
is input, Maxima assumes it will be positive when the do is executed. If it is not
positive, then the do may not terminate properly.

Note that the limit, increment, and termination condition are evaluated each time
through the loop. Thus if any of these involve much computation, and yield a result
that does not change during all the executions of the body, then it is more efficient
to set a variable to their value prior to the do and use this variable in the do form.

The value normally returned by a do statement is the atom done. However, the
function return may be used inside the body to exit the do prematurely and give it
any desired value. Note however that a return within a do that occurs in a block

will exit only the do and not the block. Note also that the go function may not be
used to exit from a do into a surrounding block.

The control-variable is always local to the do and thus any variable may be used
without affecting the value of a variable with the same name outside of the do. The
control-variable is unbound after the do terminates.

(%i1) for a:-3 thru 26 step 7 do display(a)$
a = - 3

a = 4

a = 11

Chapter 37: Program Flow 605

a = 18

a = 25

(%i1) s: 0$
(%i2) for i: 1 while i <= 10 do s: s+i;
(%o2) done
(%i3) s;
(%o3) 55

Note that the condition while i <= 10 is equivalent to unless i > 10 and also thru

10.

(%i1) series: 1$
(%i2) term: exp (sin (x))$
(%i3) for p: 1 unless p > 7 do

(term: diff (term, x)/p,
series: series + subst (x=0, term)*x^p)$

(%i4) series;
7 6 5 4 2
x x x x x

(%o4) -- - --- - -- - -- + -- + x + 1
90 240 15 8 2

which gives 8 terms of the Taylor series for e^sin(x).

(%i1) poly: 0$
(%i2) for i: 1 thru 5 do

for j: i step -1 thru 1 do
poly: poly + i*x^j$

(%i3) poly;
5 4 3 2

(%o3) 5 x + 9 x + 12 x + 14 x + 15 x
(%i4) guess: -3.0$
(%i5) for i: 1 thru 10 do

(guess: subst (guess, x, 0.5*(x + 10/x)),
if abs (guess^2 - 10) < 0.00005 then return (guess));

(%o5) - 3.162280701754386

This example computes the negative square root of 10 using the Newton- Raphson
iteration a maximum of 10 times. Had the convergence criterion not been met the
value returned would have been done.

Instead of always adding a quantity to the control-variable one may sometimes wish
to change it in some other way for each iteration. In this case one may use next

expression instead of step increment. This will cause the control-variable to be set
to the result of evaluating expression each time through the loop.

(%i6) for count: 2 next 3*count thru 20 do display (count)$
count = 2

count = 6

count = 18

606 Maxima 5.35.1 Manual

As an alternative to for variable: value ...do... the syntax for variable from

value ...do... may be used. This permits the from value to be placed after the
step or next value or after the termination condition. If from value is omitted then
1 is used as the initial value.

Sometimes one may be interested in performing an iteration where the control-variable
is never actually used. It is thus permissible to give only the termination conditions
omitting the initialization and updating information as in the following example to
compute the square-root of 5 using a poor initial guess.

(%i1) x: 1000$
(%i2) thru 20 do x: 0.5*(x + 5.0/x)$
(%i3) x;
(%o3) 2.23606797749979
(%i4) sqrt(5), numer;
(%o4) 2.23606797749979

If it is desired one may even omit the termination conditions entirely and just give do

body which will continue to evaluate the body indefinitely. In this case the function
return should be used to terminate execution of the do.

(%i1) newton (f, x):= ([y, df, dfx], df: diff (f (’x), ’x),
do (y: ev(df), x: x - f(x)/y,

if abs (f (x)) < 5e-6 then return (x)))$
(%i2) sqr (x) := x^2 - 5.0$
(%i3) newton (sqr, 1000);
(%o3) 2.236068027062195

(Note that return, when executed, causes the current value of x to be returned as
the value of the do. The block is exited and this value of the do is returned as the
value of the block because the do is the last statement in the block.)

One other form of the do is available in Maxima. The syntax is:

for variable in list end tests do body

The elements of list are any expressions which will successively be assigned to the
variable on each iteration of the body. The optional termination tests end tests can
be used to terminate execution of the do; otherwise it will terminate when the list
is exhausted or when a return is executed in the body. (In fact, list may be any
non-atomic expression, and successive parts are taken.)

(%i1) for f in [log, rho, atan] do ldisp(f(1))$
(%t1) 0
(%t2) rho(1)

%pi
(%t3) ---

4
(%i4) ev(%t3,numer);
(%o4) 0.78539816

Functionerrcatch (expr 1, . . . , expr n)
Evaluates expr 1, . . . , expr n one by one and returns [expr n] (a list) if no error
occurs. If an error occurs in the evaluation of any argument, errcatch prevents the

Chapter 37: Program Flow 607

error from propagating and returns the empty list [] without evaluating any more
arguments.

errcatch is useful in batch files where one suspects an error might occur which would
terminate the batch if the error weren’t caught.

Functionerror (expr 1, . . . , expr n)
System variableerror

Evaluates and prints expr 1, . . . , expr n, and then causes an error return to top level
Maxima or to the nearest enclosing errcatch.

The variable error is set to a list describing the error. The first element of error is a
format string, which merges all the strings among the arguments expr 1, . . . , expr n,
and the remaining elements are the values of any non-string arguments.

errormsg() formats and prints error. This is effectively reprinting the most recent
error message.

Option variableerror size
Default value: 10

error_size modifies error messages according to the size of expressions which appear
in them. If the size of an expression (as determined by the Lisp function ERROR-SIZE)
is greater than error_size, the expression is replaced in the message by a symbol,
and the symbol is assigned the expression. The symbols are taken from the list
error_syms.

Otherwise, the expression is smaller than error_size, and the expression is displayed
in the message.

See also error and error_syms.

Example:

The size of U, as determined by ERROR-SIZE, is 24.

(%i1) U: (C^D^E + B + A)/(cos(X-1) + 1)$

(%i2) error_size: 20$

(%i3) error ("Example expression is", U);

Example expression is errexp1
-- an error. Quitting. To debug this try debugmode(true);
(%i4) errexp1;

E
D
C + B + A

(%o4) --------------
cos(X - 1) + 1

(%i5) error_size: 30$

(%i6) error ("Example expression is", U);

608 Maxima 5.35.1 Manual

E
D
C + B + A

Example expression is --------------
cos(X - 1) + 1

-- an error. Quitting. To debug this try debugmode(true);

Option variableerror syms
Default value: [errexp1, errexp2, errexp3]

In error messages, expressions larger than error_size are replaced by symbols, and
the symbols are set to the expressions. The symbols are taken from the list error_

syms. The first too-large expression is replaced by error_syms[1], the second by
error_syms[2], and so on.

If there are more too-large expressions than there are elements of error_syms,
symbols are constructed automatically, with the n-th symbol equivalent to concat

(’errexp, n).

See also error and error_size.

Functionerrormsg ()
Reprints the most recent error message. The variable error holds the message, and
errormsg formats and prints it.

Option variableerrormsg
Default value: true

When false the output of error messages is suppressed.

The option variable errormsg can not be set in a block to a local value. The global
value of errormsg is always present.

(%i1) errormsg;
(%o1) true
(%i2) sin(a,b);
Wrong number of arguments to sin
-- an error. To debug this try: debugmode(true);
(%i3) errormsg:false;
(%o3) false
(%i4) sin(a,b);

-- an error. To debug this try: debugmode(true);

The option variable errormsg can not be set in a block to a local value.

(%i1) f(bool):=block([errormsg:bool],
print ("value of errormsg is",errormsg))$

(%i2) errormsg:true;
(%o2) true
(%i3) f(false);
value of errormsg is true
(%o3) true

Chapter 37: Program Flow 609

(%i4) errormsg:false;
(%o4) false
(%i5) f(true);
value of errormsg is false
(%o5) false

Special operatorfor
Used in iterations. See do for a description of Maxima’s iteration facilities.

Functiongo (tag)
is used within a block to transfer control to the statement of the block which is tagged
with the argument to go. To tag a statement, precede it by an atomic argument as
another statement in the block. For example:

block ([x], x:1, loop, x+1, ..., go(loop), ...)

The argument to go must be the name of a tag appearing in the same block. One
cannot use go to transfer to tag in a block other than the one containing the go.

Special operatorif
Represents conditional evaluation. Various forms of if expressions are recognized.

if cond 1 then expr 1 else expr 0 evaluates to expr 1 if cond 1 evaluates to true,
otherwise the expression evaluates to expr 0.

The command if cond 1 then expr 1 elseif cond 2 then expr 2 elseif ... else

expr 0 evaluates to expr k if cond k is true and all preceding conditions are false.
If none of the conditions are true, the expression evaluates to expr_0.

A trailing else false is assumed if else is missing. That is, the command if cond 1
then expr 1 is equivalent to if cond 1 then expr 1 else false, and the command
if cond 1 then expr 1 elseif ... elseif cond n then expr n is equivalent to if

cond 1 then expr 1 elseif ... elseif cond n then expr n else false.

The alternatives expr 0, . . . , expr n may be any Maxima expressions, including nested
if expressions. The alternatives are neither simplified nor evaluated unless the cor-
responding condition is true.

The conditions cond 1, . . . , cond n are expressions which potentially or actually
evaluate to true or false. When a condition does not actually evaluate to true or
false, the behavior of if is governed by the global flag prederror. When prederror

is true, it is an error if any evaluated condition does not evaluate to true or false.
Otherwise, conditions which do not evaluate to true or false are accepted, and the
result is a conditional expression.

Among other elements, conditions may comprise relational and logical operators as
follows.

Operation Symbol Type

less than < relational infix
less than <=

or equal to relational infix

610 Maxima 5.35.1 Manual

equality (syntactic) = relational infix
negation of = # relational infix
equality (value) equal relational function
negation of equal notequal relational function
greater than >=
or equal to relational infix

greater than > relational infix
and and logical infix
or or logical infix
not not logical prefix

Functionmap (f, expr 1, . . . , expr n)
Returns an expression whose leading operator is the same as that of the expressions
expr 1, . . . , expr n but whose subparts are the results of applying f to the correspond-
ing subparts of the expressions. f is either the name of a function of n arguments or
is a lambda form of n arguments.

maperror - if false will cause all of the mapping functions to (1) stop when they
finish going down the shortest expr i if not all of the expr i are of the same length and
(2) apply f to [expr 1, expr 2, . . .] if the expr i are not all the same type of object.
If maperror is true then an error message will be given in the above two instances.

One of the uses of this function is to map a function (e.g. partfrac) onto each term
of a very large expression where it ordinarily wouldn’t be possible to use the function
on the entire expression due to an exhaustion of list storage space in the course of
the computation.

(%i1) map(f,x+a*y+b*z);
(%o1) f(b z) + f(a y) + f(x)
(%i2) map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));

1 1 1
(%o2) ----- - ----- + -------- + x

x + 2 x + 1 2
(x + 1)

(%i3) map(ratsimp, x/(x^2+x)+(y^2+y)/y);
1

(%o3) y + ----- + 1
x + 1

(%i4) map("=",[a,b],[-0.5,3]);
(%o4) [a = - 0.5, b = 3]

Functionmapatom (expr)
Returns true if and only if expr is treated by the mapping routines as an atom. "Ma-
patoms" are atoms, numbers (including rational numbers), and subscripted variables.

Option variablemaperror
Default value: true

When maperror is false, causes all of the mapping functions, for example

Chapter 37: Program Flow 611

map (f, expr 1, expr 2, ...)

to (1) stop when they finish going down the shortest expr i if not all of the expr i are
of the same length and (2) apply f to [expr 1, expr 2, . . .] if the expr i are not all
the same type of object.

If maperror is true then an error message is displayed in the above two instances.

Option variablemapprint
Default value: true

When mapprint is true, various information messages from map, mapl, and fullmap

are produced in certain situations. These include situations where map would use
apply, or map is truncating on the shortest list.

If mapprint is false, these messages are suppressed.

Functionmaplist (f, expr 1, . . . , expr n)
Returns a list of the applications of f to the parts of the expressions expr 1, . . . ,
expr n. f is the name of a function, or a lambda expression.

maplist differs from map(f, expr 1, ..., expr n) which returns an expression with
the same main operator as expr i has (except for simplifications and the case where
map does an apply).

Option variableprederror
Default value: false

When prederror is true, an error message is displayed whenever the predicate of an
if statement or an is function fails to evaluate to either true or false.

If false, unknown is returned instead in this case. The prederror: false mode is
not supported in translated code; however, maybe is supported in translated code.

See also is and maybe.

Functionreturn (value)
May be used to exit explicitly from a block, bringing its argument. See block for
more information.

Functionscanmap
scanmap (f, expr)
scanmap (f, expr, bottomup)

Recursively applies f to expr, in a top down manner. This is most useful when
complete factorization is desired, for example:

(%i1) exp:(a^2+2*a+1)*y + x^2$
(%i2) scanmap(factor,exp);

2 2
(%o2) (a + 1) y + x

Note the way in which scanmap applies the given function factor to the constituent
subexpressions of expr; if another form of expr is presented to scanmap then the
result may be different. Thus, %o2 is not recovered when scanmap is applied to the
expanded form of exp:

612 Maxima 5.35.1 Manual

(%i3) scanmap(factor,expand(exp));
2 2

(%o3) a y + 2 a y + y + x

Here is another example of the way in which scanmap recursively applies a given
function to all subexpressions, including exponents:

(%i4) expr : u*v^(a*x+b) + c$
(%i5) scanmap(’f, expr);

f(f(f(a) f(x)) + f(b))
(%o5) f(f(f(u) f(f(v))) + f(c))

scanmap (f, expr, bottomup) applies f to expr in a bottom-up manner. E.g., for
undefined f,

scanmap(f,a*x+b) ->
f(a*x+b) -> f(f(a*x)+f(b)) -> f(f(f(a)*f(x))+f(b))

scanmap(f,a*x+b,bottomup) -> f(a)*f(x)+f(b)
-> f(f(a)*f(x))+f(b) ->
f(f(f(a)*f(x))+f(b))

In this case, you get the same answer both ways.

Functionthrow (expr)
Evaluates expr and throws the value back to the most recent catch. throw is used
with catch as a nonlocal return mechanism.

Special operatorwhile
Special operatorunless

See do.

Functionoutermap (f, a 1, . . . , a n)
Applies the function f to each one of the elements of the outer product a 1 cross a 2
. . . cross a n.

f is the name of a function of n arguments or a lambda expression of n arguments.
Each argument a k may be a list or nested list, or a matrix, or any other kind of
expression.

The outermap return value is a nested structure. Let x be the return value. Then x
has the same structure as the first list, nested list, or matrix argument, x[i_1]...[i_
m] has the same structure as the second list, nested list, or matrix argument, x[i_
1]...[i_m][j_1]...[j_n] has the same structure as the third list, nested list, or
matrix argument, and so on, where m, n, . . . are the numbers of indices required to
access the elements of each argument (one for a list, two for a matrix, one or more
for a nested list). Arguments which are not lists or matrices have no effect on the
structure of the return value.

Note that the effect of outermap is different from that of applying f to each one of the
elements of the outer product returned by cartesian_product. outermap preserves
the structure of the arguments in the return value, while cartesian_product does
not.

Chapter 37: Program Flow 613

outermap evaluates its arguments.

See also map, maplist, and apply.

Examples:

Elementary examples of outermap. To show the argument combinations more clearly,
F is left undefined.

(%i1) outermap(F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)],

[F(c, 1), F(c, 2), F(c, 3)]]
(%i2) outermap(F, matrix([a, b],[c, d]), matrix([1, 2],[3, 4]));

[[F(a, 1) F(a, 2)] [F(b, 1) F(b, 2)]]
[[] []]
[[F(a, 3) F(a, 4)] [F(b, 3) F(b, 4)]]

(%o2) []
[[F(c, 1) F(c, 2)] [F(d, 1) F(d, 2)]]
[[] []]
[[F(c, 3) F(c, 4)] [F(d, 3) F(d, 4)]]

(%i3) outermap (F, [a, b], x, matrix ([1, 2], [3, 4]));
[F(a, x, 1) F(a, x, 2)] [F(b, x, 1) F(b, x, 2)]

(%o3) [[], []]
[F(a, x, 3) F(a, x, 4)] [F(b, x, 3) F(b, x, 4)]

(%i4) outermap (F, [a, b], matrix ([1, 2]), matrix ([x], [y]));
[[F(a, 1, x)] [F(a, 2, x)]]

(%o4) [[[] []],
[[F(a, 1, y)] [F(a, 2, y)]]

[[F(b, 1, x)] [F(b, 2, x)]]
[[] []]]
[[F(b, 1, y)] [F(b, 2, y)]]

(%i5) outermap ("+", [a, b, c], [1, 2, 3]);
(%o5) [[a + 1, a + 2, a + 3], [b + 1, b + 2, b + 3],

[c + 1, c + 2, c + 3]]

A closer examination of the outermap return value. The first, second, and third
arguments are a matrix, a list, and a matrix, respectively. The return value is a
matrix. Each element of that matrix is a list, and each element of each list is a
matrix.

(%i1) arg_1 : matrix ([a, b], [c, d]);
[a b]

(%o1) []
[c d]

(%i2) arg_2 : [11, 22];
(%o2) [11, 22]
(%i3) arg_3 : matrix ([xx, yy]);
(%o3) [xx yy]
(%i4) xx_0 : outermap(lambda([x, y, z], x / y + z), arg_1,

arg_2, arg_3);
[[a a] [a a]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

(%o4) Col 1 = []

614 Maxima 5.35.1 Manual

[[c c] [c c]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

[[b b] [b b]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

Col 2 = []
[[d d] [d d]]
[[[xx + -- yy + --], [xx + -- yy + --]]]
[[11 11] [22 22]]

(%i5) xx_1 : xx_0 [1][1];
[a a] [a a]

(%o5) [[xx + -- yy + --], [xx + -- yy + --]]
[11 11] [22 22]

(%i6) xx_2 : xx_0 [1][1] [1];
[a a]

(%o6) [xx + -- yy + --]
[11 11]

(%i7) xx_3 : xx_0 [1][1] [1] [1][1];
a

(%o7) xx + --
11

(%i8) [op (arg_1), op (arg_2), op (arg_3)];
(%o8) [matrix, [, matrix]
(%i9) [op (xx_0), op (xx_1), op (xx_2)];
(%o9) [matrix, [, matrix]

outermap preserves the structure of the arguments in the return value, while
cartesian_product does not.

(%i1) outermap (F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)],

[F(c, 1), F(c, 2), F(c, 3)]]
(%i2) setify (flatten (%));
(%o2) {F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3),

F(c, 1), F(c, 2), F(c, 3)}
(%i3) map(lambda([L], apply(F, L)),

cartesian_product({a, b, c}, {1, 2, 3}));
(%o3) {F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3),

F(c, 1), F(c, 2), F(c, 3)}
(%i4) is (equal (%, %th (2)));
(%o4) true

Chapter 38: Debugging 615

38 Debugging

38.1 Source Level Debugging

Maxima has a built-in source level debugger. The user can set a breakpoint at a function,
and then step line by line from there. The call stack may be examined, together with the
variables bound at that level.

The command :help or :h shows the list of debugger commands. (In general, commands
may be abbreviated if the abbreviation is unique. If not unique, the alternatives will be
listed.) Within the debugger, the user can also use any ordinary Maxima functions to
examine, define, and manipulate variables and expressions.

A breakpoint is set by the :br command at the Maxima prompt. Within the debugger,
the user can advance one line at a time using the :n (“next”) command. The :bt (“back-
trace”) command shows a list of stack frames. The :r (“resume”) command exits the
debugger and continues with execution. These commands are demonstrated in the example
below.

(%i1) load ("/tmp/foobar.mac");

(%o1) /tmp/foobar.mac

(%i2) :br foo
Turning on debugging debugmode(true)
Bkpt 0 for foo (in /tmp/foobar.mac line 1)

(%i2) bar (2,3);
Bkpt 0:(foobar.mac 1)
/tmp/foobar.mac:1::

(dbm:1) :bt <-- :bt typed here gives a backtrace
#0: foo(y=5)(foobar.mac line 1)
#1: bar(x=2,y=3)(foobar.mac line 9)

(dbm:1) :n <-- Here type :n to advance line
(foobar.mac 2)
/tmp/foobar.mac:2::

(dbm:1) :n <-- Here type :n to advance line
(foobar.mac 3)
/tmp/foobar.mac:3::

(dbm:1) u; <-- Investigate value of u
28

(dbm:1) u: 33; <-- Change u to be 33
33

(dbm:1) :r <-- Type :r to resume the computation

616 Maxima 5.35.1 Manual

(%o2) 1094

The file /tmp/foobar.mac is the following:

foo(y) := block ([u:y^2],
u: u+3,
u: u^2,
u);

bar(x,y) := (
x: x+2,
y: y+2,
x: foo(y),
x+y);

USE OF THE DEBUGGER THROUGH EMACS

If the user is running the code under GNU emacs in a shell window (dbl shell), or is
running the graphical interface version, Xmaxima, then if he stops at a break point, he will
see his current position in the source file which will be displayed in the other half of the
window, either highlighted in red, or with a little arrow pointing at the right line. He can
advance single lines at a time by typing M-n (Alt-n).

Under Emacs you should run in a dbl shell, which requires the dbl.el file in the elisp
directory. Make sure you install the elisp files or add the Maxima elisp directory to your
path: e.g., add the following to your ‘.emacs’ file or the ‘site-init.el’

(setq load-path (cons "/usr/share/maxima/5.9.1/emacs" load-path))
(autoload ’dbl "dbl")

then in emacs

M-x dbl

should start a shell window in which you can run programs, for example Maxima, gcl,
gdb etc. This shell window also knows about source level debugging, and display of source
code in the other window.

The user may set a break point at a certain line of the file by typing C-x space. This
figures out which function the cursor is in, and then it sees which line of that function the
cursor is on. If the cursor is on, say, line 2 of foo, then it will insert in the other window
the command, “:br foo 2”, to break foo at its second line. To have this enabled, the
user must have maxima-mode.el turned on in the window in which the file foobar.mac is
visiting. There are additional commands available in that file window, such as evaluating
the function into the Maxima, by typing Alt-Control-x.

38.2 Keyword Commands

Keyword commands are special keywords which are not interpreted as Maxima expres-
sions. A keyword command can be entered at the Maxima prompt or the debugger prompt,
although not at the break prompt. Keyword commands start with a colon, ’:’. For example,
to evaluate a Lisp form you may type :lisp followed by the form to be evaluated.

(%i1) :lisp (+ 2 3)
5

Chapter 38: Debugging 617

The number of arguments taken depends on the particular command. Also, you need
not type the whole command, just enough to be unique among the break keywords. Thus
:br would suffice for :break.

The keyword commands are listed below.

:break F n

Set a breakpoint in function F at line offset n from the beginning of the function.
If F is given as a string, then it is assumed to be a file, and n is the offset from
the beginning of the file. The offset is optional. If not given, it is assumed to
be zero (first line of the function or file).

:bt Print a backtrace of the stack frames

:continue

Continue the computation

:delete Delete the specified breakpoints, or all if none are specified

:disable Disable the specified breakpoints, or all if none are specified

:enable Enable the specified breakpoints, or all if none are specified

:frame n Print stack frame n, or the current frame if none is specified

:help Print help on a debugger command, or all commands if none is specified

:info Print information about item

:lisp some-form

Evaluate some-form as a Lisp form

:lisp-quiet some-form

Evaluate Lisp form some-form without any output

:next Like :step, except :next steps over function calls

:quit Quit the current debugger level without completing the computation

:resume Continue the computation

:step Continue the computation until it reaches a new source line

:top Return to the Maxima prompt (from any debugger level) without completing
the computation

38.3 Functions and Variables for Debugging

Option variabledebugmode
Default value: false

When a Maxima error occurs, Maxima will start the debugger if debugmode is true.
The user may enter commands to examine the call stack, set breakpoints, step through
Maxima code, and so on. See debugging for a list of debugger commands.

Enabling debugmode will not catch Lisp errors.

618 Maxima 5.35.1 Manual

Option variablerefcheck
Default value: false

When refcheck is true, Maxima prints a message each time a bound variable is used
for the first time in a computation.

Option variablesetcheck
Default value: false

If setcheck is set to a list of variables (which can be subscripted), Maxima prints
a message whenever the variables, or subscripted occurrences of them, are bound
with the ordinary assignment operator :, the :: assignment operator, or function
argument binding, but not the function assignment := nor the macro assignment ::=
operators. The message comprises the name of the variable and the value it is bound
to.

setcheck may be set to all or true thereby including all variables.

Each new assignment of setcheck establishes a new list of variables to check, and
any variables previously assigned to setcheck are forgotten.

The names assigned to setcheck must be quoted if they would otherwise evaluate
to something other than themselves. For example, if x, y, and z are already bound,
then enter

setcheck: [’x, ’y, ’z]$

to put them on the list of variables to check.

No printout is generated when a variable on the setcheck list is assigned to itself,
e.g., X: ’X.

Option variablesetcheckbreak
Default value: false

When setcheckbreak is true, Maxima will present a break prompt whenever a
variable on the setcheck list is assigned a new value. The break occurs before the
assignment is carried out. At this point, setval holds the value to which the variable
is about to be assigned. Hence, one may assign a different value by assigning to
setval.

See also setcheck and setval.

System variablesetval
Holds the value to which a variable is about to be set when a setcheckbreak occurs.
Hence, one may assign a different value by assigning to setval.

See also setcheck and setcheckbreak.

Functiontimer (f 1, . . . , f n)
timer (all)
timer ()

Given functions f 1, . . . , f n, timer puts each one on the list of functions for which
timing statistics are collected. timer(f)$ timer(g)$ puts f and then g onto the list;
the list accumulates from one call to the next.

Chapter 38: Debugging 619

timer(all) puts all user-defined functions (as named by the global variable
functions) on the list of timed functions.

With no arguments, timer returns the list of timed functions.

Maxima records how much time is spent executing each function on the list of timed
functions. timer_info returns the timing statistics, including the average time
elapsed per function call, the number of calls, and the total time elapsed. untimer

removes functions from the list of timed functions.

timer quotes its arguments. f(x) := x^2$ g:f$ timer(g)$ does not put f on the
timer list.

If trace(f) is in effect, then timer(f) has no effect; trace and timer cannot both
be in effect at the same time.

See also timer_devalue.

Functionuntimer (f 1, . . . , f n)
untimer ()

Given functions f 1, . . . , f n, untimer removes each function from the timer list.

With no arguments, untimer removes all functions currently on the timer list.

After untimer (f) is executed, timer_info (f) still returns previously collected tim-
ing statistics, although timer_info() (with no arguments) does not return informa-
tion about any function not currently on the timer list. timer (f) resets all timing
statistics to zero and puts f on the timer list again.

Option variabletimer devalue
Default value: false

When timer_devalue is true, Maxima subtracts from each timed function the time
spent in other timed functions. Otherwise, the time reported for each function in-
cludes the time spent in other functions. Note that time spent in untimed functions
is not subtracted from the total time.

See also timer and timer_info.

Functiontimer info (f 1, ..., f n)
timer_info ()

Given functions f 1, ..., f n, timer_info returns a matrix containing timing informa-
tion for each function. With no arguments, timer_info returns timing information
for all functions currently on the timer list.

The matrix returned by timer_info contains the function name, time per function
call, number of function calls, total time, and gctime, which meant "garbage collec-
tion time" in the original Macsyma but is now always zero.

The data from which timer_info constructs its return value can also be obtained by
the get function:

get(f, ’calls); get(f, ’runtime); get(f, ’gctime);

See also timer.

620 Maxima 5.35.1 Manual

Functiontrace (f 1, . . . , f n)
trace (all)
trace ()

Given functions f 1, . . . , f n, trace instructs Maxima to print out debugging infor-
mation whenever those functions are called. trace(f)$ trace(g)$ puts f and then g

onto the list of functions to be traced; the list accumulates from one call to the next.

trace(all) puts all user-defined functions (as named by the global variable
functions) on the list of functions to be traced.

With no arguments, trace returns a list of all the functions currently being traced.

The untrace function disables tracing. See also trace_options.

trace quotes its arguments. Thus, f(x) := x^2$ g:f$ trace(g)$ does not put f on
the trace list.

When a function is redefined, it is removed from the timer list. Thus after timer(f)$
f(x) := x^2$, function f is no longer on the timer list.

If timer (f) is in effect, then trace (f) has no effect; trace and timer can’t both
be in effect for the same function.

Functiontrace options (f, option 1, . . . , option n)
trace_options (f)

Sets the trace options for function f. Any previous options are superseded. trace_

options (f, ...) has no effect unless trace (f) is also called (either before or after
trace_options).

trace_options (f) resets all options to their default values.

The option keywords are:

• noprint Do not print a message at function entry and exit.

• break Put a breakpoint before the function is entered, and after the function is
exited. See break.

• lisp_print Display arguments and return values as Lisp objects.

• info Print -> true at function entry and exit.

• errorcatch Catch errors, giving the option to signal an error, retry the function
call, or specify a return value.

Trace options are specified in two forms. The presence of the option keyword alone
puts the option into effect unconditionally. (Note that option foo is not put into
effect by specifying foo: true or a similar form; note also that keywords need not be
quoted.) Specifying the option keyword with a predicate function makes the option
conditional on the predicate.

The argument list to the predicate function is always [level, direction, function,

item] where level is the recursion level for the function, direction is either enter
or exit, function is the name of the function, and item is the argument list (on
entering) or the return value (on exiting).

Here is an example of unconditional trace options:

Chapter 38: Debugging 621

(%i1) ff(n) := if equal(n, 0) then 1 else n * ff(n - 1)$

(%i2) trace (ff)$

(%i3) trace_options (ff, lisp_print, break)$

(%i4) ff(3);

Here is the same function, with the break option conditional on a predicate:

(%i5) trace_options (ff, break(pp))$

(%i6) pp (level, direction, function, item) := block (print (item),
return (function = ’ff and level = 3 and direction = exit))$

(%i7) ff(6);

Functionuntrace
untrace (f 1, . . . , f n)
untrace ()

Given functions f 1, . . . , f n, untrace disables tracing enabled by the trace function.
With no arguments, untrace disables tracing for all functions.

untrace returns a list of the functions for which it disabled tracing.

622 Maxima 5.35.1 Manual

Chapter 39: alt-display 623

39 alt-display

39.1 Introduction to alt-display

The alt-display package provides a means to change the way that Maxima displays its
output. The *alt-display1d* and *alt-display2d* Lisp hooks were introduced to Maxima in
2002, but were not easily accessible from the Maxima REPL until the introduction of this
package.

The package provides a general purpose function to define alternative display functions,
and a separate function to set the display function. The package also provides customized
display functions to produce output in TEX, Texinfo, XML and all three output formats
within Texinfo.

Here is a sample session:

(%i1) load("alt-display.mac")$
(%i2) set_alt_display(2,tex_display)$

(%i3) x/(x^2+y^2) = 1;
\mbox{\tt\red({\it \%o_3}) \black}$${{x}\over{y^2+x^2}}=1$$

(%i4) set_alt_display(2,mathml_display)$

(%i5) x/(x^2+y^2) = 1;
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>mlabel</mi>
<mfenced separators=""><msub><mi>%o</mi> <mn>5</mn></msub>
<mo>,</mo><mfrac><mrow><mi>x</mi> </mrow> <mrow><msup><mrow>
<mi>y</mi> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup><mrow>
<mi>x</mi> </mrow> <mn>2</mn> </msup> </mrow></mfrac> <mo>=</mo>
<mn>1</mn> </mfenced> </math>

(%i6) set_alt_display(2,multi_display_for_texinfo)$

(%i7) x/(x^2+y^2) = 1;

@iftex
@tex
\mbox{\tt\red({\it \%o_7}) \black}$${{x}\over{y^2+x^2}}=1$$
@end tex
@end iftex
@ifhtml
@html

<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>mlabel</mi>
<mfenced separators=""><msub><mi>%o</mi> <mn>7</mn></msub>
<mo>,</mo><mfrac><mrow><mi>x</mi> </mrow> <mrow><msup><mrow>
<mi>y</mi> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup><mrow>
<mi>x</mi> </mrow> <mn>2</mn> </msup> </mrow></mfrac> <mo>=</mo>
<mn>1</mn> </mfenced> </math>

624 Maxima 5.35.1 Manual

@end html
@end ifhtml
@ifinfo
@example
(%o7) x/(y^2+x^2) = 1
@end example
@end ifinfo

If the alternative display function causes an error, the error is trapped and the display
function is reset to the default display. In the following example, the error function is set
to display the output. This throws an error, which is handled by resetting the 2d-display
to the default.

(%i8) set_alt_display(2,?error)$

(%i9) x;

Error in *alt-display2d*.
Messge: Condition designator ((MLABEL) $%O9 $X) is not of type (OR SYMBOL STRING

FUNCTION).
alt-display2d reset to nil.
-- an error. To debug this try: debugmode(true);

(%i10) x;
(%o10) x

39.2 Functions and Variables for alt-display

Functiondefine alt display (function(input), expr)
This function is similar to define: it evaluates its arguments and expands into a
function definition. The function is a function of a single input input. For convenience,
a substitution is applied to expr after evaluation, to provide easy access to Lisp
variable names.

Set a time-stamp on each prompt:

(%i1) load("alt-display.mac")$

(%i2) display2d:false$

(%i3) define_alt_display(time_stamp(x),
block([alt_display1d:false,alt_display2d:false],

prompt_prefix:printf(false,"~a~%",timedate()),
displa(x)));

(%o3) time_stamp(x):=block([simp:false],
block([?*alt\-display1d*:false,?*alt\-display2d*:false],

?*prompt\-prefix*:printf(false,"~a~%",timedate()),
?displa(x)))

(%i4) set_alt_display(1,time_stamp);

Chapter 39: alt-display 625

(%o4) done
2014-01-07 13:41:50-05:00
(%i5)

The input line %i3 defines time_stamp using define_alt_display. The output line
%o3 shows that the Maxima variable names alt_display1d, alt_display2d and
prompt_prefix have been replaced by their Lisp translations, as has displa been
replaced by ?displa (the display function).

The display variables alt_display1d and alt_display2d are both bound to false

in the body of time_stamp to prevent an infinite recursion in displa.

Functioninfo display (form)
This is an alias for the default 1-d display function. It may be used as an alternative
1-d or 2-d display function.

(%i1) load("alt-display.mac")$

(%i2) set_alt_display(2,info_display);

(%o2) done
(%i3) x/y;

(%o3) x/y

Functionmathml display (form)
Produces MathML output.

(%i1) load("alt-display.mac")$

(%i2) set_alt_display(2,mathml_display);
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>mlabel</mi>
<mfenced separators=""><msub><mi>%o</mi> <mn>2</mn></msub>
<mo>,</mo><mi>done</mi> </mfenced> </math>

Functiontex display (form)
Produces TeX output.

(%i2) set_alt_display(2,tex_display);
\mbox{\tt\red({\it \%o_2}) \black}$$\mathbf{done}$$
(%i3) x/(x^2+y^2);
\mbox{\tt\red({\it \%o_3}) \black}$${{x}\over{y^2+x^2}}$$

Functionmulti display for texinfo (form)
Produces Texinfo output using all three display functions.

(%i2) set_alt_display(2,multi_display_for_texinfo)$

(%i3) x/(x^2+y^2);

@iftex

626 Maxima 5.35.1 Manual

@tex
\mbox{\tt\red({\it \%o_3}) \black}$${{x}\over{y^2+x^2}}$$
@end tex
@end iftex
@ifhtml
@html

<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>mlabel</mi>
<mfenced separators=""><msub><mi>%o</mi> <mn>3</mn></msub>
<mo>,</mo><mfrac><mrow><mi>x</mi> </mrow> <mrow><msup><mrow>
<mi>y</mi> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup><mrow>
<mi>x</mi> </mrow> <mn>2</mn> </msup> </mrow></mfrac> </mfenced> </math>

@end html
@end ifhtml
@ifinfo
@example
(%o3) x/(y^2+x^2)
@end example
@end ifinfo

Functionsreset displays ()
Resets the prompt prefix and suffix to the empty string, and sets both 1-d and 2-d
display functions to the default.

Functionset alt display (num, display-function)
The input num is the display to set; it may be either 1 or 2. The second input
display-function is the display function to use. The display function may be either a
Maxima function or a lambda expression.

Here is an example where the display function is a lambda expression; it just displays
the result as TEX.

(%i1) load("alt-display.mac")$

(%i2) set_alt_display(2, lambda([form], tex(?caddr(form))))$

(%i3) integrate(exp(-t^2),t,0,inf);
$${{\sqrt{\pi}}\over{2}}$$

A user-defined display function should take care that it prints its output. A display
function that returns a string will appear to display nothing, nor cause any errors.

Functionset prompt (fix, expr)
Set the prompt prefix or suffix to expr. The input fix must evaluate to one of prefix,
suffix, general, prolog or epilog. The input expr must evaluate to either a string
or false; if false, the fix is reset to the default value.

(%i1) load("alt-display.mac")$
(%i2) set_prompt(’prefix,printf(false,"It is now: ~a~%",timedate()))$

Chapter 39: alt-display 627

It is now: 2014-01-07 15:23:23-05:00
(%i3)

The following example shows the effect of each option, except prolog. Note that the
epilog prompt is printed as Maxima closes down. The general is printed between
the end of input and the output, unless the input line ends in $.

Here is an example to show where the prompt strings are placed.

(%i1) load("alt-display.mac")$

(%i2) set_prompt(prefix,"<<prefix>> ",suffix,"<<suffix>> ",general,
printf(false,"<<general>>~%"),epilog,printf(false,"<<epilog>>~%"));

(%o2) done
<<prefix>> (%i3) <<suffix>> x/y;
<<general>>

x
(%o3) -

y
<<prefix>> (%i4) <<suffix>> quit();
<<general>>
<<epilog>>

Here is an example that shows how to colorize the input and output when Maxima
is running in a terminal or terminal emulator like Emacs1.

Each prompt string starts with the ASCII escape character (27) followed by
an open square bracket (91); each string ends with a lower-case m (109). The
webpages http://misc.flogisoft.com/bash/tip_colors_and_formatting and
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/x329.html provide information
on how to use control strings to set the terminal colors.

1 Readers using the info reader in Emacs will see the actual prompt strings; other readers will see the
colorized output

628 Maxima 5.35.1 Manual

Chapter 40: asympa 629

40 asympa

40.1 Introduction to asympa

Functionasympa
asympa is a package for asymptotic analysis. The package contains simplification
functions for asymptotic analysis, including the “big O” and “little o” functions that
are widely used in complexity analysis and numerical analysis.

load ("asympa") loads this package.

40.2 Functions and variables for asympa

630 Maxima 5.35.1 Manual

Chapter 41: augmented lagrangian 631

41 augmented lagrangian

41.1 Functions and Variables for augmented lagrangian

Functionaugmented lagrangian method
augmented_lagrangian_method (FOM, xx, C, yy)
augmented_lagrangian_method (FOM, xx, C, yy, optional args)
augmented_lagrangian_method ([FOM, grad], xx, C, yy)
augmented_lagrangian_method ([FOM, grad], xx, C, yy, optional args)

Returns an approximate minimum of the expression FOM with respect to the vari-
ables xx, holding the constraints C equal to zero. yy is a list of initial guesses for xx.
The method employed is the augmented Lagrangian method (see Refs [1] and [2]).

grad, if present, is the gradient of FOM with respect to xx, represented as a list of
expressions, one for each variable in xx. If not present, the gradient is constructed
automatically.

FOM and each element of grad, if present, must be ordinary expressions, not names
of functions or lambda expressions.

optional_args represents additional arguments, specified as symbol = value. The
optional arguments recognized are:

niter Number of iterations of the augmented Lagrangian algorithm

lbfgs_tolerance

Tolerance supplied to LBFGS

iprint IPRINT parameter (a list of two integers which controls verbosity) sup-
plied to LBFGS

%lambda Initial value of %lambda to be used for calculating the augmented La-
grangian

This implementation minimizes the augmented Lagrangian by applying the limited-
memory BFGS (LBFGS) algorithm, which is a quasi-Newton algorithm.

load(augmented_lagrangian) loads this function.

See also lbfgs.

References:

[1] http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/
nonlinearcon/auglag.html

[2] http://www.cs.ubc.ca/spider/ascher/542/chap10.pdf

Examples:

(%i1) load (lbfgs);
(%o1) /maxima/share/lbfgs/lbfgs.mac
(%i2) load (augmented_lagrangian);
(%o2)

/maxima/share/contrib/augmented_lagrangian.mac
(%i3) FOM: x^2 + 2*y^2;

632 Maxima 5.35.1 Manual

2 2
(%o3) 2 y + x
(%i4) xx: [x, y];
(%o4) [x, y]
(%i5) C: [x + y - 1];
(%o5) [y + x - 1]
(%i6) yy: [1, 1];
(%o6) [1, 1]
(%i7) augmented_lagrangian_method(FOM, xx, C, yy, iprint=[-1,0]);
(%o7) [[x = 0.66665984108002, y = 0.33334027245545],

%lambda = [- 1.333337940892525]]

Same example as before, but this time the gradient is supplied as an argument.

(%i1) load (lbfgs)$
(%i2) load (augmented_lagrangian)$
(%i3) FOM: x^2 + 2*y^2;

2 2
(%o3) 2 y + x
(%i4) FOM: x^2 + 2*y^2;

2 2
(%o4) 2 y + x
(%i5) xx: [x, y];
(%o5) [x, y]
(%i6) grad : [2*x, 4*y];
(%o6) [2 x, 4 y]
(%i7) C: [x + y - 1];
(%o7) [y + x - 1]
(%i8) yy: [1, 1];
(%o8) [1, 1]
(%i9) augmented_lagrangian_method ([FOM, grad], xx, C, yy,

iprint = [-1, 0]);
(%o9) [[x = 0.666659841080025, y = .3333402724554462],

%lambda = [- 1.333337940892543]]

Chapter 42: Bernstein 633

42 Bernstein

42.1 Functions and Variables for Bernstein

Functionbernstein poly (k, n, x)
Provided k is not a negative integer, the Bernstein polynomials are defined by
bernstein_poly(k,n,x) = binomial(n,k) x^k (1-x)^(n-k); for a negative integer
k, the Bernstein polynomial bernstein_poly(k,n,x) vanishes. When either k or n

are non integers, the option variable bernstein_explicit controls the expansion of
the Bernstein polynomials into its explicit form; example:

(%i1) load(bernstein)$

(%i2) bernstein_poly(k,n,x);
(%o2) bernstein_poly(k, n, x)
(%i3) bernstein_poly(k,n,x), bernstein_explicit : true;

n - k k
(%o3) binomial(n, k) (1 - x) x

The Bernstein polynomials have both a gradef property and an integrate property:

(%i4) diff(bernstein_poly(k,n,x),x);
(%o4) (bernstein_poly(k - 1, n - 1, x)

- bernstein_poly(k, n - 1, x)) n
(%i5) integrate(bernstein_poly(k,n,x),x);
(%o5)

k + 1
hypergeometric([k + 1, k - n], [k + 2], x) binomial(n, k) x
--

k + 1

For numeric inputs, both real and complex, the Bernstein polynomials evaluate to a
numeric result:

(%i6) bernstein_poly(5,9, 1/2 + %i);
39375 %i 39375

(%o6) -------- + -----
128 256

(%i7) bernstein_poly(5,9, 0.5b0 + %i);
(%o7) 3.076171875b2 %i + 1.5380859375b2

To use bernstein_poly, first load("bernstein").

Variablebernstein explicit
Default value: false

When either k or n are non integers, the option variable bernstein_explicit controls
the expansion of bernstein(k,n,x) into its explicit form; example:

(%i1) bernstein_poly(k,n,x);
(%o1) bernstein_poly(k, n, x)
(%i2) bernstein_poly(k,n,x), bernstein_explicit : true;

634 Maxima 5.35.1 Manual

n - k k
(%o2) binomial(n, k) (1 - x) x

When both k and n are explicitly integers, bernstein(k,n,x) always expands to its
explicit form.

Functionmultibernstein poly ([k1,k2,. . . , kp], [n1,n2,. . . , np], [x1,x2,. . . , xp])
The multibernstein polynomial multibernstein_poly ([k1, k2, ..., kp], [n1, n2, ...,
np], [x1, x2, ..., xp]) is the product of bernstein polynomials bernstein_poly(k1,

n1, x1) bernstein_poly(k2, n2, x2) ... bernstein_poly(kp, np, xp).

To use multibernstein_poly, first load("bernstein").

Functionbernstein approx (f, [x1, x1, . . . , xn], n)
Return the n-th order uniform Bernstein polynomial approximation for the function
(x1, x2, ..., xn) |--> f. Examples

(%i1) bernstein_approx(f(x),[x], 2);
2 1 2

(%o1) f(1) x + 2 f(-) (1 - x) x + f(0) (1 - x)
2

(%i2) bernstein_approx(f(x,y),[x,y], 2);
2 2 1 2

(%o2) f(1, 1) x y + 2 f(-, 1) (1 - x) x y
2

2 2 1 2
+ f(0, 1) (1 - x) y + 2 f(1, -) x (1 - y) y

2
1 1 1 2

+ 4 f(-, -) (1 - x) x (1 - y) y + 2 f(0, -) (1 - x) (1 - y) y
2 2 2

2 2 1 2
+ f(1, 0) x (1 - y) + 2 f(-, 0) (1 - x) x (1 - y)

2
2 2

+ f(0, 0) (1 - x) (1 - y)

To use bernstein_approx, first load("bernstein").

Functionbernstein expand (e, [x1, x1, . . . , xn])
Express the polynomial e exactly as a linear combination of multi-variable Bernstein
polynomials.

(%i1) bernstein_expand(x*y+1,[x,y]);
(%o1) 2 x y + (1 - x) y + x (1 - y) + (1 - x) (1 - y)
(%i2) expand(%);
(%o2) x y + 1

Maxima signals an error when the first argument isn’t a polynomial.

To use bernstein_expand, first load("bernstein").

Chapter 43: bode 635

43 bode

43.1 Functions and Variables for bode

Functionbode gain (H, range, ...plot opts...)
Function to draw Bode gain plots.

Examples (1 through 7 from

http://www.swarthmore.edu/NatSci/echeeve1/Ref/Bode/BodeHow.html,

8 from Ron Crummett):

(%i1) load("bode")$

(%i2) H1 (s) := 100 * (1 + s) / ((s + 10) * (s + 100))$

(%i3) bode_gain (H1 (s), [w, 1/1000, 1000])$

(%i4) H2 (s) := 1 / (1 + s/omega0)$

(%i5) bode_gain (H2 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i6) H3 (s) := 1 / (1 + s/omega0)^2$

(%i7) bode_gain (H3 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i8) H4 (s) := 1 + s/omega0$

(%i9) bode_gain (H4 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i10) H5 (s) := 1/s$

(%i11) bode_gain (H5 (s), [w, 1/1000, 1000])$

(%i12) H6 (s) := 1/((s/omega0)^2 + 2 * zeta * (s/omega0) + 1)$

(%i13) bode_gain (H6 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i14) H7 (s) := (s/omega0)^2 + 2 * zeta * (s/omega0) + 1$

(%i15) bode_gain (H7 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i16) H8 (s) := 0.5 / (0.0001 * s^3 + 0.002 * s^2 + 0.01 * s)$

(%i17) bode_gain (H8 (s), [w, 1/1000, 1000])$

To use this function write first load("bode"). See also bode_phase

636 Maxima 5.35.1 Manual

Functionbode phase (H, range, ...plot opts...)
Function to draw Bode phase plots.

Examples (1 through 7 from

http://www.swarthmore.edu/NatSci/echeeve1/Ref/Bode/BodeHow.html,

8 from Ron Crummett):

(%i1) load("bode")$

(%i2) H1 (s) := 100 * (1 + s) / ((s + 10) * (s + 100))$

(%i3) bode_phase (H1 (s), [w, 1/1000, 1000])$

(%i4) H2 (s) := 1 / (1 + s/omega0)$

(%i5) bode_phase (H2 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i6) H3 (s) := 1 / (1 + s/omega0)^2$

(%i7) bode_phase (H3 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i8) H4 (s) := 1 + s/omega0$

(%i9) bode_phase (H4 (s), [w, 1/1000, 1000]), omega0 = 10$

(%i10) H5 (s) := 1/s$

(%i11) bode_phase (H5 (s), [w, 1/1000, 1000])$

(%i12) H6 (s) := 1/((s/omega0)^2 + 2 * zeta * (s/omega0) + 1)$

(%i13) bode_phase (H6 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i14) H7 (s) := (s/omega0)^2 + 2 * zeta * (s/omega0) + 1$

(%i15) bode_phase (H7 (s), [w, 1/1000, 1000]),
omega0 = 10, zeta = 1/10$

(%i16) H8 (s) := 0.5 / (0.0001 * s^3 + 0.002 * s^2 + 0.01 * s)$

(%i17) bode_phase (H8 (s), [w, 1/1000, 1000])$

(%i18) block ([bode_phase_unwrap : false],
bode_phase (H8 (s), [w, 1/1000, 1000]));

(%i19) block ([bode_phase_unwrap : true],
bode_phase (H8 (s), [w, 1/1000, 1000]));

To use this function write first load("bode"). See also bode_gain

Chapter 44: clebsch gordan 637

44 clebsch gordan

44.1 Functions and Variables for clebsch gordan

Functionclebsch gordan (j1, j2, m1, m2, j, m)
Compute the Clebsch-Gordan coefficient <j1, j2, m1, m2 | j, m>.

Functionracah v (a, b, c, a1, b1, c1)
Compute Racah’s V coefficient (computed in terms of a related Clebsch-Gordan co-
efficient).

Functionracah w (j1, j2, j5, j4, j3, j6)
Compute Racah’s W coefficient (computed in terms of a Wigner 6j symbol)

Functionwigner 3j (j1, j2, j3, m1, m2, m3)
Compute Wigner’s 3j symbol (computed in terms of a related Clebsch-Gordan coef-
ficient).

Functionwigner 6j (j1, j2, j3, j4, j5, j6)
Compute Wigner’s 6j symbol.

Functionwigner 9j (a, b, c, d, e, f, g, h, i, j,)
Compute Wigner’s 9j symbol.

638 Maxima 5.35.1 Manual

Chapter 45: cobyla 639

45 cobyla

45.1 Introduction to cobyla

fmin_cobyla is a Common Lisp translation (via f2cl) of the Fortran constrained opti-
mization routine COBYLA by Powell[1][2][3].

COBYLA minimizes an objective function F(X) subject to M inequality constraints of
the form g(X) >= 0 on X, where X is a vector of variables that has N components.

Equality constraints g(X)=0 can often be implemented by a pair of inequality constraints
g(X)>=0 and -g(X)>= 0. Maxima’s interface to COBYLA allows equality constraints and
internally converts the equality constraints to a pair of inequality constraints.

The algorithm employs linear approximations to the objective and constraint functions,
the approximations being formed by linear interpolation at N+1 points in the space of the
variables. The interpolation points are regarded as vertices of a simplex. The parameter
RHO controls the size of the simplex and it is reduced automatically from RHOBEG to
RHOEND. For each RHO the subroutine tries to achieve a good vector of variables for
the current size, and then RHO is reduced until the value RHOEND is reached. Therefore
RHOBEG and RHOEND should be set to reasonable initial changes to and the required
accuracy in the variables respectively, but this accuracy should be viewed as a subject
for experimentation because it is not guaranteed. The routine treats each constraint indi-
vidually when calculating a change to the variables, rather than lumping the constraints
together into a single penalty function. The name of the subroutine is derived from the
phrase Constrained Optimization BY Linear Approximations.

References:

[1] Fortran Code is from http://plato.asu.edu/sub/nlores.html#general

[2] M. J. D. Powell, "A direct search optimization method that models the objective and
constraint functions by linear interpolation," in Advances in Optimization and Numerical
Analysis, eds. S. Gomez and J.-P. Hennart (Kluwer Academic: Dordrecht, 1994), p. 51-67.

[3] M. J. D. Powell, "Direct search algorithms for optimization calculations," Acta Nu-
merica 7, 287-336 (1998). Also available as University of Cambridge, Department of Applied
Mathematics and Theoretical Physics, Numerical Analysis Group, Report NA1998/04 from
http://www.damtp.cam.ac.uk/user/na/reports.html

45.2 Functions and Variables for cobyla

Functionfmin cobyla
fmin_cobyla (F, X, Y)
fmin_cobyla (F, X, Y, optional args)

Returns an approximate minimum of the expression F with respect to the variables
X, subject to an optional set of constraints. Y is a list of initial guesses for X.

F must be an ordinary expressions, not names of functions or lambda expressions.

optional_args represents additional arguments, specified as symbol = value. The
optional arguments recognized are:

640 Maxima 5.35.1 Manual

constraints

List of inequality and equality constraints that must be satisfied by X.
The inequality constraints must be actual inequalities of the form g(X)

>= h(X) or g(X) <= h(X). The equality constraints must be of the form
g(X) = h(X).

rhobeg Initial value of the internal RHO variable which controls the size of sim-
plex. (Defaults to 1.0)

rhoend The desired final value rho parameter. It is approximately the accuracy
in the variables. (Defaults to 1d-6.)

iprint Verbose output level. (Defaults to 0)

0 - No output

1 - Summary at the end of the calculation

2 - Each new value of RHO and SIGMA is printed, including the
vector of variables, some function information when RHO is reduced.

3 - Like 2, but information is printed when F(X) is computed.

maxfun The maximum number of function evaluations. (Defaults to 1000).

On return, a vector is given:

1. The value of the variables giving the minimum. This is a list of elements of the
form var = value for each of the variables listed in X.

2. The minimized function value

3. The number of function evaluations.

4. Return code with the following meanings

1. 0 - No errors.

2. 1 - Limit on maximum number of function evaluations reached.

3. 2 - Rounding errors inhibiting progress.

load(fmin_cobyla) loads this function.

Functionbf fmin cobyla
bf_fmin_cobyla (F, X, Y)
bf_fmin_cobyla (F, X, Y, optional args)

This function is identical to fmin_cobyla, except that bigfloat operations are used,
and the default value for rhoend is 10^(fpprec/2).

See fmin_cobyla for more information.

load(bf_fmin_cobyla) loads this function.

45.3 Examples for cobyla

Minimize x1*x2 with 1-x1^2-x2^2 >= 0. The theoretical solution is x1 = 1/sqrt(2), x2
= -1/sqrt(2).

Chapter 45: cobyla 641

(%i1) load(fmin_cobyla)$
(%i2) fmin_cobyla(x1*x2, [x1, x2], [1,1],

constraints = [x1^2+x2^2<=1], iprint=1);
Normal return from subroutine COBYLA

NFVALS = 66 F =-5.000000E-01 MAXCV = 1.999845E-12
X = 7.071058E-01 -7.071077E-01

(%o2) [[x1 = 0.70710584934848, x2 = - 0.7071077130248],
- 0.49999999999926, [[-1.999955756559757e-12],[]], 66]

There are additional examples in the share/cobyla/ex directory.

642 Maxima 5.35.1 Manual

Chapter 46: contrib ode 643

46 contrib ode

46.1 Introduction to contrib ode

Maxima’s ordinary differential equation (ODE) solver ode2 solves elementary linear
ODEs of first and second order. The function contrib_ode extends ode2 with additional
methods for linear and non-linear first order ODEs and linear homogeneous second order
ODEs. The code is still under development and the calling sequence may change in future
releases. Once the code has stabilized it may be moved from the contrib directory and
integrated into Maxima.

This package must be loaded with the command load(’contrib_ode) before use.

The calling convention for contrib_ode is identical to ode2. It takes three arguments:
an ODE (only the left hand side need be given if the right hand side is 0), the dependent
variable, and the independent variable. When successful, it returns a list of solutions.

The form of the solution differs from ode2. As non-linear equations can have multiple
solutions, contrib_ode returns a list of solutions. Each solution can have a number of
forms:

• an explicit solution for the dependent variable,

• an implicit solution for the dependent variable,

• a parametric solution in terms of variable %t, or

• a tranformation into another ODE in variable %u.

%c is used to represent the constant of integration for first order equations. %k1 and %k2

are the constants for second order equations. If contrib_ode cannot obtain a solution for
whatever reason, it returns false, after perhaps printing out an error message.

It is necessary to return a list of solutions, as even first order non-linear ODEs can have
multiple solutions. For example:

(%i1) load(’contrib_ode)$

(%i2) eqn:x*’diff(y,x)^2-(1+x*y)*’diff(y,x)+y=0;

dy 2 dy
(%o2) x (--) - (x y + 1) -- + y = 0

dx dx
(%i3) contrib_ode(eqn,y,x);

x
(%o3) [y = log(x) + %c, y = %c %e]
(%i4) method;

(%o4) factor

Nonlinear ODEs can have singular solutions without constants of integration, as in the
second solution of the following example:

(%i1) load(’contrib_ode)$

644 Maxima 5.35.1 Manual

(%i2) eqn:’diff(y,x)^2+x*’diff(y,x)-y=0;

dy 2 dy
(%o2) (--) + x -- - y = 0

dx dx
(%i3) contrib_ode(eqn,y,x);

2
2 x

(%o3) [y = %c x + %c , y = - --]
4

(%i4) method;

(%o4) clairault

The following ODE has two parametric solutions in terms of the dummy variable %t. In
this case the parametric solutions can be manipulated to give explicit solutions.

(%i1) load(’contrib_ode)$

(%i2) eqn:’diff(y,x)=(x+y)^2;

dy 2
(%o2) -- = (y + x)

dx
(%i3) contrib_ode(eqn,y,x);

(%o3) [[x = %c - atan(sqrt(%t)), y = - x - sqrt(%t)],
[x = atan(sqrt(%t)) + %c, y = sqrt(%t) - x]]

(%i4) method;

(%o4) lagrange

The following example (Kamke 1.112) demonstrates an implicit solution.

(%i1) load(’contrib_ode)$

(%i2) assume(x>0,y>0);

(%o2) [x > 0, y > 0]
(%i3) eqn:x*’diff(y,x)-x*sqrt(y^2+x^2)-y;

dy 2 2
(%o3) x -- - x sqrt(y + x) - y

dx
(%i4) contrib_ode(eqn,y,x);

y
(%o4) [x - asinh(-) = %c]

x
(%i5) method;

Chapter 46: contrib ode 645

(%o5) lie

The following Riccati equation is transformed into a linear second order ODE in the
variable %u. Maxima is unable to solve the new ODE, so it is returned unevaluated.

(%i1) load(’contrib_ode)$

(%i2) eqn:x^2*’diff(y,x)=a+b*x^n+c*x^2*y^2;

2 dy 2 2 n
(%o2) x -- = c x y + b x + a

dx
(%i3) contrib_ode(eqn,y,x);

d%u
--- 2
dx 2 n - 2 a d %u

(%o3) [[y = - ----, %u c (b x + --) + ---- c = 0]]
%u c 2 2

x dx
(%i4) method;

(%o4) riccati

For first order ODEs contrib_ode calls ode2. It then tries the following methods: fac-
torization, Clairault, Lagrange, Riccati, Abel and Lie symmetry methods. The Lie method
is not attempted on Abel equations if the Abel method fails, but it is tried if the Riccati
method returns an unsolved second order ODE.

For second order ODEs contrib_ode calls ode2 then odelin.

Extensive debugging traces and messages are displayed if the command put(’contrib_

ode,true,’verbose) is executed.

46.2 Functions and Variables for contrib ode

Functioncontrib ode (eqn, y, x)
Returns a list of solutions of the ODE eqn with independent variable x and dependent
variable y.

Functionodelin (eqn, y, x)
odelin solves linear homogeneous ODEs of first and second order with independent
variable x and dependent variable y. It returns a fundamental solution set of the
ODE.

For second order ODEs, odelin uses a method, due to Bronstein and Lafaille, that
searches for solutions in terms of given special functions.

(%i1) load(’contrib_ode);

(%i2) odelin(x*(x+1)*’diff(y,x,2)+(x+5)*’diff(y,x,1)+(-4)*y,y,x);
...trying factor method

646 Maxima 5.35.1 Manual

...solving 7 equations in 4 variables

...trying the Bessel solver

...solving 1 equations in 2 variables

...trying the F01 solver

...solving 1 equations in 3 variables

...trying the spherodial wave solver

...solving 1 equations in 4 variables

...trying the square root Bessel solver

...solving 1 equations in 2 variables

...trying the 2F1 solver

...solving 9 equations in 5 variables
gauss_a(- 6, - 2, - 3, - x) gauss_b(- 6, - 2, - 3, - x)

(%o2) {---------------------------, ---------------------------}
4 4
x x

Functionode check (eqn, soln)
Returns the value of ODE eqn after substituting a possible solution soln. The value
is equivalent to zero if soln is a solution of eqn.

(%i1) load(’contrib_ode)$

(%i2) eqn:’diff(y,x,2)+(a*x+b)*y;

2
d y

(%o2) --- + (a x + b) y
2

dx
(%i3) ans:[y = bessel_y(1/3,2*(a*x+b)^(3/2)/(3*a))*%k2*sqrt(a*x+b)

+bessel_j(1/3,2*(a*x+b)^(3/2)/(3*a))*%k1*sqrt(a*x+b)];

3/2
1 2 (a x + b)

(%o3) [y = bessel_y(-, --------------) %k2 sqrt(a x + b)
3 3 a

3/2
1 2 (a x + b)

+ bessel_j(-, --------------) %k1 sqrt(a x + b)]
3 3 a

(%i4) ode_check(eqn,ans[1]);

(%o4) 0

System variablemethod
The variable method is set to the successful solution method.

Variable%c
%c is the integration constant for first order ODEs.

Chapter 46: contrib ode 647

Variable%k1
%k1 is the first integration constant for second order ODEs.

Variable%k2
%k2 is the second integration constant for second order ODEs.

Functiongauss a (a, b, c, x)
gauss_a(a,b,c,x) and gauss_b(a,b,c,x) are 2F1 geometric functions. They repre-
sent any two independent solutions of the hypergeometric differential equation x(1-x)

diff(y,x,2) + [c-(a+b+1)x] diff(y,x) - aby = 0 (A&S 15.5.1).

The only use of these functions is in solutions of ODEs returned by odelin and
contrib_ode. The definition and use of these functions may change in future releases
of Maxima.

See also gauss_b, dgauss_a and gauss_b.

Functiongauss b (a, b, c, x)
See gauss_a.

Functiondgauss a (a, b, c, x)
The derivative with respect to x of gauss_a(a, b, c, x).

Functiondgauss b (a, b, c, x)
The derivative with respect to x of gauss_b(a, b, c, x).

Functionkummer m (a, b, x)
Kummer’s M function, as defined in Abramowitz and Stegun, Handbook of Mathe-
matical Functions, Section 13.1.2.

The only use of this function is in solutions of ODEs returned by odelin and contrib_

ode. The definition and use of this function may change in future releases of Maxima.

See also kummer_u, dkummer_m and dkummer_u.

Functionkummer u (a, b, x)
Kummer’s U function, as defined in Abramowitz and Stegun, Handbook of Mathe-
matical Functions, Section 13.1.3.

See kummer_m.

Functiondkummer m (a, b, x)
The derivative with respect to x of kummer_m(a, b, x).

Functiondkummer u (a, b, x)
The derivative with respect to x of kummer_u(a, b, x).

648 Maxima 5.35.1 Manual

46.3 Possible improvements to contrib ode

These routines are work in progress. I still need to:

• Extend the FACTOR method ode1_factor to work for multiple roots.

• Extend the FACTOR method ode1_factor to attempt to solve higher order factors.
At present it only attemps to solve linear factors.

• Fix the LAGRANGE routine ode1_lagrange to prefer real roots over complex roots.

• Add additional methods for Riccati equations.

• Improve the detection of Abel equations of second kind. The exisiting pattern matching
is weak.

• Work on the Lie symmetry group routine ode1_lie. There are quite a few problems
with it: some parts are unimplemented; some test cases seem to run forever; other test
cases crash; yet others return very complex "solutions". I wonder if it really ready for
release yet.

• Add more test cases.

46.4 Test cases for contrib ode

The routines have been tested on a approximately one thousand test cases from Murphy,
Kamke, Zwillinger and elsewhere. These are included in the tests subdirectory.

• The Clairault routine ode1_clairault finds all known solutions, including singular
solutions, of the Clairault equations in Murphy and Kamke.

• The other routines often return a single solution when multiple solutions exist.

• Some of the "solutions" from ode1_lie are overly complex and impossible to check.

• There are some crashes.

46.5 References for contrib ode

1. E. Kamke, Differentialgleichungen Losungsmethoden und Losungen, Vol 1, Geest &
Portig, Leipzig, 1961

2. G. M. Murphy, Ordinary Differential Equations and Their Solutions, Van Nostrand,
New York, 1960

3. D. Zwillinger, Handbook of Differential Equations, 3rd edition, Academic Press, 1998

4. F. Schwarz, Symmetry Analysis of Abel’s Equation, Studies in Applied Mathematics,
100:269-294 (1998)

5. F. Schwarz, Algorithmic Solution of Abel’s Equation, Computing 61, 39-49 (1998)

6. E. S. Cheb-Terrab, A. D. Roche, Symmetries and First Order ODE Patterns, Computer
Physics Communications 113 (1998), p 239. (http://lie.uwaterloo.ca/papers/
ode vii.pdf)

7. E. S. Cheb-Terrab, T. Kolokolnikov, First Order ODEs, Symmetries and Linear Trans-
formations, European Journal of Applied Mathematics, Vol. 14, No. 2, pp. 231-246
(2003). (http://arxiv.org/abs/math-ph/0007023,
http://lie.uwaterloo.ca/papers/ode_iv.pdf)

Chapter 46: contrib ode 649

8. G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equa-
tions, Springer, (2002)

9. M. Bronstein, S. Lafaille, Solutions of linear ordinary differential equations in terms of
special functions, Proceedings of ISSAC 2002, Lille, ACM Press, 23-28. (http://www-
sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2002.pdf)

650 Maxima 5.35.1 Manual

Chapter 47: descriptive 651

47 descriptive

47.1 Introduction to descriptive

Package descriptive contains a set of functions for making descriptive statistical com-
putations and graphing. Together with the source code there are three data sets in your
Maxima tree: pidigits.data, wind.data and biomed.data.

Any statistics manual can be used as a reference to the functions in package
descriptive.

For comments, bugs or suggestions, please contact me at ’mario AT edu DOT xunta
DOT es’.

Here is a simple example on how the descriptive functions in descriptive do they work,
depending on the nature of their arguments, lists or matrices,

(%i1) load (descriptive)$
(%i2) /* univariate sample */ mean ([a, b, c]);

c + b + a
(%o2) ---------

3

(%i3) matrix ([a, b], [c, d], [e, f]);
[a b]
[]

(%o3) [c d]
[]
[e f]

(%i4) /* multivariate sample */ mean (%);
e + c + a f + d + b

(%o4) [---------, ---------]
3 3

Note that in multivariate samples the mean is calculated for each column.

In case of several samples with possible different sizes, the Maxima function map can be
used to get the desired results for each sample,

(%i1) load (descriptive)$
(%i2) map (mean, [[a, b, c], [d, e]]);

c + b + a e + d
(%o2) [---------, -----]

3 2

In this case, two samples of sizes 3 and 2 were stored into a list.

Univariate samples must be stored in lists like

(%i1) s1 : [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5];
(%o1) [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]

and multivariate samples in matrices as in

652 Maxima 5.35.1 Manual

(%i1) s2 : matrix ([13.17, 9.29], [14.71, 16.88], [18.50, 16.88],
[10.58, 6.63], [13.33, 13.25], [13.21, 8.12]);

[13.17 9.29]
[]
[14.71 16.88]
[]
[18.5 16.88]

(%o1) []
[10.58 6.63]
[]
[13.33 13.25]
[]
[13.21 8.12]

In this case, the number of columns equals the random variable dimension and the
number of rows is the sample size.

Data can be introduced by hand, but big samples are usually stored in plain text files.
For example, file pidigits.data contains the first 100 digits of number %pi:

3
1
4
1
5
9
2
6
5
3 ...

In order to load these digits in Maxima,

(%i1) s1 : read_list (file_search ("pidigits.data"))$
(%i2) length (s1);
(%o2) 100

On the other hand, file wind.data contains daily average wind speeds at 5 meteorological
stations in the Republic of Ireland (This is part of a data set taken at 12 meteorological
stations. The original file is freely downloadable from the StatLib Data Repository and its
analysis is discused in Haslett, J., Raftery, A. E. (1989) Space-time Modelling with Long-
memory Dependence: Assessing Ireland’s Wind Power Resource, with Discussion. Applied
Statistics 38, 1-50). This loads the data:

(%i1) s2 : read_matrix (file_search ("wind.data"))$
(%i2) length (s2);
(%o2) 100

(%i3) s2 [%]; /* last record */
(%o3) [3.58, 6.0, 4.58, 7.62, 11.25]

Some samples contain non numeric data. As an example, file biomed.data (which is
part of another bigger one downloaded from the StatLib Data Repository) contains four
blood measures taken from two groups of patients, A and B, of different ages,

(%i1) s3 : read_matrix (file_search ("biomed.data"))$

Chapter 47: descriptive 653

(%i2) length (s3);
(%o2) 100

(%i3) s3 [1]; /* first record */
(%o3) [A, 30, 167.0, 89.0, 25.6, 364]

The first individual belongs to group A, is 30 years old and his/her blood measures were
167.0, 89.0, 25.6 and 364.

One must take care when working with categorical data. In the next example, symbol a
is asigned a value in some previous moment and then a sample with categorical value a is
taken,

(%i1) a : 1$
(%i2) matrix ([a, 3], [b, 5]);

[1 3]
(%o2) []

[b 5]

47.2 Functions and Variables for data manipulation

Functionbuild sample
build_sample (list)
build_sample (matrix)

Builds a sample from a table of absolute frequencies. The input table can be a matrix
or a list of lists, all of them of equal size. The number of columns or the length of
the lists must be greater than 1. The last element of each row or list is interpreted
as the absolute frequency. The output is always a sample in matrix form.

Examples:

Univariate frequency table.

(%i1) load (descriptive)$
(%i2) sam1: build_sample([[6,1], [j,2], [2,1]]);

[6]
[]
[j]

(%o2) []
[j]
[]
[2]

(%i3) mean(sam1);
2 j + 8

(%o3) [-------]
4

(%i4) barsplot(sam1) $

Multivariate frequency table.

(%i1) load (descriptive)$
(%i2) sam2: build_sample([[6,3,1], [5,6,2], [u,2,1],[6,8,2]]) ;

[6 3]
[]

654 Maxima 5.35.1 Manual

[5 6]
[]
[5 6]

(%o2) []
[u 2]
[]
[6 8]
[]
[6 8]

(%i3) cov(sam2);
[2 2]
[u + 158 (u + 28) 2 u + 174 11 (u + 28)]
[-------- - --------- --------- - -----------]

(%o3) [6 36 6 12]
[]
[2 u + 174 11 (u + 28) 21]
[--------- - ----------- --]
[6 12 4]

(%i4) barsplot(sam2, grouping=stacked) $

Functioncontinuous freq
continuous_freq (list)
continuous_freq (list, m)

The argument of continuous_freq must be a list of numbers. Divides the range
in intervals and counts how many values are inside them. The second argument is
optional and either equals the number of classes we want, 10 by default, or equals a
list containing the class limits and the number of classes we want, or a list containing
only the limits. Argument list must be a list of (2 or 3) real numbers. If sample
values are all equal, this function returns only one class of amplitude 2.

Examples:

Optional argument indicates the number of classes we want. The first list in the
output contains the interval limits, and the second the corresponding counts: there
are 16 digits inside the interval [0, 1.8], 24 digits in (1.8, 3.6], and so on.

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) continuous_freq (s1, 5);
(%o3) [[0, 1.8, 3.6, 5.4, 7.2, 9.0], [16, 24, 18, 17, 25]]

Optional argument indicates we want 7 classes with limits -2 and 12:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) continuous_freq (s1, [-2,12,7]);
(%o3) [[- 2, 0, 2, 4, 6, 8, 10, 12], [8, 20, 22, 17, 20, 13, 0]]

Optional argument indicates we want the default number of classes with limits -2 and
12:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) continuous_freq (s1, [-2,12]);

Chapter 47: descriptive 655

3 4 11 18 32 39 46 53
(%o3) [[- 2, - -, -, --, --, 5, --, --, --, --, 12],

5 5 5 5 5 5 5 5
[0, 8, 20, 12, 18, 9, 8, 25, 0, 0]]

Functiondiscrete freq (list)
Counts absolute frequencies in discrete samples, both numeric and categorical. Its
unique argument is a list,

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) discrete_freq (s1);
(%o3) [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

[8, 8, 12, 12, 10, 8, 9, 8, 12, 13]]

The first list gives the sample values and the second their absolute frequencies. Com-
mands ? col and ? transpose should help you to understand the last input.

Functionstandardize
standardize (list)
standardize (matrix)

Subtracts to each element of the list the sample mean and divides the result by the
standard deviation. When the input is a matrix, standardize subtracts to each
row the multivariate mean, and then divides each component by the corresponding
standard deviation.

Functionsubsample
subsample (data matrix, predicate function)
subsample (data matrix, predicate function, col num1, col num2, ...)

This is a sort of variant of the Maxima submatrix function. The first argument is
the data matrix, the second is a predicate function and optional additional arguments
are the numbers of the columns to be taken. Its behaviour is better understood with
examples.

These are multivariate records in which the wind speed in the first meteorological
station were greater than 18. See that in the lambda expression the i-th component
is refered to as v[i].

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) subsample (s2, lambda([v], v[1] > 18));

[19.38 15.37 15.12 23.09 25.25]
[]
[18.29 18.66 19.08 26.08 27.63]

(%o3) []
[20.25 21.46 19.95 27.71 23.38]
[]
[18.79 18.96 14.46 26.38 21.84]

In the following example, we request only the first, second and fifth components of
those records with wind speeds greater or equal than 16 in station number 1 and less

656 Maxima 5.35.1 Manual

than 25 knots in station number 4. The sample contains only data from stations 1, 2
and 5. In this case, the predicate function is defined as an ordinary Maxima function.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) g(x):= x[1] >= 16 and x[4] < 25$
(%i4) subsample (s2, g, 1, 2, 5);

[19.38 15.37 25.25]
[]
[17.33 14.67 19.58]

(%o4) []
[16.92 13.21 21.21]
[]
[17.25 18.46 23.87]

Here is an example with the categorical variables of biomed.data. We want the
records corresponding to those patients in group B who are older than 38 years.

(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) h(u):= u[1] = B and u[2] > 38 $
(%i4) subsample (s3, h);

[B 39 28.0 102.3 17.1 146]
[]
[B 39 21.0 92.4 10.3 197]
[]
[B 39 23.0 111.5 10.0 133]
[]
[B 39 26.0 92.6 12.3 196]

(%o4) []
[B 39 25.0 98.7 10.0 174]
[]
[B 39 21.0 93.2 5.9 181]
[]
[B 39 18.0 95.0 11.3 66]
[]
[B 39 39.0 88.5 7.6 168]

Probably, the statistical analysis will involve only the blood measures,

(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$

Chapter 47: descriptive 657

(%i3) subsample (s3, lambda([v], v[1] = B and v[2] > 38),
3, 4, 5, 6);
[28.0 102.3 17.1 146]
[]
[21.0 92.4 10.3 197]
[]
[23.0 111.5 10.0 133]
[]
[26.0 92.6 12.3 196]

(%o3) []
[25.0 98.7 10.0 174]
[]
[21.0 93.2 5.9 181]
[]
[18.0 95.0 11.3 66]
[]
[39.0 88.5 7.6 168]

This is the multivariate mean of s3,

(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) mean (s3);

65 B + 35 A 317 6 NA + 8144.999999999999
(%o3) [-----------, ---, 87.178, ------------------------,

100 10 100
3 NA + 19587

18.123, ------------]
100

Here, the first component is meaningless, since A and B are categorical, the second
component is the mean age of individuals in rational form, and the fourth and last
values exhibit some strange behaviour. This is because symbol NA is used here to
indicate non available data, and the two means are nonsense. A possible solution
would be to take out from the matrix those rows with NA symbols, although this
deserves some loss of information.

(%i1) load (descriptive)$
(%i2) s3 : read_matrix (file_search ("biomed.data"))$
(%i3) g(v):= v[4] # NA and v[6] # NA $
(%i4) mean (subsample (s3, g, 3, 4, 5, 6));
(%o4) [79.4923076923077, 86.2032967032967, 16.93186813186813,

2514
----]
13

Functiontransform sample (matrix, varlist, exprlist)
Transforms the sample matrix, where each column is called according to varlist, fol-
lowing expressions in exprlist.

Examples:

The second argument assigns names to the three columns. With these names, a list
of expressions define the transformation of the sample.

658 Maxima 5.35.1 Manual

(%i1) load (descriptive)$
(%i2) data: matrix([3,2,7],[3,7,2],[8,2,4],[5,2,4]) $
(%i3) transform_sample(data, [a,b,c], [c, a*b, log(a)]);

[7 6 log(3)]
[]
[2 21 log(3)]

(%o3) []
[4 16 log(8)]
[]
[4 10 log(5)]

Add a constant column and remove the third variable.

(%i1) load (descriptive)$
(%i2) data: matrix([3,2,7],[3,7,2],[8,2,4],[5,2,4]) $
(%i3) transform_sample(data, [a,b,c], [makelist(1,k,length(data)),a,b]);

[1 3 2]
[]
[1 3 7]

(%o3) []
[1 8 2]
[]
[1 5 2]

47.3 Functions and Variables for descriptive statistics

Functionmean
mean (list)
mean (matrix)

This is the sample mean, defined as

x̄ =
1

n

n∑
i=1

xi

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean (s1);

471
(%o3) ---

100

(%i4) %, numer;
(%o4) 4.71
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) mean (s2);
(%o6) [9.9485, 10.1607, 10.8685, 15.7166, 14.8441]

Chapter 47: descriptive 659

Functionvar
var (list)
var (matrix)

This is the sample variance, defined as

1

n

n∑
i=1

(xi − x̄)2

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var (s1), numer;
(%o3) 8.425899999999999

See also function var1.

Functionvar1
var1 (list)
var1 (matrix)

This is the sample variance, defined as

1

n− 1

n∑
i=1

(xi − x̄)2

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var1 (s1), numer;
(%o3) 8.5110101010101
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) var1 (s2);
(%o5) [17.39586540404041, 15.13912778787879, 15.63204924242424,

32.50152569696971, 24.66977392929294]

See also function var.

Functionstd
std (list)
std (matrix)

This is the the square root of function var, the variance with denominator n.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std (s1), numer;
(%o3) 2.902740084816414
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std (s2);
(%o5) [4.149928523480858, 3.871399812729241, 3.933920277534866,

5.672434260526957, 4.941970881136392]

See also functions var and std1.

660 Maxima 5.35.1 Manual

Functionstd1
std1 (list)
std1 (matrix)

This is the the square root of function var1, the variance with denominator n− 1.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std1 (s1), numer;
(%o3) 2.917363553109228
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std1 (s2);
(%o5) [4.170835096721089, 3.89090320978032, 3.953738641137555,

5.701010936401517, 4.966867617451963]

See also functions var1 and std.

Functionnoncentral moment
noncentral_moment (list, k)
noncentral_moment (matrix, k)

The non central moment of order k, defined as

1

n

n∑
i=1

xki

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) noncentral_moment (s1, 1), numer; /* the mean */
(%o3) 4.71

(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) noncentral_moment (s2, 5);
(%o6) [319793.8724761505, 320532.1923892463,

391249.5621381556, 2502278.205988911, 1691881.797742255]

See also function central_moment.

Functioncentral moment
central_moment (list, k)
central_moment (matrix, k)

The central moment of order k, defined as

1

n

n∑
i=1

(xi − x̄)k

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) central_moment (s1, 2), numer; /* the variance */
(%o3) 8.425899999999999

Chapter 47: descriptive 661

(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) central_moment (s2, 3);
(%o6) [11.29584771375004, 16.97988248298583, 5.626661952750102,

37.5986572057918, 25.85981904394192]

See also functions central_moment and mean.

Functioncv
cv (list)
cv (matrix)

The variation coefficient is the quotient between the sample standard deviation (std)
and the mean,

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) cv (s1), numer;
(%o3) .6193977819764815
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) cv (s2);
(%o5) [.4192426091090204, .3829365309260502, 0.363779605385983,

.3627381836021478, .3346021393989506]

See also functions std and mean.

Functionsmin
smin (list)
smin (matrix)

This is the minimum value of the sample list. When the argument is a matrix, smin
returns a list containing the minimum values of the columns, which are associated to
statistical variables.

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) smin (s1);
(%o3) 0
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) smin (s2);
(%o5) [0.58, 0.5, 2.67, 5.25, 5.17]

See also function smax.

Functionsmax
smax (list)
smax (matrix)

This is the maximum value of the sample list. When the argument is a matrix, smax
returns a list containing the maximum values of the columns, which are associated to
statistical variables.

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) smax (s1);
(%o3) 9
(%i4) s2 : read_matrix (file_search ("wind.data"))$

662 Maxima 5.35.1 Manual

(%i5) smax (s2);
(%o5) [20.25, 21.46, 20.04, 29.63, 27.63]

See also function smin.

Functionrange
range (list)
range (matrix)

The range is the difference between the extreme values.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) range (s1);
(%o3) 9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) range (s2);
(%o5) [19.67, 20.96, 17.37, 24.38, 22.46]

Functionquantile
quantile (list, p)
quantile (matrix, p)

This is the p-quantile, with p a number in [0, 1], of the sample list. Although there are
several definitions for the sample quantile (Hyndman, R. J., Fan, Y. (1996) Sample
quantiles in statistical packages. American Statistician, 50, 361-365), the one based
on linear interpolation is implemented in package descriptive.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) /* 1st and 3rd quartiles */

[quantile (s1, 1/4), quantile (s1, 3/4)], numer;
(%o3) [2.0, 7.25]
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quantile (s2, 1/4);
(%o5) [7.2575, 7.477500000000001, 7.82, 11.28, 11.48]

Functionmedian
median (list)
median (matrix)

Once the sample is ordered, if the sample size is odd the median is the central value,
otherwise it is the mean of the two central values.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median (s1);

9
(%o3) -

2

Chapter 47: descriptive 663

(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median (s2);
(%o5) [10.06, 9.855, 10.73, 15.48, 14.105]

The median is the 1/2-quantile.

See also function quantile.

Functionqrange
qrange (list)
qrange (matrix)

The interquartilic range is the difference between the third and first quartiles,
quantile(list,3/4) - quantile(list,1/4),

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) qrange (s1);

21
(%o3) --

4
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) qrange (s2);
(%o5) [5.385, 5.572499999999998, 6.022500000000001,

8.729999999999999, 6.649999999999999]

See also function quantile.

Functionmean deviation
mean_deviation (list)
mean_deviation (matrix)

The mean deviation, defined as

1

n

n∑
i=1

|xi − x̄|

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean_deviation (s1);

51
(%o3) --

20
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) mean_deviation (s2);
(%o5) [3.287959999999999, 3.075342, 3.23907, 4.715664000000001,

4.028546000000002]

See also function mean.

664 Maxima 5.35.1 Manual

Functionmedian deviation
median_deviation (list)
median_deviation (matrix)

The median deviation, defined as

1

n

n∑
i=1

|xi −med|

where med is the median of list.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median_deviation (s1);

5
(%o3) -

2
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median_deviation (s2);
(%o5) [2.75, 2.755, 3.08, 4.315, 3.31]

See also function mean.

Functionharmonic mean
harmonic_mean (list)
harmonic_mean (matrix)

The harmonic mean, defined as

n∑n
i=1

1
xi

Example:

(%i1) load (descriptive)$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) harmonic_mean (y), numer;
(%o3) 3.901858027632205
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) harmonic_mean (s2);
(%o5) [6.948015590052786, 7.391967752360356, 9.055658197151745,

13.44199028193692, 13.01439145898509]

See also functions mean and geometric_mean.

Functiongeometric mean
geometric_mean (list)
geometric_mean (matrix)

The geometric mean, defined as (
n∏
i=1

xi

) 1
n

Example:

Chapter 47: descriptive 665

(%i1) load (descriptive)$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) geometric_mean (y), numer;
(%o3) 4.454845412337012
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) geometric_mean (s2);
(%o5) [8.82476274347979, 9.22652604739361, 10.0442675714889,

14.61274126349021, 13.96184163444275]

See also functions mean and harmonic_mean.

Functionkurtosis
kurtosis (list)
kurtosis (matrix)

The kurtosis coefficient, defined as

1

ns4

n∑
i=1

(xi − x̄)4 − 3

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) kurtosis (s1), numer;
(%o3) - 1.273247946514421
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) kurtosis (s2);
(%o5) [- .2715445622195385, 0.119998784429451,

- .4275233490482861, - .6405361979019522, - .4952382132352935]

See also functions mean, var and skewness.

Functionskewness
skewness (list)
skewness (matrix)

The skewness coefficient, defined as

1

ns3

n∑
i=1

(xi − x̄)3

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) skewness (s1), numer;
(%o3) .009196180476450424
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) skewness (s2);
(%o5) [.1580509020000978, .2926379232061854, .09242174416107717,

.2059984348148687, .2142520248890831]

See also functions mean, var and kurtosis.

666 Maxima 5.35.1 Manual

Functionpearson skewness
pearson_skewness (list)
pearson_skewness (matrix)

Pearson’s skewness coefficient, defined as

3 (x̄−med)

s

where med is the median of list.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) pearson_skewness (s1), numer;
(%o3) .2159484029093895
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) pearson_skewness (s2);
(%o5) [- .08019976629211892, .2357036272952649,

.1050904062491204, .1245042340592368, .4464181795804519]

See also functions mean, var and median.

Functionquartile skewness
quartile_skewness (list)
quartile_skewness (matrix)

The quartile skewness coefficient, defined as

c 3
4
− 2 c 1

2
+ c 1

4

c 3
4
− c 1

4

where cp is the p-quantile of sample list.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) quartile_skewness (s1), numer;
(%o3) .04761904761904762
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quartile_skewness (s2);
(%o5) [- 0.0408542246982353, .1467025572005382,

0.0336239103362392, .03780068728522298, .2105263157894735]

See also function quantile.

Functioncov (matrix)
The covariance matrix of the multivariate sample, defined as

S =
1

n

n∑
j=1

(
Xj − X̄

) (
Xj − X̄

)′
where Xj is the j-th row of the sample matrix.

Example:

Chapter 47: descriptive 667

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$ /* change precision for pretty output */
(%i4) cov (s2);

[17.22191 13.61811 14.37217 19.39624 15.42162]
[]
[13.61811 14.98774 13.30448 15.15834 14.9711]
[]

(%o4) [14.37217 13.30448 15.47573 17.32544 16.18171]
[]
[19.39624 15.15834 17.32544 32.17651 20.44685]
[]
[15.42162 14.9711 16.18171 20.44685 24.42308]

See also function cov1.

Functioncov1 (matrix)
The covariance matrix of the multivariate sample, defined as

1

n− 1

n∑
j=1

(
Xj − X̄

) (
Xj − X̄

)′
where Xj is the j-th row of the sample matrix.

Example:

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$ /* change precision for pretty output */
(%i4) cov1 (s2);

[17.39587 13.75567 14.51734 19.59216 15.5774]
[]
[13.75567 15.13913 13.43887 15.31145 15.12232]
[]

(%o4) [14.51734 13.43887 15.63205 17.50044 16.34516]
[]
[19.59216 15.31145 17.50044 32.50153 20.65338]
[]
[15.5774 15.12232 16.34516 20.65338 24.66977]

See also function cov.

Functionglobal variances
global_variances (matrix)
global_variances (matrix, options ...)

Function global_variances returns a list of global variance measures:

• total variance: trace(S_1),

• mean variance: trace(S_1)/p,

• generalized variance: determinant(S_1),

• generalized standard deviation: sqrt(determinant(S_1)),

668 Maxima 5.35.1 Manual

• efective variance determinant(S_1)^(1/p), (defined in: Peña, D. (2002)
Análisis de datos multivariantes; McGraw-Hill, Madrid.)

• efective standard deviation: determinant(S_1)^(1/(2*p)).

where p is the dimension of the multivariate random variable and S1 the covariance
matrix returned by cov1.

Option:

• ’data, default ’true, indicates whether the input matrix contains the sample
data, in which case the covariance matrix cov1 must be calculated, or not, and
then the covariance matrix (symmetric) must be given, instead of the data.

Example:

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) global_variances (s2);
(%o3) [105.338342060606, 21.06766841212119, 12874.34690469686,

113.4651792608501, 6.636590811800795, 2.576158149609762]

Calculate the global_variances from the covariance matrix.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) s : cov1 (s2)$
(%i4) global_variances (s, data=false);
(%o4) [105.338342060606, 21.06766841212119, 12874.34690469686,

113.4651792608501, 6.636590811800795, 2.576158149609762]

See also cov and cov1.

Functioncor
cor (matrix)
cor (matrix, logical value)

The correlation matrix of the multivariate sample.

Option:

• ’data, default ’true, indicates whether the input matrix contains the sample
data, in which case the covariance matrix cov1 must be calculated, or not, and
then the covariance matrix (symmetric) must be given, instead of the data.

Example:

(%i1) load (descriptive)$
(%i2) fpprintprec : 7 $
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) cor (s2);

[1.0 .8476339 .8803515 .8239624 .7519506]
[]
[.8476339 1.0 .8735834 .6902622 0.782502]
[]

(%o4) [.8803515 .8735834 1.0 .7764065 .8323358]
[]
[.8239624 .6902622 .7764065 1.0 .7293848]
[]
[.7519506 0.782502 .8323358 .7293848 1.0]

Chapter 47: descriptive 669

Calculate de correlation matrix from the covariance matrix.

(%i1) load (descriptive)$
(%i2) fpprintprec : 7 $
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) s : cov1 (s2)$
(%i5) cor (s, data=false); /* this is faster */

[1.0 .8476339 .8803515 .8239624 .7519506]
[]
[.8476339 1.0 .8735834 .6902622 0.782502]
[]

(%o5) [.8803515 .8735834 1.0 .7764065 .8323358]
[]
[.8239624 .6902622 .7764065 1.0 .7293848]
[]
[.7519506 0.782502 .8323358 .7293848 1.0]

See also cov and cov1.

Functionlist correlations
list_correlations (matrix)
list_correlations (matrix, options ...)

Function list_correlations returns a list of correlation measures:

• precision matrix: the inverse of the covariance matrix S1,

S−11 =
(
sij
)
i,j=1,2,...,p

• multiple correlation vector: (R2
1, R

2
2, ..., R

2
p), with

R2
i = 1− 1

siisii

being an indicator of the goodness of fit of the linear multivariate regression
model on Xi when the rest of variables are used as regressors.

• partial correlation matrix: with element (i, j) being

rij.rest = − sij√
siisjj

Option:

• ’data, default ’true, indicates whether the input matrix contains the sample
data, in which case the covariance matrix cov1 must be calculated, or not, and
then the covariance matrix (symmetric) must be given, instead of the data.

Example:

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) z : list_correlations (s2)$
(%i4) fpprintprec : 5$ /* for pretty output */

670 Maxima 5.35.1 Manual

(%i5) z[1]; /* precision matrix */
[.38486 - .13856 - .15626 - .10239 .031179]
[]
[- .13856 .34107 - .15233 .038447 - .052842]
[]

(%o5) [- .15626 - .15233 .47296 - .024816 - .10054]
[]
[- .10239 .038447 - .024816 .10937 - .034033]
[]
[.031179 - .052842 - .10054 - .034033 .14834]

(%i6) z[2]; /* multiple correlation vector */
(%o6) [.85063, .80634, .86474, .71867, .72675]

(%i7) z[3]; /* partial correlation matrix */
[- 1.0 .38244 .36627 .49908 - .13049]
[]
[.38244 - 1.0 .37927 - .19907 .23492]
[]

(%o7) [.36627 .37927 - 1.0 .10911 .37956]
[]
[.49908 - .19907 .10911 - 1.0 .26719]
[]
[- .13049 .23492 .37956 .26719 - 1.0]

See also cov and cov1.

Functionprincipal components
principal_components (matrix)
principal_components (matrix, options ...)

Calculates the principal componentes of a multivariate sample. Principal components
are used in multivariate statistical analysis to reduce the dimensionality of the sample.

Option:

• ’data, default ’true, indicates whether the input matrix contains the sample
data, in which case the covariance matrix cov1 must be calculated, or not, and
then the covariance matrix (symmetric) must be given, instead of the data.

The output of function principal_components is a list with the following results:

• variances of the principal components,

• percentage of total variance explained by each principal component,

• rotation matrix.

Examples:

In this sample, the first component explains 83.13 per cent of total variance.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec:4 $
(%i4) res: principal_components(s2);
0 errors, 0 warnings
(%o4) [[87.57, 8.753, 5.515, 1.889, 1.613],

Chapter 47: descriptive 671

[83.13, 8.31, 5.235, 1.793, 1.531],
[.4149 .03379 - .4757 - 0.581 - .5126]
[]
[0.369 - .3657 - .4298 .7237 - .1469]
[]
[.3959 - .2178 - .2181 - .2749 .8201]]
[]
[.5548 .7744 .1857 .2319 .06498]
[]
[.4765 - .4669 0.712 - .09605 - .1969]
(%i5) /* accumulated percentages */

block([ap: copy(res[2])],
for k:2 thru length(ap) do ap[k]: ap[k]+ap[k-1],
ap);

(%o5) [83.13, 91.44, 96.68, 98.47, 100.0]
(%i6) /* sample dimension */

p: length(first(res));
(%o6) 5
(%i7) /* plot percentages to select number of

principal components for further work */
draw2d(

fill_density = 0.2,
apply(bars, makelist([k, res[2][k], 1/2], k, p)),
points_joined = true,
point_type = filled_circle,
point_size = 3,
points(makelist([k, res[2][k]], k, p)),
xlabel = "Variances",
ylabel = "Percentages",
xtics = setify(makelist([concat("PC",k),k], k, p))) $

In case de covariance matrix is known, it can be passed to the function, but option
data=false must be used.

(%i1) load (descriptive)$
(%i2) S: matrix([1,-2,0],[-2,5,0],[0,0,2]);

[1 - 2 0]
[]

(%o2) [- 2 5 0]
[]
[0 0 2]

(%i3) fpprintprec:4 $
(%i4) /* the argumment is a covariance matrix */

res: principal_components(S, data=false);
0 errors, 0 warnings

[- .3827 0.0 .9239]
[]

(%o4) [[5.828, 2.0, .1716], [72.86, 25.0, 2.145], [.9239 0.0 .3827]]
[]
[0.0 1.0 0.0]

(%i5) /* transformation to get the principal components

672 Maxima 5.35.1 Manual

from original records */
matrix([a1,b2,c3],[a2,b2,c2]).last(res);

[.9239 b2 - .3827 a1 1.0 c3 .3827 b2 + .9239 a1]
(%o5) []

[.9239 b2 - .3827 a2 1.0 c2 .3827 b2 + .9239 a2]

47.4 Functions and Variables for statistical graphs

Functionbarsplot (data1, data2, . . . , option 1, option 2, . . .)
Plots bars diagrams for discrete statistical variables, both for one or multiple samples.

data can be a list of outcomes representing one sample, or a matrix of m rows and n
columns, representing n samples of size m each.

Available options are:

• box width (default, 3/4): relative width of rectangles. This value must be in the
range [0,1].

• grouping (default, clustered): indicates how multiple samples are shown. Valid
values are: clustered and stacked.

• groups gap (default, 1): a positive integer number representing the gap between
two consecutive groups of bars.

• bars colors (default, []): a list of colors for multiple samples. When there are
more samples than specified colors, the extra necesary colors are chosen at ran-
dom. See color to learn more about them.

• frequency (default, absolute): indicates the scale of the ordinates. Possible
values are: absolute, relative, and percent.

• ordering (default, orderlessp): possible values are orderlessp or ordergreatp,
indicating how statistical outcomes should be ordered on the x-axis.

• sample keys (default, []): a list with the strings to be used in the legend. When
the list length is other than 0 or the number of samples, an error message is
returned.

• start at (default, 0): indicates where the plot begins to be plotted on the x axis.

• All global draw options, except xtics, which is internally assigned by barsplot.
If you want to set your own values for this option or want to build complex
scenes, make use of barsplot_description. See example below.

• The following local draw options: key, color, fill_color, fill_density and
line_width. See also bars.

There is also a function wxbarsplot for creating embedded histograms in interfaces
wxMaxima and iMaxima. barsplot in a multiplot context.

Examples:

Univariate sample in matrix form. Absolute frequencies.

(%i1) load (descriptive)$
(%i2) m : read_matrix (file_search ("biomed.data"))$

Chapter 47: descriptive 673

(%i3) barsplot(
col(m,2),
title = "Ages",
xlabel = "years",
box_width = 1/2,
fill_density = 3/4)$

Two samples of different sizes, with relative frequencies and user declared colors.

(%i1) load (descriptive)$
(%i2) l1:makelist(random(10),k,1,50)$
(%i3) l2:makelist(random(10),k,1,100)$
(%i4) barsplot(

l1,l2,
box_width = 1,
fill_density = 1,
bars_colors = [black, grey],
frequency = relative,
sample_keys = ["A", "B"])$

Four non numeric samples of equal size.

(%i1) load (descriptive)$
(%i2) barsplot(

makelist([Yes, No, Maybe][random(3)+1],k,1,50),
makelist([Yes, No, Maybe][random(3)+1],k,1,50),
makelist([Yes, No, Maybe][random(3)+1],k,1,50),
makelist([Yes, No, Maybe][random(3)+1],k,1,50),
title = "Asking for something to four groups",
ylabel = "# of individuals",
groups_gap = 3,
fill_density = 0.5,
ordering = ordergreatp)$

Stacked bars.

(%i1) load (descriptive)$
(%i2) barsplot(

makelist([Yes, No, Maybe][random(3)+1],k,1,50),
makelist([Yes, No, Maybe][random(3)+1],k,1,50),
makelist([Yes, No, Maybe][random(3)+1],k,1,50),
makelist([Yes, No, Maybe][random(3)+1],k,1,50),
title = "Asking for something to four groups",
ylabel = "# of individuals",
grouping = stacked,
fill_density = 0.5,
ordering = ordergreatp)$

For bars diagrams related options, see bars of package draw. See also functions
histogram and piechart.

Functionbarsplot description (. . .)
Function barsplot_description creates a graphic object suitable for creating com-
plex scenes, together with other graphic objects.

Example: barsplot in a multiplot context.

674 Maxima 5.35.1 Manual

(%i1) load (descriptive)$
(%i2) l1:makelist(random(10),k,1,50)$
(%i3) l2:makelist(random(10),k,1,100)$
(%i4) bp1 :

barsplot_description(
l1,
box_width = 1,
fill_density = 0.5,
bars_colors = [blue],
frequency = relative)$

(%i5) bp2 :
barsplot_description(
l2,
box_width = 1,
fill_density = 0.5,
bars_colors = [red],
frequency = relative)$

(%i6) draw(gr2d(bp1), gr2d(bp2))$

Functionboxplot (data)
boxplot (data, option 1, option 2, . . .)

This function plots box-and-whishker diagrams. Argument data can be a list, which
is not of great interest, since these diagrams are mainly used for comparing different
samples, or a matrix, so it is possible to compare two or more components of a
multivariate statistical variable. But it is also allowed data to be a list of samples with
possible different sample sizes, in fact this is the only function in package descriptive
that admits this type of data structure.

Available options are:

• box width (default, 3/4): relative width of boxes. This value must be in the
range [0,1].

• box orientation (default, vertical): possible values: vertical and horizontal.

• All draw options, except points_joined, point_size, point_type, xtics,
ytics, xrange, and yrange, which are internally assigned by boxplot. If you
want to set your own values for this options or want to build complex scenes,
make use of boxplot_description.

• The following local draw options: key, color, and line_width.

There is also a function wxboxplot for creating embedded histograms in interfaces
wxMaxima and iMaxima.

Examples:

Box-and-whishker diagram from a multivariate sample.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix(file_search("wind.data"))$

Chapter 47: descriptive 675

(%i3) boxplot(s2,
box_width = 0.2,
title = "Windspeed in knots",
xlabel = "Stations",
color = red,
line_width = 2)$

Box-and-whishker diagram from three samples of different sizes.

(%i1) load (descriptive)$
(%i2) A :

[[6, 4, 6, 2, 4, 8, 6, 4, 6, 4, 3, 2],
[8, 10, 7, 9, 12, 8, 10],
[16, 13, 17, 12, 11, 18, 13, 18, 14, 12]]$

(%i3) boxplot (A, box_orientation = horizontal)$

Functionboxplot description (. . .)
Function boxplot_description creates a graphic object suitable for creating complex
scenes, together with other graphic objects.

Functionhistogram
histogram (list)
histogram (list, option 1, option 2, . . .)
histogram (one column matrix)
histogram (one column matrix, option 1, option 2, . . .)
histogram (one row matrix)
histogram (one row matrix, option 1, option 2, . . .)

This function plots an histogram from a continuous sample. Sample data must be
stored in a list of numbers or a one dimensional matrix.

Available options are:

• nclasses (default, 10): number of classes of the histogram, or a list indicating the
limits of the classes and the number of them, or only the limits.

• frequency (default, absolute): indicates the scale of the ordinates. Possible
values are: absolute, relative, percent, and density. With density, the
histogram area has a total area of one.

• htics (default, auto): format of the histogram tics. Possible values are: auto,
endpoints, intervals, or a list of labels.

• All global draw options, except xrange, yrange, and xtics, which are internally
assigned by histogram. If you want to set your own values for these options,
make use of histogram_description. See examples bellow.

• The following local draw options: key, color, fill_color, fill_density and
line_width. See also bars.

There is also a function wxhistogram for creating embedded histograms in interfaces
wxMaxima and iMaxima.

Examples:

A simple with eight classes:

676 Maxima 5.35.1 Manual

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (

s1,
nclasses = 8,
title = "pi digits",
xlabel = "digits",
ylabel = "Absolute frequency",
fill_color = grey,
fill_density = 0.6)$

Setting the limits of the histogram to -2 and 12, with 3 classes. Also, we introduce
predefined tics:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (

s1,
nclasses = [-2,12,3],
htics = ["A", "B", "C"],
terminal = png,
fill_color = "#23afa0",
fill_density = 0.6)$

Functionhistogram description (. . .)
Function histogram_description creates a graphic object suitable for creating
complex scenes, together with other graphic objects. We make use of histogram_
description for setting the xrange and adding an explicit curve into the
scene:

(%i1) load (descriptive)$
(%i2) (load("distrib"),

m: 14, s: 2,
s2: random_normal(m, s, 1000)) $

(%i3) draw2d(
grid = true,
xrange = [5, 25],
histogram_description(
s2,
nclasses = 9,
frequency = density,
fill_density = 0.5),

explicit(pdf_normal(x,m,s), x, m - 3*s, m + 3* s))$

Chapter 47: descriptive 677

Functionpiechart
piechart (list)
piechart (list, option 1, option 2, . . .)
piechart (one column matrix)
piechart (one column matrix, option 1, option 2, . . .)
piechart (one row matrix)
piechart (one row matrix, option 1, option 2, . . .)

Similar to barsplot, but plots sectors instead of rectangles.

Available options are:

• sector colors (default, []): a list of colors for sectors. When there are more
sectors than specified colors, the extra necesary colors are chosen at random. See
color to learn more about them.

• pie center (default, [0,0]): diagram’s center.

• pie radius (default, 1): diagram’s radius.

• All global draw options, except key, which is internally assigned by piechart. If
you want to set your own values for this option or want to build complex scenes,
make use of piechart_description.

• The following local draw options: key, color, fill_density and line_width.
See also ellipse.

There is also a function wxpiechart for creating embedded histograms in interfaces
wxMaxima and iMaxima.

Example:

(%i1) load (descriptive)$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) piechart(

s1,
xrange = [-1.1, 1.3],
yrange = [-1.1, 1.1],
title = "Digit frequencies in pi")$

See also function barsplot.

Functionpiechart description (. . .)
Function piechart_description creates a graphic object suitable for creating com-
plex scenes, together with other graphic objects.

Functionscatterplot
scatterplot (list)
scatterplot (list, option 1, option 2, . . .)
scatterplot (matrix)
scatterplot (matrix, option 1, option 2, . . .)

Plots scatter diagrams both for univariate (list) and multivariate (matrix) samples.

Available options are the same admitted by histogram.

There is also a function wxscatterplot for creating embedded histograms in inter-
faces wxMaxima and iMaxima.

678 Maxima 5.35.1 Manual

Examples:

Univariate scatter diagram from a simulated Gaussian sample.

(%i1) load (descriptive)$
(%i2) load (distrib)$
(%i3) scatterplot(

random_normal(0,1,200),
xaxis = true,
point_size = 2,
dimensions = [600,150])$

Two dimensional scatter plot.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(

submatrix(s2, 1,2,3),
title = "Data from stations #4 and #5",
point_type = diamant,
point_size = 2,
color = blue)$

Three dimensional scatter plot.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(submatrix (s2, 1,2), nclasses=4)$

Five dimensional scatter plot, with five classes histograms.

(%i1) load (descriptive)$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(

s2,
nclasses = 5,
frequency = relative,
fill_color = blue,
fill_density = 0.3,
xtics = 5)$

For plotting isolated or line-joined points in two and three dimensions, see points.
See also histogram.

Functionscatterplot description (. . .)
Function scatterplot_description creates a graphic object suitable for creating
complex scenes, together with other graphic objects.

Functionstarplot (data1, data2, . . . , option 1, option 2, . . .)
Plots star diagrams for discrete statistical variables, both for one or multiple samples.

data can be a list of outcomes representing one sample, or a matrix of m rows and n
columns, representing n samples of size m each.

Available options are:

Chapter 47: descriptive 679

• stars colors (default, []): a list of colors for multiple samples. When there
are more samples than specified colors, the extra necesary colors are chosen at
random. See color to learn more about them.

• frequency (default, absolute): indicates the scale of the radii. Possible values
are: absolute and relative.

• ordering (default, orderlessp): possible values are orderlessp or ordergreatp,
indicating how statistical outcomes should be ordered.

• sample keys (default, []): a list with the strings to be used in the legend. When
the list length is other than 0 or the number of samples, an error message is
returned.

• star center (default, [0,0]): diagram’s center.

• star radius (default, 1): diagram’s radius.

• All global draw options, except points_joined, point_type, and key, which
are internally assigned by starplot. If you want to set your own values for this
options or want to build complex scenes, make use of starplot_description.

• The following local draw option: line_width.

There is also a function wxstarplot for creating embedded histograms in interfaces
wxMaxima and iMaxima.

Example:

Plot based on absolute frequencies. Location and radius defined by the user.

(%i1) load (descriptive)$
(%i2) l1: makelist(random(10),k,1,50)$
(%i3) l2: makelist(random(10),k,1,200)$
(%i4) starplot(

l1, l2,
stars_colors = [blue,red],
sample_keys = ["1st sample", "2nd sample"],
star_center = [1,2],
star_radius = 4,
proportional_axes = xy,
line_width = 2) $

Functionstarplot description (. . .)
Function starplot_description creates a graphic object suitable for creating com-
plex scenes, together with other graphic objects.

Functionstemplot
stemplot (data)
stemplot (data, option)

Plots stem and leaf diagrams.

Unique available option is:

• leaf unit (default, 1): indicates the unit of the leaves; must be a power of 10.

Example:

680 Maxima 5.35.1 Manual

(%i1) load (descriptive)$
(%i2) load(distrib)$
(%i3) stemplot(

random_normal(15, 6, 100),
leaf_unit = 0.1);

-5|4
0|37
1|7
3|6
4|4
5|4
6|57
7|0149
8|3
9|1334588
10|07888
11|01144467789
12|12566889
13|24778
14|047
15|223458
16|4
17|11557
18|000247
19|4467799
20|00
21|1
22|2335
23|01457
24|12356
25|455
27|79
key: 6|3 = 6.3
(%o3) done

Chapter 48: diag 681

48 diag

48.1 Functions and Variables for diag

Functiondiag (lm)
Constructs a matrix that is the block sum of the elements of lm. The elements of lm
are assumed to be matrices; if an element is scalar, it treated as a 1 by 1 matrix.

The resulting matrix will be square if each of the elements of lm is square.

Example:

(%i1) load("diag")$

(%i2) a1:matrix([1,2,3],[0,4,5],[0,0,6])$

(%i3) a2:matrix([1,1],[1,0])$

(%i4) diag([a1,x,a2]);
[1 2 3 0 0 0]
[]
[0 4 5 0 0 0]
[]
[0 0 6 0 0 0]

(%o4) []
[0 0 0 x 0 0]
[]
[0 0 0 0 1 1]
[]
[0 0 0 0 1 0]

(%i5) diag ([matrix([1,2]), 3]);
[1 2 0]

(%o5) []
[0 0 3]

To use this function write first load("diag").

FunctionJF (lambda,n)
Returns the Jordan cell of order n with eigenvalue lambda.

Example:

(%i1) load("diag")$

(%i2) JF(2,5);
[2 1 0 0 0]
[]
[0 2 1 0 0]
[]

(%o2) [0 0 2 1 0]
[]

682 Maxima 5.35.1 Manual

[0 0 0 2 1]
[]
[0 0 0 0 2]

(%i3) JF(3,2);
[3 1]

(%o3) []
[0 3]

To use this function write first load("diag").

Functionjordan (mat)
Returns the Jordan form of matrix mat, encoded as a list in a particular format.
To get the corresponding matrix, call the function dispJordan using the output of
jordan as the argument.

The elements of the returned list are themselves lists. The first element of each is an
eigenvalue of mat. The remaining elements are positive integers which are the lengths
of the Jordan blocks for this eigenvalue. These integers are listed in decreasing order.
Eigenvalues are not repeated.

The functions dispJordan, minimalPoly and ModeMatrix expect the output of a call
to jordan as an argument. If you construct this argument by hand, rather than by
calling jordan, you must ensure that each eigenvalue only appears once and that the
block sizes are listed in decreasing order, otherwise the functions might give incorrect
answers.

Example:

(%i1) load("diag")$
(%i2) A: matrix([2,0,0,0,0,0,0,0],

[1,2,0,0,0,0,0,0],
[-4,1,2,0,0,0,0,0],
[2,0,0,2,0,0,0,0],
[-7,2,0,0,2,0,0,0],
[9,0,-2,0,1,2,0,0],
[-34,7,1,-2,-1,1,2,0],
[145,-17,-16,3,9,-2,0,3])$

(%i3) jordan (A);
(%o3) [[2, 3, 3, 1], [3, 1]]
(%i4) dispJordan (%);

[2 1 0 0 0 0 0 0]
[]
[0 2 1 0 0 0 0 0]
[]
[0 0 2 0 0 0 0 0]
[]
[0 0 0 2 1 0 0 0]

(%o4) []
[0 0 0 0 2 1 0 0]
[]
[0 0 0 0 0 2 0 0]
[]

Chapter 48: diag 683

[0 0 0 0 0 0 2 0]
[]
[0 0 0 0 0 0 0 3]

To use this function write first load("diag"). See also dispJordan and minimalPoly.

FunctiondispJordan (l)
Returns a matrix in Jordan canonical form (JCF) corresponding to the list of eigen-
values and multiplicities given by l. This list should be in the format given by the
jordan function. See jordan for details of this format.

Example:

(%i1) load("diag")$

(%i2) b1:matrix([0,0,1,1,1],
[0,0,0,1,1],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,0,0,0])$

(%i3) jordan(b1);
(%o3) [[0, 3, 2]]
(%i4) dispJordan(%);

[0 1 0 0 0]
[]
[0 0 1 0 0]
[]

(%o4) [0 0 0 0 0]
[]
[0 0 0 0 1]
[]
[0 0 0 0 0]

To use this function write first load("diag"). See also jordan and minimalPoly.

FunctionminimalPoly (l)
Returns the minimal polynomial of the matrix whose Jordan form is described by the
list l. This list should be in the format given by the jordan function. See jordan for
details of this format.

Example:

(%i1) load("diag")$

(%i2) a:matrix([2,1,2,0],
[-2,2,1,2],
[-2,-1,-1,1],
[3,1,2,-1])$

(%i3) jordan(a);
(%o3) [[- 1, 1], [1, 3]]
(%i4) minimalPoly(%);

684 Maxima 5.35.1 Manual

3
(%o4) (x - 1) (x + 1)

To use this function write first load("diag"). See also jordan and dispJordan.

FunctionModeMatrix (A, [jordan info])
Returns an invertible matrix M such that (Mm1).A.M is the Jordan form of A.

To calculate this, Maxima must find the Jordan form of A, which might be quite
computationally expensive. If that has already been calculated by a previous call
to jordan, pass it as a second argument, jordan info. See jordan for details of the
required format.

Example:

(%i1) load("diag")$
(%i2) A: matrix([2,1,2,0], [-2,2,1,2], [-2,-1,-1,1], [3,1,2,-1])$
(%i3) M: ModeMatrix (A);

[1 - 1 1 1]
[]
[1]
[- - - 1 0 0]
[9]
[]

(%o3) [13]
[- -- 1 - 1 0]
[9]
[]
[17]
[-- - 1 1 1]
[9]

(%i4) is ((M^^-1) . A . M = dispJordan (jordan (A)));
(%o4) true

Note that, in this example, the Jordan form of A is computed twice. To avoid this,
we could have stored the output of jordan(A) in a variable and passed that to both
ModeMatrix and dispJordan.

To use this function write first load("diag"). See also jordan and dispJordan.

Functionmat function (f,A)
Returns f(A), where f is an analytic function and A a matrix. This computation is
based on the Taylor expansion of f. It is not efficient for numerical evaluation, but
can give symbolic answers for small matrices.

Example 1:

The exponential of a matrix. We only give the first row of the answer, since the
output is rather large.

(%i1) load("diag")$
(%i2) A: matrix ([0,1,0], [0,0,1], [-1,-3,-3])$

Chapter 48: diag 685

(%i3) ratsimp (mat_function (exp, t*A)[1]);
2 - t 2 - t

(t + 2 t + 2) %e 2 - t t %e
(%o3) [--------------------, (t + t) %e , --------]

2 2

Example 2:

Comparison with the Taylor series for the exponential and also comparing exp(%i*A)

with sine and cosine.

(%i1) load("diag")$
(%i2) A: matrix ([0,1,1,1],

[0,0,0,1],
[0,0,0,1],
[0,0,0,0])$

(%i3) ratsimp (mat_function (exp, t*A));
[2]
[1 t t t + t]
[]

(%o3) [0 1 0 t]
[]
[0 0 1 t]
[]
[0 0 0 1]

(%i4) minimalPoly (jordan (A));
3

(%o4) x

(%i5) ratsimp (ident(4) + t*A + 1/2*(t^2)*A^^2);
[2]
[1 t t t + t]
[]

(%o5) [0 1 0 t]
[]
[0 0 1 t]
[]
[0 0 0 1]

(%i6) ratsimp (mat_function (exp, %i*t*A));
[2]
[1 %i t %i t %i t - t]
[]

(%o6) [0 1 0 %i t]
[]
[0 0 1 %i t]
[]
[0 0 0 1]

686 Maxima 5.35.1 Manual

(%i7) ratsimp (mat_function (cos, t*A) + %i*mat_function (sin, t*A));
[2]
[1 %i t %i t %i t - t]
[]

(%o7) [0 1 0 %i t]
[]
[0 0 1 %i t]
[]
[0 0 0 1]

Example 3:

Power operations.

(%i1) load("diag")$
(%i2) A: matrix([1,2,0], [0,1,0], [1,0,1])$
(%i3) integer_pow(x) := block ([k], declare (k, integer), x^k)$
(%i4) mat_function (integer_pow, A);

[1 2 k 0]
[]

(%o4) [0 1 0]
[]
[k (k - 1) k 1]

(%i5) A^^20;
[1 40 0]
[]

(%o5) [0 1 0]
[]
[20 380 1]

To use this function write first load("diag").

Chapter 49: distrib 687

49 distrib

49.1 Introduction to distrib

Package distrib contains a set of functions for making probability computations on
both discrete and continuous univariate models.

What follows is a short reminder of basic probabilistic related definitions.

Let f(x) be the density function of an absolute continuous random variable X. The
distribution function is defined as

F (x) =

∫ x

−∞
f (u) du

which equals the probability Pr(X <= x).

The mean value is a localization parameter and is defined as

E [X] =

∫ ∞
−∞

x f (x) dx

The variance is a measure of variation,

V [X] =

∫ ∞
−∞

f (x) (x− E [X])
2
dx

which is a positive real number. The square root of the variance is the standard deviation,
D[X] = sqrt(V [X]), and it is another measure of variation.

The skewness coefficient is a measure of non-symmetry,

SK [X] =

∫∞
−∞ f (x) (x− E [X])

3
dx

D [X]
3

And the kurtosis coefficient measures the peakedness of the distribution,

KU [X] =

∫∞
−∞ f (x) (x− E [X])

4
dx

D [X]
4 − 3

If X is gaussian, KU [X] = 0. In fact, both skewness and kurtosis are shape parameters
used to measure the non–gaussianity of a distribution.

If the random variable X is discrete, the density, or probability, function f(x) takes
positive values within certain countable set of numbers xi, and zero elsewhere. In this case,
the distribution function is

F (x) =
∑
xi≤x

f (xi)

The mean, variance, standard deviation, skewness coefficient and kurtosis coefficient take
the form

E [X] =
∑
xi

xif (xi),

688 Maxima 5.35.1 Manual

V [X] =
∑
xi

f (xi) (xi − E [X])
2
,

D [X] =
√
V [X],

SK [X] =

∑
xi
f (x) (x− E [X])

3
dx

D [X]
3

and

KU [X] =

∑
xi
f (x) (x− E [X])

4
dx

D [X]
4 − 3,

respectively.

There is a naming convention in package distrib. Every function name has two parts,
the first one makes reference to the function or parameter we want to calculate,

Functions:
Density function (pdf_*)
Distribution function (cdf_*)
Quantile (quantile_*)
Mean (mean_*)
Variance (var_*)
Standard deviation (std_*)
Skewness coefficient (skewness_*)
Kurtosis coefficient (kurtosis_*)
Random variate (random_*)

The second part is an explicit reference to the probabilistic model,

Continuous distributions:
Normal (*normal)
Student (*student_t)
Chi^2 (*chi2)
Noncentral Chi^2 (*noncentral_chi2)
F (*f)
Exponential (*exp)
Lognormal (*lognormal)
Gamma (*gamma)
Beta (*beta)
Continuous uniform (*continuous_uniform)
Logistic (*logistic)
Pareto (*pareto)
Weibull (*weibull)
Rayleigh (*rayleigh)
Laplace (*laplace)
Cauchy (*cauchy)
Gumbel (*gumbel)

Discrete distributions:
Binomial (*binomial)

Chapter 49: distrib 689

Poisson (*poisson)
Bernoulli (*bernoulli)
Geometric (*geometric)
Discrete uniform (*discrete_uniform)
hypergeometric (*hypergeometric)
Negative binomial (*negative_binomial)
Finite discrete (*general_finite_discrete)

For example, pdf_student_t(x,n) is the density function of the Student distribution
with n degrees of freedom, std_pareto(a,b) is the standard deviation of the Pareto dis-
tribution with parameters a and b and kurtosis_poisson(m) is the kurtosis coefficient of
the Poisson distribution with mean m.

In order to make use of package distrib you need first to load it by typing

(%i1) load(distrib)$

For comments, bugs or suggestions, please contact the author at ’mario AT edu DOT
xunta DOT es’.

49.2 Functions and Variables for continuous distributions

Functionpdf normal (x,m,s)
Returns the value at x of the density function of a Normal(m, s) random variable,
with s > 0. To make use of this function, write first load(distrib).

Functioncdf normal (x,m,s)
Returns the value at x of the distribution function of aNormal(m, s) random variable,
with s > 0. This function is defined in terms of Maxima’s built-in error function erf.

(%i1) load (distrib)$
(%i2) assume(s>0)$ cdf_normal(x,m,s);

x - m
erf(---------)

sqrt(2) s 1
(%o3) -------------- + -

2 2

See also erf.

Functionquantile normal (q,m,s)
Returns the q-quantile of a Normal(m, s) random variable, with s > 0; in other
words, this is the inverse of cdf_normal. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

(%i1) load (distrib)$
(%i2) quantile_normal(95/100,0,1);

9
(%o2) sqrt(2) inverse_erf(--)

10
(%i3) float(%);
(%o3) 1.644853626951472

690 Maxima 5.35.1 Manual

Functionmean normal (m,s)
Returns the mean of a Normal(m, s) random variable, with s > 0, namely m. To
make use of this function, write first load(distrib).

Functionvar normal (m,s)
Returns the variance of a Normal(m, s) random variable, with s > 0, namely s^2.
To make use of this function, write first load(distrib).

Functionstd normal (m,s)
Returns the standard deviation of a Normal(m, s) random variable, with s > 0,
namely s. To make use of this function, write first load(distrib).

Functionskewness normal (m,s)
Returns the skewness coefficient of a Normal(m, s) random variable, with s > 0,
which is always equal to 0. To make use of this function, write first load(distrib).

Functionkurtosis normal (m,s)
Returns the kurtosis coefficient of a Normal(m, s) random variable, with s > 0, which
is always equal to 0. To make use of this function, write first load(distrib).

Functionrandom normal (m,s)
random_normal (m,s,n)

Returns a Normal(m, s) random variate, with s > 0. Calling random_normal with a
third argument n, a random sample of size n will be simulated.

This is an implementation of the Box-Mueller algorithm, as described in Knuth, D.E.
(1981) Seminumerical Algorithms. The Art of Computer Programming. Addison-
Wesley.

To make use of this function, write first load(distrib).

Functionpdf student t (x,n)
Returns the value at x of the density function of a Student random variable t(n), with
n > 0 degrees of freedom. To make use of this function, write first load(distrib).

Functioncdf student t (x,n)
Returns the value at x of the distribution function of a Student random variable t(n),
with n > 0 degrees of freedom.

(%i1) load (distrib)$
(%i2) cdf_student_t(1/2, 7/3);

7 1 28
beta_incomplete_regularized(-, -, --)

6 2 31
(%o2) 1 - -------------------------------------

2
(%i3) float(%);
(%o3) .6698450596140415

Chapter 49: distrib 691

Functionquantile student t (q,n)
Returns the q-quantile of a Student random variable t(n), with n > 0; in other words,
this is the inverse of cdf_student_t. Argument q must be an element of [0, 1]. To
make use of this function, write first load(distrib).

Functionmean student t (n)
Returns the mean of a Student random variable t(n), with n > 0, which is always
equal to 0. To make use of this function, write first load(distrib).

Functionvar student t (n)
Returns the variance of a Student random variable t(n), with n > 2.

(%i1) load (distrib)$
(%i2) assume(n>2)$ var_student_t(n);

n
(%o3) -----

n - 2

Functionstd student t (n)
Returns the standard deviation of a Student random variable t(n), with n > 2. To
make use of this function, write first load(distrib).

Functionskewness student t (n)
Returns the skewness coefficient of a Student random variable t(n), with n > 3, which
is always equal to 0. To make use of this function, write first load(distrib).

Functionkurtosis student t (n)
Returns the kurtosis coefficient of a Student random variable t(n), with n > 4. To
make use of this function, write first load(distrib).

Functionrandom student t (n)
random_student_t (n,m)

Returns a Student random variate t(n), with n > 0. Calling random_student_t with
a second argument m, a random sample of size m will be simulated.

The implemented algorithm is based on the fact that if Z is a normal random variable
N(0, 1) and S2 is a chi square random variable with n degrees of freedom, Chi2(n),
then

X =
Z√
S2

n

is a Student random variable with n degrees of freedom, t(n).

To make use of this function, write first load(distrib).

Functionpdf noncentral student t (x,n,ncp)
Returns the value at x of the density function of a noncentral Student random variable
nct(n, ncp), with n > 0 degrees of freedom and noncentrality parameter ncp. To make
use of this function, write first load(distrib).

Sometimes an extra work is necessary to get the final result.

692 Maxima 5.35.1 Manual

(%i1) load (distrib)$
(%i2) expand(pdf_noncentral_student_t(3,5,0.1));

.01370030107589574 sqrt(5)
(%o2) --------------------------

sqrt(2) sqrt(14) sqrt(%pi)
1.654562884111515E-4 sqrt(5)

+ ----------------------------
sqrt(%pi)

.02434921505438663 sqrt(5)
+ --------------------------

%pi
(%i3) float(%);
(%o3) .02080593159405669

Functioncdf noncentral student t (x,n,ncp)
Returns the value at x of the distribution function of a noncentral Student random
variable nct(n, ncp), with n > 0 degrees of freedom and noncentrality parameter ncp.
This function has no closed form and it is numerically computed if the global variable
numer equals true or at least one of the arguments is a float, otherwise it returns a
nominal expression.

(%i1) load (distrib)$
(%i2) cdf_noncentral_student_t(-2,5,-5);
(%o2) cdf_noncentral_student_t(- 2, 5, - 5)
(%i3) cdf_noncentral_student_t(-2.0,5,-5);
(%o3) .9952030093319743

Functionquantile noncentral student t (q,n,ncp)
Returns the q-quantile of a noncentral Student random variable nct(n, ncp), with
n > 0 degrees of freedom and noncentrality parameter ncp; in other words, this is the
inverse of cdf_noncentral_student_t. Argument q must be an element of [0, 1]. To
make use of this function, write first load(distrib).

Functionmean noncentral student t (n,ncp)
Returns the mean of a noncentral Student random variable nct(n, ncp), with n > 1
degrees of freedom and noncentrality parameter ncp. To make use of this function,
write first load(distrib).

(%i1) load (distrib)$
(%i2) (assume(df>1), mean_noncentral_student_t(df,k));

df - 1
gamma(------) sqrt(df) k

2
(%o2) ------------------------

df
sqrt(2) gamma(--)

2

Chapter 49: distrib 693

Functionvar noncentral student t (n,ncp)
Returns the variance of a noncentral Student random variable nct(n, ncp), with n > 2
degrees of freedom and noncentrality parameter ncp. To make use of this function,
write first load(distrib).

Functionstd noncentral student t (n,ncp)
Returns the standard deviation of a noncentral Student random variable nct(n, ncp),
with n > 2 degrees of freedom and noncentrality parameter ncp. To make use of this
function, write first load(distrib).

Functionskewness noncentral student t (n,ncp)
Returns the skewness coefficient of a noncentral Student random variable nct(n, ncp),
with n > 3 degrees of freedom and noncentrality parameter ncp. To make use of this
function, write first load(distrib).

Functionkurtosis noncentral student t (n,ncp)
Returns the kurtosis coefficient of a noncentral Student random variable nct(n, ncp),
with n > 4 degrees of freedom and noncentrality parameter ncp. To make use of this
function, write first load(distrib).

Functionrandom noncentral student t (n,ncp)
random_noncentral_student_t (n,ncp,m)

Returns a noncentral Student random variate nct(n, ncp), with n > 0. Calling
random_noncentral_student_t with a third argument m, a random sample of size
m will be simulated.

The implemented algorithm is based on the fact that if X is a normal random variable
N(ncp, 1) and S2 is a chi square random variable with n degrees of freedom, Chi2(n),
then

U =
X√
S2

n

is a noncentral Student random variable with n degrees of freedom and noncentrality
parameter ncp, nct(n, ncp).

To make use of this function, write first load(distrib).

Functionpdf chi2 (x,n)
Returns the value at x of the density function of a Chi-square random variable
Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma density is returned.

(%i1) load (distrib)$
(%i2) pdf_chi2(x,n);

n
(%o2) pdf_gamma(x, -, 2)

2

694 Maxima 5.35.1 Manual

(%i3) assume(x>0, n>0)$ pdf_chi2(x,n);
n/2 - 1 - x/2
x %e

(%o4) ----------------
n/2 n

2 gamma(-)
2

Functioncdf chi2 (x,n)
Returns the value at x of the distribution function of a Chi-square random variable
Chi2(n), with n > 0.

(%i1) load (distrib)$
(%i2) cdf_chi2(3,4);

3
(%o2) 1 - gamma_incomplete_regularized(2, -)

2
(%i3) float(%);
(%o3) .4421745996289256

Functionquantile chi2 (q,n)
Returns the q-quantile of a Chi-square random variable Chi2(n), with n > 0; in other
words, this is the inverse of cdf_chi2. Argument q must be an element of [0, 1].

This function has no closed form and it is numerically computed if the global vari-
able numer equals true, otherwise it returns a nominal expression based on the
gamma quantile function, since the Chi2(n) random variable is equivalent to the
Gamma(n/2, 2).

(%i1) load (distrib)$
(%i2) quantile_chi2(0.99,9);
(%o2) 21.66599433346194
(%i3) quantile_chi2(0.99,n);

n
(%o3) quantile_gamma(0.99, -, 2)

2

Functionmean chi2 (n)
Returns the mean of a Chi-square random variable Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma mean is returned.

(%i1) load (distrib)$
(%i2) mean_chi2(n);

n
(%o2) mean_gamma(-, 2)

2
(%i3) assume(n>0)$ mean_chi2(n);
(%o4) n

Chapter 49: distrib 695

Functionvar chi2 (n)
Returns the variance of a Chi-square random variable Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma variance is returned.

(%i1) load (distrib)$
(%i2) var_chi2(n);

n
(%o2) var_gamma(-, 2)

2
(%i3) assume(n>0)$ var_chi2(n);
(%o4) 2 n

Functionstd chi2 (n)
Returns the standard deviation of a Chi-square random variable Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_chi2(n);

n
(%o2) std_gamma(-, 2)

2
(%i3) assume(n>0)$ std_chi2(n);
(%o4) sqrt(2) sqrt(n)

Functionskewness chi2 (n)
Returns the skewness coefficient of a Chi-square random variable Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_chi2(n);

n
(%o2) skewness_gamma(-, 2)

2
(%i3) assume(n>0)$ skewness_chi2(n);

2 sqrt(2)
(%o4) ---------

sqrt(n)

Functionkurtosis chi2 (n)
Returns the kurtosis coefficient of a Chi-square random variable Chi2(n), with n > 0.

The Chi2(n) random variable is equivalent to the Gamma(n/2, 2), therefore when
Maxima has not enough information to get the result, a noun form based on the
gamma kurtosis coefficient is returned.

696 Maxima 5.35.1 Manual

(%i1) load (distrib)$
(%i2) kurtosis_chi2(n);

n
(%o2) kurtosis_gamma(-, 2)

2
(%i3) assume(n>0)$ kurtosis_chi2(n);

12
(%o4) --

n

Functionrandom chi2 (n)
random_chi2 (n,m)

Returns a Chi-square random variate Chi2(n), with n > 0. Calling random_chi2

with a second argument m, a random sample of size m will be simulated.

The simulation is based on the Ahrens-Cheng algorithm. See random_gamma for de-
tails.

To make use of this function, write first load(distrib).

Functionpdf noncentral chi2 (x,n,ncp)
Returns the value at x of the density function of a noncentral Chi-square random
variable ncChi

2(n, ncp), with n > 0 and noncentrality parameter ncp >= 0. To make
use of this function, write first load(distrib).

Functioncdf noncentral chi2 (x,n,ncp)
Returns the value at x of the distribution function of a noncentral Chi-square random
variable ncChi

2(n, ncp), with n > 0 and noncentrality parameter ncp >= 0. To make
use of this function, write first load(distrib).

Functionquantile noncentral chi2 (q,n,ncp)
Returns the q-quantile of a noncentral Chi-square random variable ncChi

2(n, ncp),
with n > 0 and noncentrality parameter ncp >= 0; in other words, this is the inverse
of cdf_noncentral_chi2. Argument q must be an element of [0, 1].

This function has no closed form and it is numerically computed if the global variable
numer equals true, otherwise it returns a nominal expression.

Functionmean noncentral chi2 (n,ncp)
Returns the mean of a noncentral Chi-square random variable ncChi

2(n, ncp), with
n > 0 and noncentrality parameter ncp >= 0.

Functionvar noncentral chi2 (n,ncp)
Returns the variance of a noncentral Chi-square random variable ncChi

2(n, ncp), with
n > 0 and noncentrality parameter ncp >= 0.

Functionstd noncentral chi2 (n,ncp)
Returns the standard deviation of a noncentral Chi-square random variable
ncChi

2(n, ncp), with n > 0 and noncentrality parameter ncp >= 0.

Chapter 49: distrib 697

Functionskewness noncentral chi2 (n,ncp)
Returns the skewness coefficient of a noncentral Chi-square random variable
ncChi

2(n, ncp), with n > 0 and noncentrality parameter ncp >= 0.

Functionkurtosis noncentral chi2 (n,ncp)
Returns the kurtosis coefficient of a noncentral Chi-square random variable
ncChi

2(n, ncp), with n > 0 and noncentrality parameter ncp >= 0.

Functionrandom noncentral chi2 (n,ncp)
random_noncentral_chi2 (n,ncp,m)

Returns a noncentral Chi-square random variate ncChi
2(n, ncp), with n > 0 and

noncentrality parameter ncp >= 0. Calling random_noncentral_chi2 with a third
argument m, a random sample of size m will be simulated.

To make use of this function, write first load(distrib).

Functionpdf f (x,m,n)
Returns the value at x of the density function of a F random variable F (m,n), with
m,n > 0. To make use of this function, write first load(distrib).

Functioncdf f (x,m,n)
Returns the value at x of the distribution function of a F random variable F (m,n),
with m,n > 0.

(%i1) load (distrib)$
(%i2) cdf_f(2,3,9/4);

9 3 3
(%o2) 1 - beta_incomplete_regularized(-, -, --)

8 2 11
(%i3) float(%);
(%o3) 0.66756728179008

Functionquantile f (q,m,n)
Returns the q-quantile of a F random variable F (m,n), with m,n > 0; in other words,
this is the inverse of cdf_f. Argument q must be an element of [0, 1].

This function has no closed form and it is numerically computed if the global variable
numer equals true, otherwise it returns a nominal expression.

(%i1) load (distrib)$
(%i2) quantile_f(2/5,sqrt(3),5);

2
(%o2) quantile_f(-, sqrt(3), 5)

5
(%i3) %,numer;
(%o3) 0.518947838573693

Functionmean f (m,n)
Returns the mean of a F random variable F (m,n), with m > 0, n > 2. To make use
of this function, write first load(distrib).

698 Maxima 5.35.1 Manual

Functionvar f (m,n)
Returns the variance of a F random variable F (m,n), with m > 0, n > 4. To make
use of this function, write first load(distrib).

Functionstd f (m,n)
Returns the standard deviation of a F random variable F (m,n), with m > 0, n > 4.
To make use of this function, write first load(distrib).

Functionskewness f (m,n)
Returns the skewness coefficient of a F random variable F (m,n), with m > 0, n > 6.
To make use of this function, write first load(distrib).

Functionkurtosis f (m,n)
Returns the kurtosis coefficient of a F random variable F (m,n), with m > 0, n > 8.
To make use of this function, write first load(distrib).

Functionrandom f (m,n)
random_f (m,n,k)

Returns a F random variate F (m,n), with m,n > 0. Calling random_f with a third
argument k, a random sample of size k will be simulated.

The simulation algorithm is based on the fact that if X is a Chi2(m) random variable
and Y is a Chi2(n) random variable, then

F =
nX

mY

is a F random variable with m and n degrees of freedom, F (m,n).

To make use of this function, write first load(distrib).

Functionpdf exp (x,m)
Returns the value at x of the density function of an Exponential(m) random variable,
with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull density is returned.

(%i1) load (distrib)$
(%i2) pdf_exp(x,m);

1
(%o2) pdf_weibull(x, 1, -)

m
(%i3) assume(x>0,m>0)$ pdf_exp(x,m);

- m x
(%o4) m %e

Chapter 49: distrib 699

Functioncdf exp (x,m)
Returns the value at x of the distribution function of an Exponential(m) random
variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull distribution is returned.

(%i1) load (distrib)$
(%i2) cdf_exp(x,m);

1
(%o2) cdf_weibull(x, 1, -)

m
(%i3) assume(x>0,m>0)$ cdf_exp(x,m);

- m x
(%o4) 1 - %e

Functionquantile exp (q,m)
Returns the q-quantile of an Exponential(m) random variable, with m > 0; in other
words, this is the inverse of cdf_exp. Argument q must be an element of [0, 1].

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull quantile is returned.

(%i1) load (distrib)$
(%i2) quantile_exp(0.56,5);
(%o2) .1641961104139661
(%i3) quantile_exp(0.56,m);

1
(%o3) quantile_weibull(0.56, 1, -)

m

Functionmean exp (m)
Returns the mean of an Exponential(m) random variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull mean is returned.

(%i1) load (distrib)$
(%i2) mean_exp(m);

1
(%o2) mean_weibull(1, -)

m
(%i3) assume(m>0)$ mean_exp(m);

1
(%o4) -

m

Functionvar exp (m)
Returns the variance of an Exponential(m) random variable, with m > 0.

700 Maxima 5.35.1 Manual

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull variance is returned.

(%i1) load (distrib)$
(%i2) var_exp(m);

1
(%o2) var_weibull(1, -)

m
(%i3) assume(m>0)$ var_exp(m);

1
(%o4) --

2
m

Functionstd exp (m)
Returns the standard deviation of an Exponential(m) random variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_exp(m);

1
(%o2) std_weibull(1, -)

m
(%i3) assume(m>0)$ std_exp(m);

1
(%o4) -

m

Functionskewness exp (m)
Returns the skewness coefficient of an Exponential(m) random variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_exp(m);

1
(%o2) skewness_weibull(1, -)

m
(%i3) assume(m>0)$ skewness_exp(m);
(%o4) 2

Functionkurtosis exp (m)
Returns the kurtosis coefficient of an Exponential(m) random variable, with m > 0.

The Exponential(m) random variable is equivalent to the Weibull(1, 1/m), therefore
when Maxima has not enough information to get the result, a noun form based on
the Weibull kurtosis coefficient is returned.

Chapter 49: distrib 701

(%i1) load (distrib)$
(%i2) kurtosis_exp(m);

1
(%o2) kurtosis_weibull(1, -)

m
(%i3) assume(m>0)$ kurtosis_exp(m);
(%o4) 6

Functionrandom exp (m)
random_exp (m,k)

Returns an Exponential(m) random variate, with m > 0. Calling random_exp with
a second argument k, a random sample of size k will be simulated.

The simulation algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf lognormal (x,m,s)
Returns the value at x of the density function of a Lognormal(m, s) random variable,
with s > 0. To make use of this function, write first load(distrib).

Functioncdf lognormal (x,m,s)
Returns the value at x of the distribution function of a Lognormal(m, s) random
variable, with s > 0. This function is defined in terms of Maxima’s built-in error
function erf.

(%i1) load (distrib)$
(%i2) assume(x>0, s>0)$ cdf_lognormal(x,m,s);

log(x) - m
erf(----------)

sqrt(2) s 1
(%o3) --------------- + -

2 2

See also erf.

Functionquantile lognormal (q,m,s)
Returns the q-quantile of a Lognormal(m, s) random variable, with s > 0; in other
words, this is the inverse of cdf_lognormal. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

(%i1) load (distrib)$
(%i2) quantile_lognormal(95/100,0,1);

sqrt(2) inverse_erf(9/10)
(%o2) %e
(%i3) float(%);
(%o3) 5.180251602233015

Functionmean lognormal (m,s)
Returns the mean of a Lognormal(m, s) random variable, with s > 0. To make use
of this function, write first load(distrib).

702 Maxima 5.35.1 Manual

Functionvar lognormal (m,s)
Returns the variance of a Lognormal(m, s) random variable, with s > 0. To make
use of this function, write first load(distrib).

Functionstd lognormal (m,s)
Returns the standard deviation of a Lognormal(m, s) random variable, with s > 0.
To make use of this function, write first load(distrib).

Functionskewness lognormal (m,s)
Returns the skewness coefficient of a Lognormal(m, s) random variable, with s > 0.
To make use of this function, write first load(distrib).

Functionkurtosis lognormal (m,s)
Returns the kurtosis coefficient of a Lognormal(m, s) random variable, with s > 0.
To make use of this function, write first load(distrib).

Functionrandom lognormal (m,s)
random_lognormal (m,s,n)

Returns a Lognormal(m, s) random variate, with s > 0. Calling random_lognormal

with a third argument n, a random sample of size n will be simulated.

Log-normal variates are simulated by means of random normal variates. See random_

normal for details.

To make use of this function, write first load(distrib).

Functionpdf gamma (x,a,b)
Returns the value at x of the density function of a Gamma(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functioncdf gamma (x,a,b)
Returns the value at x of the distribution function of a Gamma(a, b) random variable,
with a, b > 0.

(%i1) load (distrib)$
(%i2) cdf_gamma(3,5,21);

1
(%o2) 1 - gamma_incomplete_regularized(5, -)

7
(%i3) float(%);
(%o3) 4.402663157376807E-7

Functionquantile gamma (q,a,b)
Returns the q-quantile of a Gamma(a, b) random variable, with a, b > 0; in other
words, this is the inverse of cdf_gamma. Argument q must be an element of [0, 1]. To
make use of this function, write first load(distrib).

Functionmean gamma (a,b)
Returns the mean of a Gamma(a, b) random variable, with a, b > 0. To make use of
this function, write first load(distrib).

Chapter 49: distrib 703

Functionvar gamma (a,b)
Returns the variance of a Gamma(a, b) random variable, with a, b > 0. To make use
of this function, write first load(distrib).

Functionstd gamma (a,b)
Returns the standard deviation of a Gamma(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionskewness gamma (a,b)
Returns the skewness coefficient of a Gamma(a, b) random variable, with a, b > 0.
To make use of this function, write first load(distrib).

Functionkurtosis gamma (a,b)
Returns the kurtosis coefficient of a Gamma(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionrandom gamma (a,b)
random_gamma (a,b,n)

Returns a Gamma(a, b) random variate, with a, b > 0. Calling random_gamma with a
third argument n, a random sample of size n will be simulated.

The implemented algorithm is a combinantion of two procedures, depending on the
value of parameter a:

For a >= 1, Cheng, R.C.H. and Feast, G.M. (1979). Some simple gamma variate
generators. Appl. Stat., 28, 3, 290-295.

For 0 < a < 1, Ahrens, J.H. and Dieter, U. (1974). Computer methods for sampling
from gamma, beta, poisson and binomial cdf tributions. Computing, 12, 223-246.

To make use of this function, write first load(distrib).

Functionpdf beta (x,a,b)
Returns the value at x of the density function of a Beta(a, b) random variable, with
a, b > 0. To make use of this function, write first load(distrib).

Functioncdf beta (x,a,b)
Returns the value at x of the distribution function of a Beta(a, b) random variable,
with a, b > 0.

(%i1) load (distrib)$
(%i2) cdf_beta(1/3,15,2);

11
(%o2) --------

14348907
(%i3) float(%);
(%o3) 7.666089131388195E-7

Functionquantile beta (q,a,b)
Returns the q-quantile of a Beta(a, b) random variable, with a, b > 0; in other words,
this is the inverse of cdf_beta. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

704 Maxima 5.35.1 Manual

Functionmean beta (a,b)
Returns the mean of a Beta(a, b) random variable, with a, b > 0. To make use of this
function, write first load(distrib).

Functionvar beta (a,b)
Returns the variance of a Beta(a, b) random variable, with a, b > 0. To make use of
this function, write first load(distrib).

Functionstd beta (a,b)
Returns the standard deviation of a Beta(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionskewness beta (a,b)
Returns the skewness coefficient of a Beta(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis beta (a,b)
Returns the kurtosis coefficient of a Beta(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionrandom beta (a,b)
random_beta (a,b,n)

Returns a Beta(a, b) random variate, with a, b > 0. Calling random_beta with a third
argument n, a random sample of size n will be simulated.

The implemented algorithm is defined in Cheng, R.C.H. (1978). Generating Beta
Variates with Nonintegral Shape Parameters. Communications of the ACM, 21:317-
322

To make use of this function, write first load(distrib).

Functionpdf continuous uniform (x,a,b)
Returns the value at x of the density function of a ContinuousUniform(a, b) random
variable, with a < b. To make use of this function, write first load(distrib).

Functioncdf continuous uniform (x,a,b)
Returns the value at x of the distribution function of a ContinuousUniform(a, b)
random variable, with a < b. To make use of this function, write first load(distrib).

Functionquantile continuous uniform (q,a,b)
Returns the q-quantile of a ContinuousUniform(a, b) random variable, with a < b;
in other words, this is the inverse of cdf_continuous_uniform. Argument q must be
an element of [0, 1]. To make use of this function, write first load(distrib).

Functionmean continuous uniform (a,b)
Returns the mean of a ContinuousUniform(a, b) random variable, with a < b. To
make use of this function, write first load(distrib).

Chapter 49: distrib 705

Functionvar continuous uniform (a,b)
Returns the variance of a ContinuousUniform(a, b) random variable, with a < b.
To make use of this function, write first load(distrib).

Functionstd continuous uniform (a,b)
Returns the standard deviation of a ContinuousUniform(a, b) random variable, with
a < b. To make use of this function, write first load(distrib).

Functionskewness continuous uniform (a,b)
Returns the skewness coefficient of a ContinuousUniform(a, b) random variable,
with a < b. To make use of this function, write first load(distrib).

Functionkurtosis continuous uniform (a,b)
Returns the kurtosis coefficient of a ContinuousUniform(a, b) random variable, with
a < b. To make use of this function, write first load(distrib).

Functionrandom continuous uniform (a,b)
random_continuous_uniform (a,b,n)

Returns a ContinuousUniform(a, b) random variate, with a < b. Calling random_

continuous_uniform with a third argument n, a random sample of size n will be
simulated.

This is a direct application of the random built-in Maxima function.

See also random. To make use of this function, write first load(distrib).

Functionpdf logistic (x,a,b)
Returns the value at x of the density function of a Logistic(a, b) random variable ,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf logistic (x,a,b)
Returns the value at x of the distribution function of a Logistic(a, b) random variable
, with b > 0. To make use of this function, write first load(distrib).

Functionquantile logistic (q,a,b)
Returns the q-quantile of a Logistic(a, b) random variable , with b > 0; in other
words, this is the inverse of cdf_logistic. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean logistic (a,b)
Returns the mean of a Logistic(a, b) random variable , with b > 0. To make use of
this function, write first load(distrib).

Functionvar logistic (a,b)
Returns the variance of a Logistic(a, b) random variable , with b > 0. To make use
of this function, write first load(distrib).

706 Maxima 5.35.1 Manual

Functionstd logistic (a,b)
Returns the standard deviation of a Logistic(a, b) random variable , with b > 0. To
make use of this function, write first load(distrib).

Functionskewness logistic (a,b)
Returns the skewness coefficient of a Logistic(a, b) random variable , with b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis logistic (a,b)
Returns the kurtosis coefficient of a Logistic(a, b) random variable , with b > 0. To
make use of this function, write first load(distrib).

Functionrandom logistic (a,b)
random_logistic (a,b,n)

Returns a Logistic(a, b) random variate, with b > 0. Calling random_logistic with
a third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf pareto (x,a,b)
Returns the value at x of the density function of a Pareto(a, b) random variable, with
a, b > 0. To make use of this function, write first load(distrib).

Functioncdf pareto (x,a,b)
Returns the value at x of the distribution function of a Pareto(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functionquantile pareto (q,a,b)
Returns the q-quantile of a Pareto(a, b) random variable, with a, b > 0; in other
words, this is the inverse of cdf_pareto. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean pareto (a,b)
Returns the mean of a Pareto(a, b) random variable, with a > 1, b > 0. To make use
of this function, write first load(distrib).

Functionvar pareto (a,b)
Returns the variance of a Pareto(a, b) random variable, with a > 2, b > 0. To make
use of this function, write first load(distrib).

Functionstd pareto (a,b)
Returns the standard deviation of a Pareto(a, b) random variable, with a > 2, b > 0.
To make use of this function, write first load(distrib).

Functionskewness pareto (a,b)
Returns the skewness coefficient of a Pareto(a, b) random variable, with a > 3, b > 0.
To make use of this function, write first load(distrib).

Chapter 49: distrib 707

Functionkurtosis pareto (a,b)
Returns the kurtosis coefficient of a Pareto(a, b) random variable, with a > 4, b > 0.
To make use of this function, write first load(distrib).

Functionrandom pareto (a,b)
random_pareto (a,b,n)

Returns a Pareto(a, b) random variate, with a > 0, b > 0. Calling random_pareto

with a third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf weibull (x,a,b)
Returns the value at x of the density function of a Weibull(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functioncdf weibull (x,a,b)
Returns the value at x of the distribution function of a Weibull(a, b) random variable,
with a, b > 0. To make use of this function, write first load(distrib).

Functionquantile weibull (q,a,b)
Returns the q-quantile of a Weibull(a, b) random variable, with a, b > 0; in other
words, this is the inverse of cdf_weibull. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean weibull (a,b)
Returns the mean of a Weibull(a, b) random variable, with a, b > 0. To make use of
this function, write first load(distrib).

Functionvar weibull (a,b)
Returns the variance of a Weibull(a, b) random variable, with a, b > 0. To make use
of this function, write first load(distrib).

Functionstd weibull (a,b)
Returns the standard deviation of a Weibull(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionskewness weibull (a,b)
Returns the skewness coefficient of a Weibull(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis weibull (a,b)
Returns the kurtosis coefficient of a Weibull(a, b) random variable, with a, b > 0. To
make use of this function, write first load(distrib).

708 Maxima 5.35.1 Manual

Functionrandom weibull (a,b)
random_weibull (a,b,n)

Returns a Weibull(a, b) random variate, with a, b > 0. Calling random_weibull with
a third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf rayleigh (x,b)
Returns the value at x of the density function of a Rayleigh(b) random variable, with
b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull density is returned.

(%i1) load (distrib)$
(%i2) pdf_rayleigh(x,b);

1
(%o2) pdf_weibull(x, 2, -)

b
(%i3) assume(x>0,b>0)$ pdf_rayleigh(x,b);

2 2
2 - b x

(%o4) 2 b x %e

Functioncdf rayleigh (x,b)
Returns the value at x of the distribution function of a Rayleigh(b) random variable,
with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull distribution is returned.

(%i1) load (distrib)$
(%i2) cdf_rayleigh(x,b);

1
(%o2) cdf_weibull(x, 2, -)

b
(%i3) assume(x>0,b>0)$ cdf_rayleigh(x,b);

2 2
- b x

(%o4) 1 - %e

Functionquantile rayleigh (q,b)
Returns the q-quantile of a Rayleigh(b) random variable, with b > 0; in other words,
this is the inverse of cdf_rayleigh. Argument q must be an element of [0, 1].

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull quantile is returned.

Chapter 49: distrib 709

(%i1) load (distrib)$
(%i2) quantile_rayleigh(0.99,b);

1
(%o2) quantile_weibull(0.99, 2, -)

b
(%i3) assume(x>0,b>0)$ quantile_rayleigh(0.99,b);

2.145966026289347
(%o4) -----------------

b

Functionmean rayleigh (b)
Returns the mean of a Rayleigh(b) random variable, with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull mean is returned.

(%i1) load (distrib)$
(%i2) mean_rayleigh(b);

1
(%o2) mean_weibull(2, -)

b
(%i3) assume(b>0)$ mean_rayleigh(b);

sqrt(%pi)
(%o4) ---------

2 b

Functionvar rayleigh (b)
Returns the variance of a Rayleigh(b) random variable, with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull variance is returned.

(%i1) load (distrib)$
(%i2) var_rayleigh(b);

1
(%o2) var_weibull(2, -)

b
(%i3) assume(b>0)$ var_rayleigh(b);

%pi
1 - ---

4
(%o4) -------

2
b

Functionstd rayleigh (b)
Returns the standard deviation of a Rayleigh(b) random variable, with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull standard deviation is returned.

710 Maxima 5.35.1 Manual

(%i1) load (distrib)$
(%i2) std_rayleigh(b);

1
(%o2) std_weibull(2, -)

b
(%i3) assume(b>0)$ std_rayleigh(b);

%pi
sqrt(1 - ---)

4
(%o4) -------------

b

Functionskewness rayleigh (b)
Returns the skewness coefficient of a Rayleigh(b) random variable, with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_rayleigh(b);

1
(%o2) skewness_weibull(2, -)

b
(%i3) assume(b>0)$ skewness_rayleigh(b);

3/2
%pi 3 sqrt(%pi)
------ - -----------
4 4

(%o4) --------------------
%pi 3/2

(1 - ---)
4

Functionkurtosis rayleigh (b)
Returns the kurtosis coefficient of a Rayleigh(b) random variable, with b > 0.

The Rayleigh(b) random variable is equivalent to the Weibull(2, 1/b), therefore when
Maxima has not enough information to get the result, a noun form based on the
Weibull kurtosis coefficient is returned.

(%i1) load (distrib)$
(%i2) kurtosis_rayleigh(b);

1
(%o2) kurtosis_weibull(2, -)

b
(%i3) assume(b>0)$ kurtosis_rayleigh(b);

2
3 %pi

2 - ------
16

(%o4) ---------- - 3

Chapter 49: distrib 711

%pi 2
(1 - ---)

4

Functionrandom rayleigh (b)
random_rayleigh (b,n)

Returns a Rayleigh(b) random variate, with b > 0. Calling random_rayleigh with a
second argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf laplace (x,a,b)
Returns the value at x of the density function of a Laplace(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf laplace (x,a,b)
Returns the value at x of the distribution function of a Laplace(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functionquantile laplace (q,a,b)
Returns the q-quantile of a Laplace(a, b) random variable, with b > 0; in other words,
this is the inverse of cdf_laplace. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionmean laplace (a,b)
Returns the mean of a Laplace(a, b) random variable, with b > 0. To make use of
this function, write first load(distrib).

Functionvar laplace (a,b)
Returns the variance of a Laplace(a, b) random variable, with b > 0. To make use of
this function, write first load(distrib).

Functionstd laplace (a,b)
Returns the standard deviation of a Laplace(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionskewness laplace (a,b)
Returns the skewness coefficient of a Laplace(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionkurtosis laplace (a,b)
Returns the kurtosis coefficient of a Laplace(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

712 Maxima 5.35.1 Manual

Functionrandom laplace (a,b)
random_laplace (a,b,n)

Returns a Laplace(a, b) random variate, with b > 0. Calling random_laplace with a
third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf cauchy (x,a,b)
Returns the value at x of the density function of a Cauchy(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf cauchy (x,a,b)
Returns the value at x of the distribution function of a Cauchy(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functionquantile cauchy (q,a,b)
Returns the q-quantile of a Cauchy(a, b) random variable, with b > 0; in other words,
this is the inverse of cdf_cauchy. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionrandom cauchy (a,b)
random_cauchy (a,b,n)

Returns a Cauchy(a, b) random variate, with b > 0. Calling random_cauchy with a
third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

Functionpdf gumbel (x,a,b)
Returns the value at x of the density function of a Gumbel(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functioncdf gumbel (x,a,b)
Returns the value at x of the distribution function of a Gumbel(a, b) random variable,
with b > 0. To make use of this function, write first load(distrib).

Functionquantile gumbel (q,a,b)
Returns the q-quantile of a Gumbel(a, b) random variable, with b > 0; in other words,
this is the inverse of cdf_gumbel. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionmean gumbel (a,b)
Returns the mean of a Gumbel(a, b) random variable, with b > 0.

(%i1) load (distrib)$
(%i2) assume(b>0)$ mean_gumbel(a,b);
(%o3) %gamma b + a

where symbol %gamma stands for the Euler-Mascheroni constant. See also %gamma.

Chapter 49: distrib 713

Functionvar gumbel (a,b)
Returns the variance of a Gumbel(a, b) random variable, with b > 0. To make use of
this function, write first load(distrib).

Functionstd gumbel (a,b)
Returns the standard deviation of a Gumbel(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionskewness gumbel (a,b)
Returns the skewness coefficient of a Gumbel(a, b) random variable, with b > 0.

(%i1) load (distrib)$
(%i2) assume(b>0)$ skewness_gumbel(a,b);

12 sqrt(6) zeta(3)
(%o3) ------------------

3
%pi

(%i4) numer:true$ skewness_gumbel(a,b);
(%o5) 1.139547099404649

where zeta stands for the Riemann’s zeta function.

Functionkurtosis gumbel (a,b)
Returns the kurtosis coefficient of a Gumbel(a, b) random variable, with b > 0. To
make use of this function, write first load(distrib).

Functionrandom gumbel (a,b)
random_gumbel (a,b,n)

Returns a Gumbel(a, b) random variate, with b > 0. Calling random_gumbel with a
third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load(distrib).

49.3 Functions and Variables for discrete distributions

Functionpdf general finite discrete (x,v)
Returns the value at x of the probability function of a general finite discrete random
variable, with vector probabilities v, such that Pr(X=i) = v_i. Vector v can be a list
of nonnegative expressions, whose components will be normalized to get a vector of
probabilities. To make use of this function, write first load(distrib).

(%i1) load (distrib)$
(%i2) pdf_general_finite_discrete(2, [1/7, 4/7, 2/7]);

4
(%o2) -

7
(%i3) pdf_general_finite_discrete(2, [1, 4, 2]);

4
(%o3) -

7

714 Maxima 5.35.1 Manual

Functioncdf general finite discrete (x,v)
Returns the value at x of the distribution function of a general finite discrete random
variable, with vector probabilities v.

See pdf_general_finite_discrete for more details.

(%i1) load (distrib)$
(%i2) cdf_general_finite_discrete(2, [1/7, 4/7, 2/7]);

5
(%o2) -

7
(%i3) cdf_general_finite_discrete(2, [1, 4, 2]);

5
(%o3) -

7
(%i4) cdf_general_finite_discrete(2+1/2, [1, 4, 2]);

5
(%o4) -

7

Functionquantile general finite discrete (q,v)
Returns the q-quantile of a general finite discrete random variable, with vector prob-
abilities v.

See pdf_general_finite_discrete for more details.

Functionmean general finite discrete (v)
Returns the mean of a general finite discrete random variable, with vector probabilities
v.

See pdf_general_finite_discrete for more details.

Functionvar general finite discrete (v)
Returns the variance of a general finite discrete random variable, with vector proba-
bilities v.

See pdf_general_finite_discrete for more details.

Functionstd general finite discrete (v)
Returns the standard deviation of a general finite discrete random variable, with
vector probabilities v.

See pdf_general_finite_discrete for more details.

Functionskewness general finite discrete (v)
Returns the skewness coefficient of a general finite discrete random variable, with
vector probabilities v.

See pdf_general_finite_discrete for more details.

Functionkurtosis general finite discrete (v)
Returns the kurtosis coefficient of a general finite discrete random variable, with
vector probabilities v.

See pdf_general_finite_discrete for more details.

Chapter 49: distrib 715

Functionrandom general finite discrete (v)
random_general_finite_discrete (v,m)

Returns a general finite discrete random variate, with vector probabilities v. Calling
random_general_finite_discrete with a second argument m, a random sample of
size m will be simulated.

See pdf_general_finite_discrete for more details.

(%i1) load (distrib)$
(%i2) random_general_finite_discrete([1,3,1,5]);
(%o2) 4
(%i3) random_general_finite_discrete([1,3,1,5], 10);
(%o3) [4, 2, 2, 3, 2, 4, 4, 1, 2, 2]

Functionpdf binomial (x,n,p)
Returns the value at x of the probability function of a Binomial(n, p) random vari-
able, with 0 < p < 1 and n a positive integer. To make use of this function, write
first load(distrib). 4 (%o6) - 7

Functioncdf binomial (x,n,p)
Returns the value at x of the distribution function of a Binomial(n, p) random vari-
able, with 0 < p < 1 and n a positive integer.

(%i1) load (distrib)$
(%i2) cdf_binomial(5,7,1/6);

7775
(%o2) ----

7776
(%i3) float(%);
(%o3) .9998713991769548

Functionquantile binomial (q,n,p)
Returns the q-quantile of a Binomial(n, p) random variable, with 0 < p < 1 and n
a positive integer; in other words, this is the inverse of cdf_binomial. Argument q
must be an element of [0, 1]. To make use of this function, write first load(distrib).

Functionmean binomial (n,p)
Returns the mean of a Binomial(n, p) random variable, with 0 < p < 1 and n a
positive integer. To make use of this function, write first load(distrib).

Functionvar binomial (n,p)
Returns the variance of a Binomial(n, p) random variable, with 0 < p < 1 and n a
positive integer. To make use of this function, write first load(distrib).

Functionstd binomial (n,p)
Returns the standard deviation of a Binomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

716 Maxima 5.35.1 Manual

Functionskewness binomial (n,p)
Returns the skewness coefficient of a Binomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

Functionkurtosis binomial (n,p)
Returns the kurtosis coefficient of a Binomial(n, p) random variable, with 0 < p < 1
and n a positive integer. To make use of this function, write first load(distrib).

Functionrandom binomial (n,p)
random_binomial (n,p,m)

Returns a Binomial(n, p) random variate, with 0 < p < 1 and n a positive integer.
Calling random_binomial with a third argument m, a random sample of size m will
be simulated.

The implemented algorithm is based on the one described in Kachitvichyanukul, V.
and Schmeiser, B.W. (1988) Binomial Random Variate Generation. Communications
of the ACM, 31, Feb., 216.

To make use of this function, write first load(distrib).

Functionpdf poisson (x,m)
Returns the value at x of the probability function of a Poisson(m) random variable,
with m > 0. To make use of this function, write first load(distrib).

Functioncdf poisson (x,m)
Returns the value at x of the distribution function of a Poisson(m) random variable,
with m > 0.

(%i1) load (distrib)$
(%i2) cdf_poisson(3,5);
(%o2) gamma_incomplete_regularized(4, 5)
(%i3) float(%);
(%o3) .2650259152973623

Functionquantile poisson (q,m)
Returns the q-quantile of a Poisson(m) random variable, with m > 0; in other words,
this is the inverse of cdf_poisson. Argument q must be an element of [0, 1]. To make
use of this function, write first load(distrib).

Functionmean poisson (m)
Returns the mean of a Poisson(m) random variable, with m > 0. To make use of
this function, write first load(distrib).

Functionvar poisson (m)
Returns the variance of a Poisson(m) random variable, with m > 0. To make use of
this function, write first load(distrib).

Functionstd poisson (m)
Returns the standard deviation of a Poisson(m) random variable, with m > 0. To
make use of this function, write first load(distrib).

Chapter 49: distrib 717

Functionskewness poisson (m)
Returns the skewness coefficient of a Poisson(m) random variable, with m > 0. To
make use of this function, write first load(distrib).

Functionkurtosis poisson (m)
Returns the kurtosis coefficient of a Poisson random variable Poi(m), with m > 0.
To make use of this function, write first load(distrib).

Functionrandom poisson (m)
random_poisson (m,n)

Returns a Poisson(m) random variate, with m > 0. Calling random_poisson with a
second argument n, a random sample of size n will be simulated.

The implemented algorithm is the one described in Ahrens, J.H. and Dieter, U.
(1982) Computer Generation of Poisson Deviates From Modified Normal Distribu-
tions. ACM Trans. Math. Software, 8, 2, June,163-179.

To make use of this function, write first load(distrib).

Functionpdf bernoulli (x,p)
Returns the value at x of the probability function of a Bernoulli(p) random variable,
with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial probability function is returned.

(%i1) load (distrib)$
(%i2) pdf_bernoulli(1,p);
(%o2) pdf_binomial(1, 1, p)
(%i3) assume(0<p,p<1)$ pdf_bernoulli(1,p);
(%o4) p

Functioncdf bernoulli (x,p)
Returns the value at x of the distribution function of a Bernoulli(p) random variable,
with 0 < p < 1. To make use of this function, write first load(distrib).

Functionquantile bernoulli (q,p)
Returns the q-quantile of a Bernoulli(p) random variable, with 0 < p < 1; in other
words, this is the inverse of cdf_bernoulli. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean bernoulli (p)
Returns the mean of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial mean is returned.

718 Maxima 5.35.1 Manual

(%i1) load (distrib)$
(%i2) mean_bernoulli(p);
(%o2) mean_binomial(1, p)
(%i3) assume(0<p,p<1)$ mean_bernoulli(p);
(%o4) p

Functionvar bernoulli (p)
Returns the variance of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial variance is returned.

(%i1) load (distrib)$
(%i2) var_bernoulli(p);
(%o2) var_binomial(1, p)
(%i3) assume(0<p,p<1)$ var_bernoulli(p);
(%o4) (1 - p) p

Functionstd bernoulli (p)
Returns the standard deviation of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial standard deviation is returned.

(%i1) load (distrib)$
(%i2) std_bernoulli(p);
(%o2) std_binomial(1, p)
(%i3) assume(0<p,p<1)$ std_bernoulli(p);
(%o4) sqrt(1 - p) sqrt(p)

Functionskewness bernoulli (p)
Returns the skewness coefficient of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial skewness coefficient is returned.

(%i1) load (distrib)$
(%i2) skewness_bernoulli(p);
(%o2) skewness_binomial(1, p)
(%i3) assume(0<p,p<1)$ skewness_bernoulli(p);

1 - 2 p
(%o4) -------------------

sqrt(1 - p) sqrt(p)

Functionkurtosis bernoulli (p)
Returns the kurtosis coefficient of a Bernoulli(p) random variable, with 0 < p < 1.

The Bernoulli(p) random variable is equivalent to the Binomial(1, p), therefore when
Maxima has not enough information to get the result, a noun form based on the
binomial kurtosis coefficient is returned.

Chapter 49: distrib 719

(%i1) load (distrib)$
(%i2) kurtosis_bernoulli(p);
(%o2) kurtosis_binomial(1, p)
(%i3) assume(0<p,p<1)$ kurtosis_bernoulli(p);

1 - 6 (1 - p) p
(%o4) ---------------

(1 - p) p

Functionrandom bernoulli (p)
random_bernoulli (p,n)

Returns a Bernoulli(p) random variate, with 0 < p < 1. Calling random_bernoulli

with a second argument n, a random sample of size n will be simulated.

This is a direct application of the random built-in Maxima function.

See also random. To make use of this function, write first load(distrib).

Functionpdf geometric (x,p)
Returns the value at x of the probability function of a Geometric(p) random variable,
with 0 < p < 1. To make use of this function, write first load(distrib).

Functioncdf geometric (x,p)
Returns the value at x of the distribution function of a Geometric(p) random variable,
with 0 < p < 1. To make use of this function, write first load(distrib).

Functionquantile geometric (q,p)
Returns the q-quantile of a Geometric(p) random variable, with 0 < p < 1; in other
words, this is the inverse of cdf_geometric. Argument q must be an element of [0, 1].
To make use of this function, write first load(distrib).

Functionmean geometric (p)
Returns the mean of a Geometric(p) random variable, with 0 < p < 1. To make use
of this function, write first load(distrib).

Functionvar geometric (p)
Returns the variance of a Geometric(p) random variable, with 0 < p < 1. To make
use of this function, write first load(distrib).

Functionstd geometric (p)
Returns the standard deviation of a Geometric(p) random variable, with 0 < p < 1.
To make use of this function, write first load(distrib).

Functionskewness geometric (p)
Returns the skewness coefficient of a Geometric(p) random variable, with 0 < p < 1.
To make use of this function, write first load(distrib).

Functionkurtosis geometric (p)
Returns the kurtosis coefficient of a geometric random variable Geo(p), with 0 < p <
1. To make use of this function, write first load(distrib).

720 Maxima 5.35.1 Manual

Functionrandom geometric (p)
random_geometric (p,n)

Returns a Geometric(p) random variate, with 0 < p < 1. Calling random_geometric

with a second argument n, a random sample of size n will be simulated.

The algorithm is based on simulation of Bernoulli trials.

To make use of this function, write first load(distrib).

Functionpdf discrete uniform (x,n)
Returns the value at x of the probability function of a DiscreteUniform(n) random
variable, with n a strictly positive integer. To make use of this function, write first
load(distrib).

Functioncdf discrete uniform (x,n)
Returns the value at x of the distribution function of a DiscreteUniform(n) random
variable, with n a strictly positive integer. To make use of this function, write first
load(distrib).

Functionquantile discrete uniform (q,n)
Returns the q-quantile of a DiscreteUniform(n) random variable, with n a strictly
positive integer; in other words, this is the inverse of cdf_discrete_uniform. Ar-
gument q must be an element of [0, 1]. To make use of this function, write first
load(distrib).

Functionmean discrete uniform (n)
Returns the mean of a DiscreteUniform(n) random variable, with n a strictly posi-
tive integer. To make use of this function, write first load(distrib).

Functionvar discrete uniform (n)
Returns the variance of a DiscreteUniform(n) random variable, with n a strictly
positive integer. To make use of this function, write first load(distrib).

Functionstd discrete uniform (n)
Returns the standard deviation of a DiscreteUniform(n) random variable, with n a
strictly positive integer. To make use of this function, write first load(distrib).

Functionskewness discrete uniform (n)
Returns the skewness coefficient of a DiscreteUniform(n) random variable, with n
a strictly positive integer. To make use of this function, write first load(distrib).

Functionkurtosis discrete uniform (n)
Returns the kurtosis coefficient of a DiscreteUniform(n) random variable, with n a
strictly positive integer. To make use of this function, write first load(distrib).

Chapter 49: distrib 721

Functionrandom discrete uniform (n)
random_discrete_uniform (n,m)

Returns a DiscreteUniform(n) random variate, with n a strictly positive integer.
Calling random_discrete_uniform with a second argument m, a random sample of
size m will be simulated.

This is a direct application of the random built-in Maxima function.

See also random. To make use of this function, write first load(distrib).

Functionpdf hypergeometric (x,n1,n2,n)
Returns the value at x of the probability function of a Hypergeometric(n1, n2, n)
random variable, with n1, n2 and n non negative integers and n <= n1 + n2. Being
n1 the number of objects of class A, n2 the number of objects of class B, and n the
size of the sample without replacement, this function returns the probability of event
"exactly x objects are of class A".

To make use of this function, write first load(distrib).

Functioncdf hypergeometric (x,n1,n2,n)
Returns the value at x of the distribution function of a Hypergeometric(n1, n2, n)
random variable, with n1, n2 and n non negative integers and n <= n1 + n2. See
pdf_hypergeometric for a more complete description.

To make use of this function, write first load(distrib).

Functionquantile hypergeometric (q,n1,n2,n)
Returns the q-quantile of a Hypergeometric(n1, n2, n) random variable, with n1, n2
and n non negative integers and n <= n1 + n2; in other words, this is the inverse of
cdf_hypergeometric. Argument q must be an element of [0, 1]. To make use of this
function, write first load(distrib).

Functionmean hypergeometric (n1,n2,n)
Returns the mean of a discrete uniform random variable Hyp(n1, n2, n), with n1, n2
and n non negative integers and n <= n1 + n2. To make use of this function, write
first load(distrib).

Functionvar hypergeometric (n1,n2,n)
Returns the variance of a hypergeometric random variable Hyp(n1, n2, n), with n1,
n2 and n non negative integers and n <= n1 + n2. To make use of this function,
write first load(distrib).

Functionstd hypergeometric (n1,n2,n)
Returns the standard deviation of a Hypergeometric(n1, n2, n) random variable, with
n1, n2 and n non negative integers and n <= n1 + n2. To make use of this function,
write first load(distrib).

Functionskewness hypergeometric (n1,n2,n)
Returns the skewness coefficient of a Hypergeometric(n1, n2, n) random variable,
with n1, n2 and n non negative integers and n <= n1 + n2. To make use of this
function, write first load(distrib).

722 Maxima 5.35.1 Manual

Functionkurtosis hypergeometric (n1,n2,n)
Returns the kurtosis coefficient of a Hypergeometric(n1, n2, n) random variable, with
n1, n2 and n non negative integers and n <= n1 + n2. To make use of this function,
write first load(distrib).

Functionrandom hypergeometric (n1,n2,n)
random_hypergeometric (n1,n2,n,m)

Returns a Hypergeometric(n1, n2, n) random variate, with n1, n2 and n non negative
integers and n <= n1+n2. Calling random_hypergeometric with a fourth argument
m, a random sample of size m will be simulated.

Algorithm described in Kachitvichyanukul, V., Schmeiser, B.W. (1985) Computer
generation of hypergeometric random variates. Journal of Statistical Computation
and Simulation 22, 127-145.

To make use of this function, write first load(distrib).

Functionpdf negative binomial (x,n,p)
Returns the value at x of the probability function of a NegativeBinomial(n, p) ran-
dom variable, with 0 < p < 1 and n a positive number. To make use of this function,
write first load(distrib).

Functioncdf negative binomial (x,n,p)
Returns the value at x of the distribution function of a NegativeBinomial(n, p)
random variable, with 0 < p < 1 and n a positive number.

(%i1) load (distrib)$
(%i2) cdf_negative_binomial(3,4,1/8);

3271
(%o2) ------

524288
(%i3) float(%);
(%o3) .006238937377929687

Functionquantile negative binomial (q,n,p)
Returns the q-quantile of a NegativeBinomial(n, p) random variable, with 0 < p <
1 and n a positive number; in other words, this is the inverse of cdf_negative_

binomial. Argument q must be an element of [0, 1]. To make use of this function,
write first load(distrib).

Functionmean negative binomial (n,p)
Returns the mean of a NegativeBinomial(n, p) random variable, with 0 < p < 1 and
n a positive number. To make use of this function, write first load(distrib).

Functionvar negative binomial (n,p)
Returns the variance of a NegativeBinomial(n, p) random variable, with 0 < p < 1
and n a positive number. To make use of this function, write first load(distrib).

Chapter 49: distrib 723

Functionstd negative binomial (n,p)
Returns the standard deviation of a NegativeBinomial(n, p) random variable, with
0 < p < 1 and n a positive number. To make use of this function, write first
load(distrib).

Functionskewness negative binomial (n,p)
Returns the skewness coefficient of a NegativeBinomial(n, p) random variable, with
0 < p < 1 and n a positive number. To make use of this function, write first
load(distrib).

Functionkurtosis negative binomial (n,p)
Returns the kurtosis coefficient of a NegativeBinomial(n, p) random variable, with
0 < p < 1 and n a positive number. To make use of this function, write first
load(distrib).

Functionrandom negative binomial (n,p)
random_negative_binomial (n,p,m)

Returns a NegativeBinomial(n, p) random variate, with 0 < p < 1 and n a positive
number. Calling random_negative_binomial with a third argument m, a random
sample of size m will be simulated.

Algorithm described in Devroye, L. (1986) Non-Uniform Random Variate Generation.
Springer Verlag, p. 480.

To make use of this function, write first load(distrib).

724 Maxima 5.35.1 Manual

Chapter 50: draw 725

50 draw

50.1 Introduction to draw

draw is a Maxima-Gnuplot interface.

There are three main functions to be used at Maxima level: draw2d, draw3d and draw.

Follow this link for more elaborated examples of this package:

http://riotorto.users.sourceforge.net/gnuplot

You need Gnuplot 4.2 or newer to run this program.

50.2 Functions and Variables for draw

50.2.1 Scenes

Scene constructorgr2d (graphic option, ..., graphic object, ...)
Function gr2d builds an object describing a 2D scene. Arguments are graphic options,
graphic objects, or lists containing both graphic options and objects. This scene is
interpreted sequentially: graphic options affect those graphic objects placed on its
right. Some graphic options affect the global appearence of the scene.

This is the list of graphic objects available for scenes in two dimensions: bars,
ellipse, explicit, image, implicit, label, parametric, points, polar, polygon,
quadrilateral, rectangle, triangle, vector, and geomap (this one defined in pack-
age worldmap).

See also draw and draw2d.

To make use of this object, write first load(draw).

Scene constructorgr3d (graphic option, ..., graphic object, ...)
Function gr3d builds an object describing a 3d scene. Arguments are graphic options,
graphic objects, or lists containing both graphic options and objects. This scene is
interpreted sequentially: graphic options affect those graphic objects placed on its
right. Some graphic options affect the global appearence of the scene.

This is the list of graphic objects available for scenes in three dimensions:
cylindrical, elevation_grid, explicit, implicit, label, mesh, parametric,
parametric_surface, points, quadrilateral, spherical, triangle, tube,
vector, and geomap (this one defined in package worldmap).

See also draw and draw3d.

To make use of this object, write first load(draw).

726 Maxima 5.35.1 Manual

50.2.2 Functions

Functiondraw (gr2d, ..., gr3d, ..., options, ...)
Plots a series of scenes; its arguments are gr2d and/or gr3d objects, together with
some options, or lists of scenes and options. By default, the scenes are put together
in one column.

Function draw accepts the following global options: terminal, columns, dimensions,
file_name and delay.

Functions draw2d and draw3d are short cuts to be used when only one scene is
required, in two or three dimensions, respectively.

See also gr2d and gr3d.

To make use of this function, write first load(draw).

Example:

(%i1) load(draw)$
(%i2) scene1: gr2d(title="Ellipse",

nticks=30,
parametric(2*cos(t),5*sin(t),t,0,2*%pi))$

(%i3) scene2: gr2d(title="Triangle",
polygon([4,5,7],[6,4,2]))$

(%i4) draw(scene1, scene2, columns = 2)$

The two draw sentences are equivalent:

(%i1) load(draw)$
(%i2) draw(gr3d(explicit(x^2+y^2,x,-1,1,y,-1,1)));
(%o2) [gr3d(explicit)]
(%i3) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1));
(%o3) [gr3d(explicit)]

An animated gif file:

(%i1) load(draw)$
(%i2) draw(

delay = 100,
file_name = "zzz",
terminal = ’animated_gif,
gr2d(explicit(x^2,x,-1,1)),
gr2d(explicit(x^3,x,-1,1)),
gr2d(explicit(x^4,x,-1,1)));

End of animation sequence
(%o2) [gr2d(explicit), gr2d(explicit), gr2d(explicit)]

See also gr2d, gr3d, draw2d and draw3d..

Functiondraw2d (option, graphic object, ...)
This function is a short cut for draw(gr2d(options, ..., graphic object, ...)).

It can be used to plot a unique scene in 2d.

To make use of this function, write first load(draw).

See also draw and gr2d.

Chapter 50: draw 727

Functiondraw3d (option, graphic object, ...)
This function is a short cut for draw(gr3d(options, ..., graphic object, ...)).

It can be used to plot a unique scene in 3d.

To make use of this function, write first load(draw).

See also draw and gr3d.

Functiondraw file (graphic option, ..., graphic object, ...)
Saves the current plot into a file. Accepted graphics options are: terminal,
dimensions, file_name and background_color.

Example:

(%i1) load(draw)$
(%i2) /* screen plot */

draw(gr3d(explicit(x^2+y^2,x,-1,1,y,-1,1)))$
(%i3) /* same plot in eps format */

draw_file(terminal = eps,
dimensions = [5,5]) $

Functionmultiplot mode (term)
This function enables Maxima to work in one-window multiplot mode with terminal
term; accepted arguments for this function are screen, wxt, aquaterm and none.

When multiplot mode is enabled, each call to draw sends a new plot to the same
window, without erasing the previous ones. To disable the multiplot mode, write
multiplot_mode(none).

When multiplot mode is enabled, global option terminal is blocked and you have to
disable this working mode before changing to another terminal.

This feature does not work in Windows platforms.

Example:

(%i1) load(draw)$
(%i2) set_draw_defaults(

xrange = [-1,1],
yrange = [-1,1],
grid = true,
title = "Step by step plot")$

(%i3) multiplot_mode(screen)$
(%i4) draw2d(color=blue, explicit(x^2,x,-1,1))$
(%i5) draw2d(color=red, explicit(x^3,x,-1,1))$
(%i6) draw2d(color=brown, explicit(x^4,x,-1,1))$
(%i7) multiplot_mode(none)$

Functionset draw defaults (graphic option, ..., graphic object, ...)
Sets user graphics options. This function is useful for plotting a sequence of graphics
with common graphics options. Calling this function without arguments removes user
defaults.

Example:

728 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) set_draw_defaults(

xrange = [-10,10],
yrange = [-2, 2],
color = blue,
grid = true)$

(%i3) /* plot with user defaults */
draw2d(explicit(((1+x)**2/(1+x*x))-1,x,-10,10))$

(%i4) set_draw_defaults()$
(%i5) /* plot with standard defaults */

draw2d(explicit(((1+x)**2/(1+x*x))-1,x,-10,10))$

To make use of this function, write first load(draw).

50.2.3 Graphics options

Graphic optionadapt depth
Default value: 10

adapt_depth is the maximum number of splittings used by the adaptive plotting
routine.

This option is relevant only for 2d explicit functions.

Graphic optionallocation
Default value: false

With option allocation it is possible to place a scene in the output window at
will; this is of interest in multiplots. When false, the scene is placed automatically,
depending on the value assigned to option columns. In any other case, allocation
must be set to a list of two pairs of numbers; the first corresponds to the position of
the lower left corner of the scene, and the second pair gives the width and height of
the plot. All quantities must be given in relative coordinates, between 0 and 1.

Examples:

In site graphics.

(%i1) load(draw)$
(%i2) draw(

gr2d(
explicit(x^2,x,-1,1)),

gr2d(
allocation = [[1/4, 1/4],[1/2, 1/2]],
explicit(x^3,x,-1,1),
grid = true)) $

Multiplot with selected dimensions.

(%i1) load(draw)$
(%i2) draw(

terminal = wxt,
gr2d(
allocation = [[0, 0],[1, 1/4]],

Chapter 50: draw 729

explicit(x^2,x,-1,1)),
gr3d(
allocation = [[0, 1/4],[1, 3/4]],
explicit(x^2+y^2,x,-1,1,y,-1,1)))$

See also option columns.

Graphic optionaxis 3d
Default value: true

If axis_3d is true, the x, y and z axis are shown in 3d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(axis_3d = false,

explicit(sin(x^2+y^2),x,-2,2,y,-2,2))$

See also axis_bottom, axis_left, axis_top, and axis_right for axis in 2d.

Graphic optionaxis bottom
Default value: true

If axis_bottom is true, the bottom axis is shown in 2d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(axis_bottom = false,

explicit(x^3,x,-1,1))$

See also axis_left, axis_top, axis_right, and axis_3d.

Graphic optionaxis left
Default value: true

If axis_left is true, the left axis is shown in 2d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(axis_left = false,

explicit(x^3,x,-1,1))$

See also axis_bottom, axis_top, axis_right, and axis_3d.

Graphic optionaxis right
Default value: true

If axis_right is true, the right axis is shown in 2d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

730 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) draw2d(axis_right = false,

explicit(x^3,x,-1,1))$

See also axis_bottom, axis_left, axis_top, and axis_3d.

Graphic optionaxis top
Default value: true

If axis_top is true, the top axis is shown in 2d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(axis_top = false,

explicit(x^3,x,-1,1))$

See also axis_bottom, axis_left, axis_right, and axis_3d.

Graphic optionbackground color
Default value: white

Sets the background color for terminals. Default background color is white.

Since this is a global graphics option, its position in the scene description does not
matter.

This option das not work with terminals epslatex and epslatex_standalone.

See also color.

Graphic optionborder
Default value: true

If border is true, borders of polygons are painted according to line_type and line_

width.

This option affects the following graphic objects:

• gr2d: polygon, rectangle, and ellipse.

Example:

(%i1) load(draw)$
(%i2) draw2d(color = brown,

line_width = 8,
polygon([[3,2],[7,2],[5,5]]),
border = false,
fill_color = blue,
polygon([[5,2],[9,2],[7,5]]))$

Graphic optioncbrange
Default value: auto

If cbrange is auto, the range for the values which are colored when enhanced3d is
not false is computed automatically. Values outside of the color range use color of
the nearest extreme.

Chapter 50: draw 731

When enhanced3d or colorbox is false, option cbrange has no effect.

If the user wants a specific interval for the colored values, it must be given as a
Maxima list, as in cbrange=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d (

enhanced3d = true,
color = green,
cbrange = [-3,10],
explicit(x^2+y^2, x,-2,2,y,-2,2)) $

See also enhanced3d, colorbox and cbtics.

Graphic optioncbtics
Default value: auto

This graphic option controls the way tic marks are drawn on the colorbox when option
enhanced3d is not false.

When enhanced3d or colorbox is false, option cbtics has no effect.

See xtics for a complete description.

Example :

(%i1) load(draw)$
(%i2) draw3d (

enhanced3d = true,
color = green,
cbtics = {["High",10],["Medium",05],["Low",0]},
cbrange = [0, 10],
explicit(x^2+y^2, x,-2,2,y,-2,2)) $

See also enhanced3d, colorbox and cbrange.

Graphic optioncolor
Default value: blue

color specifies the color for plotting lines, points, borders of polygons and labels.

Colors can be given as names or in hexadecimal rgb code.

Available color names are:

white black gray0 grey0
gray10 grey10 gray20 grey20
gray30 grey30 gray40 grey40
gray50 grey50 gray60 grey60
gray70 grey70 gray80 grey80
gray90 grey90 gray100 grey100
gray grey light_gray light_grey
dark_gray dark_grey red light_red

732 Maxima 5.35.1 Manual

dark_red yellow light_yellow dark_yellow
green light_green dark_green spring_green
forest_green sea_green blue light_blue
dark_blue midnight_blue navy medium_blue
royalblue skyblue cyan light_cyan
dark_cyan magenta light_magenta dark_magenta
turquoise light_turquoise dark_turquoise pink
light_pink dark_pink coral light_coral
orange_red salmon light_salmon dark_salmon
aquamarine khaki dark_khaki goldenrod
light_goldenrod dark_goldenrod gold beige
brown orange dark_orange violet
dark_violet plum purple

Cromatic componentes in hexadecimal code are introduced in the form "#rrggbb".

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^2,x,_1,1), /* default is black */

color = red,
explicit(0.5 + x^2,x,-1,1),
color = blue,
explicit(1 + x^2,x,-1,1),
color = light_blue,
explicit(1.5 + x^2,x,-1,1),
color = "#23ab0f",
label(["This is a label",0,1.2]))$

See also fill_color.

Graphic optioncolorbox
Default value: true

If colorbox is true, a color scale without label is drawn together with image 2D
objects, or coloured 3d objects. If colorbox is false, no color scale is shown. If
colorbox is a string, a color scale with label is drawn.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

Color scale and images.

(%i1) load(draw)$
(%i2) im: apply(’matrix,

makelist(makelist(random(200),i,1,30),i,1,30))$
(%i3) draw2d(image(im,0,0,30,30))$
(%i4) draw2d(colorbox = false, image(im,0,0,30,30))$

Color scale and 3D coloured object.

(%i1) load(draw)$
(%i2) draw3d(

colorbox = "Magnitude",
enhanced3d = true,

Chapter 50: draw 733

explicit(x^2+y^2,x,-1,1,y,-1,1))$

See also palette.

Graphic optioncolumns
Default value: 1

columns is the number of columns in multiple plots.

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

Example:

(%i1) load(draw)$
(%i2) scene1: gr2d(title="Ellipse",

nticks=30,
parametric(2*cos(t),5*sin(t),t,0,2*%pi))$

(%i3) scene2: gr2d(title="Triangle",
polygon([4,5,7],[6,4,2]))$

(%i4) draw(scene1, scene2, columns = 2)$

Graphic optioncontour
Default value: none

Option contour enables the user to select where to plot contour lines. Possible values
are:

• none: no contour lines are plotted.

• base: contour lines are projected on the xy plane.

• surface: contour lines are plotted on the surface.

• both: two contour lines are plotted: on the xy plane and on the surface.

• map: contour lines are projected on the xy plane, and the view point is set just
in the vertical.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),

contour_levels = 15,
contour = both,
surface_hide = true) $

Graphic optioncontour levels
Default value: 5

This graphic option controls the way contours are drawn. contour_levels can be set
to a positive integer number, a list of three numbers or an arbitrary set of numbers:

• When option contour_levels is bounded to positive integer n, n contour lines
will be drawn at equal intervals. By default, five equally spaced contours are
plotted.

734 Maxima 5.35.1 Manual

• When option contour_levels is bounded to a list of length three of the form
[lowest,s,highest], contour lines are plotted from lowest to highest in steps
of s.

• When option contour_levels is bounded to a set of numbers of the form {n1,

n2, ...}, contour lines are plotted at values n1, n2, ...

Since this is a global graphics option, its position in the scene description does not
matter.

Examples:

Ten equally spaced contour lines. The actual number of levels can be adjusted to give
simple labels.

(%i1) load(draw)$
(%i2) draw3d(color = green,

explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),
contour_levels = 10,
contour = both,
surface_hide = true) $

From -8 to 8 in steps of 4.

(%i1) load(draw)$
(%i2) draw3d(color = green,

explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),
contour_levels = [-8,4,8],
contour = both,
surface_hide = true) $

Isolines at levels -7, -6, 0.8 and 5.

(%i1) load(draw)$
(%i2) draw3d(color = green,

explicit(20*exp(-x^2-y^2)-10,x,0,2,y,-3,3),
contour_levels = {-7, -6, 0.8, 5},
contour = both,
surface_hide = true) $

See also contour.

Graphic optiondata file name
Default value: "data.gnuplot"

This is the name of the file with the numeric data needed by Gnuplot to build the
requested plot.

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

See example in gnuplot_file_name.

Graphic optiondelay
Default value: 5

This is the delay in 1/100 seconds of frames in animated gif files.

Chapter 50: draw 735

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

Example:

(%i1) load(draw)$
(%i2) draw(

delay = 100,
file_name = "zzz",
terminal = ’animated_gif,
gr2d(explicit(x^2,x,-1,1)),
gr2d(explicit(x^3,x,-1,1)),
gr2d(explicit(x^4,x,-1,1)));

End of animation sequence
(%o2) [gr2d(explicit), gr2d(explicit), gr2d(explicit)]

Option delay is only active in animated gif’s; it is ignored in any other case.

See also terminal, dimensions.

Graphic optiondimensions
Default value: [600,500]

Dimensions of the output terminal. Its value is a list formed by the width and the
height. The meaning of the two numbers depends on the terminal you are working
with.

With terminals gif, animated_gif, png, jpg, svg, screen, wxt, and aquaterm, the
integers represent the number of points in each direction. If they are not intergers,
they are rounded.

With terminals eps, eps_color, pdf, and pdfcairo, both numbers represent hun-
dredths of cm, which means that, by default, pictures in these formats are 6 cm in
width and 5 cm in height.

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

Examples:

Option dimensions applied to file output and to wxt canvas.

(%i1) load(draw)$
(%i2) draw2d(

dimensions = [300,300],
terminal = ’png,
explicit(x^4,x,-1,1)) $

(%i3) draw2d(
dimensions = [300,300],
terminal = ’wxt,
explicit(x^4,x,-1,1)) $

Option dimensions applied to eps output. We want an eps file with A4 portrait
dimensions.

(%i1) load(draw)$
(%i2) A4portrait: 100*[21, 29.7]$
(%i3) draw3d(

736 Maxima 5.35.1 Manual

dimensions = A4portrait,
terminal = ’eps,
explicit(x^2-y^2,x,-2,2,y,-2,2)) $

Graphic optiondraw realpart
Default value: true

When true, functions to be drawn are considered as complex functions whose real
part value should be plotted; when false, nothing will be plotted when the function
does not give a real value.

This option affects objects explicit and parametric in 2D and 3D, and parametric_

surface.

Example:

Option draw_realpart affects objects explicit and parametric.

(%i1) load(draw)$
(%i2) draw2d(

draw_realpart = false,
explicit(sqrt(x^2 - 4*x) - x, x, -1, 5),
color = red,
draw_realpart = true,
parametric(x,sqrt(x^2 - 4*x) - x + 1, x, -1, 5));

Graphic optionenhanced3d
Default value: none

If enhanced3d is none, surfaces are not colored in 3D plots. In order to get a colored
surface, a list must be assigned to option enhanced3d, where the first element is
an expression and the rest are the names of the variables or parameters used in
that expression. A list such [f(x,y,z), x, y, z] means that point [x,y,z] of the
surface is assigned number f(x,y,z), which will be colored according to the actual
palette. For those 3D graphic objects defined in terms of parameters, it is possible
to define the color number in terms of the parameters, as in [f(u), u], as in objects
parametric and tube, or [f(u,v), u, v], as in object parametric_surface. While
all 3D objects admit the model based on absolute coordinates, [f(x,y,z), x, y, z],
only two of them, namely explicit and elevation_grid, accept also models defined
on the [x,y] coordinates, [f(x,y), x, y]. 3D graphic object implicit accepts only
the [f(x,y,z), x, y, z] model. Object points accepts also the [f(x,y,z), x, y,

z] model, but when points have a chronological nature, model [f(k), k] is also valid,
being k an ordering parameter.

When enhanced3d is assigned something different to none, options color and
surface_hide are ignored.

The names of the variables defined in the lists may be different to those used in the
definitions of the graphic objects.

In order to maintain back compatibility, enhanced3d = false is equivalent to
enhanced3d = none, and enhanced3d = true is equivalent to enhanced3d = [z, x,

y, z]. If an expression is given to enhanced3d, its variables must be the same used
in the surface definition. This is not necessary when using lists.

Chapter 50: draw 737

See option palette to learn how palettes are specified.

Examples:

explicit object with coloring defined by the [f(x,y,z), x, y, z] model.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = [x-z/10,x,y,z],
palette = gray,
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3))$

explicit object with coloring defined by the [f(x,y), x, y] model. The names of
the variables defined in the lists may be different to those used in the definitions of
the graphic objects; in this case, r corresponds to x, and s to y.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = [sin(r*s),r,s],
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3))$

parametric object with coloring defined by the [f(x,y,z), x, y, z] model.

(%i1) load(draw)$
(%i2) draw3d(

nticks = 100,
line_width = 2,
enhanced3d = [if y>= 0 then 1 else 0, x, y, z],
parametric(sin(u)^2,cos(u),u,u,0,4*%pi)) $

parametric object with coloring defined by the [f(u), u] model. In this case, (u-
1)^2 is a shortcut for [(u-1)^2,u].

(%i1) load(draw)$
(%i2) draw3d(

nticks = 60,
line_width = 3,
enhanced3d = (u-1)^2,
parametric(cos(5*u)^2,sin(7*u),u-2,u,0,2))$

elevation_grid object with coloring defined by the [f(x,y), x, y] model.

(%i1) load(draw)$
(%i2) m: apply(

matrix,
makelist(makelist(cos(i^2/80-k/30),k,1,30),i,1,20)) $

(%i3) draw3d(
enhanced3d = [cos(x*y*10),x,y],
elevation_grid(m,-1,-1,2,2),
xlabel = "x",
ylabel = "y");

tube object with coloring defined by the [f(x,y,z), x, y, z] model.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = [cos(x-y),x,y,z],
palette = gray,
xu_grid = 50,

738 Maxima 5.35.1 Manual

tube(cos(a), a, 0, 1, a, 0, 4*%pi))$

tube object with coloring defined by the [f(u), u] model. Here, enhanced3d = -a

would be the shortcut for enhanced3d = [-foo,foo].

(%i1) load(draw)$
(%i2) draw3d(

tube_extremes = [open, closed],
palette = [26,15,-2],
enhanced3d = [-foo, foo],
tube(a, a, a^2, 1, a, -2, 2))$

implicit and points objects with coloring defined by the [f(x,y,z), x, y, z]

model.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = [x-y,x,y,z],
implicit((x^2+y^2+z^2-1)*(x^2+(y-1.5)^2+z^2-0.5)=0.015,

x,-1,1,y,-1.2,2.3,z,-1,1)) $
(%i3) m: makelist([random(1.0),random(1.0),random(1.0)],k,1,2000)$
(%i4) draw3d(

point_type = filled_circle,
point_size = 2,
enhanced3d = [u+v-w,u,v,w],
points(m)) $

When points have a chronological nature, model [f(k), k] is also valid, being k an
ordering parameter.

(%i1) load(draw)$
(%i2) m:makelist([random(1.0), random(1.0), random(1.0)],k,1,5)$
(%i3) draw3d(

enhanced3d = [sin(j), j],
point_size = 3,
point_type = filled_circle,
points_joined = true,
points(m)) $

Graphic optionerror type
Default value: y

Depending on its value, which can be x, y, or xy, graphic object errors will draw
points with horizontal, vertical, or both, error bars. When error_type=boxes, boxes
will be drawn instead of crosses.

See also errors.

Graphic optionfile name
Default value: "maxima_out"

This is the name of the file where terminals png, jpg, gif, eps, eps_color, pdf,
pdfcairo and svg will save the graphic.

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

Chapter 50: draw 739

Example:

(%i1) load(draw)$
(%i2) draw2d(file_name = "myfile",

explicit(x^2,x,-1,1),
terminal = ’png)$

See also terminal, dimensions.

Graphic optionfill color
Default value: "red"

fill_color specifies the color for filling polygons and 2d explicit functions.

See color to learn how colors are specified.

Graphic optionfill density
Default value: 0

fill_density is a number between 0 and 1 that specifies the intensity of the fill_

color in bars objects.

See bars for examples.

Graphic optionfilled func
Default value: false

Option filled_func controls how regions limited by functions should be filled.
When filled_func is true, the region bounded by the function defined with object
explicit and the bottom of the graphic window is filled with fill_color. When
filled_func contains a function expression, then the region bounded by this
function and the function defined with object explicit will be filled. By default,
explicit functions are not filled.

This option affects only the 2d graphic object explicit.

Example:

Region bounded by an explicit object and the bottom of the graphic window.

(%i1) load(draw)$
(%i2) draw2d(fill_color = red,

filled_func = true,
explicit(sin(x),x,0,10))$

Region bounded by an explicit object and the function defined by option filled_

func. Note that the variable in filled_func must be the same as that used in
explicit.

(%i1) load(draw)$
(%i2) draw2d(fill_color = grey,

filled_func = sin(x),
explicit(-sin(x),x,0,%pi));

See also fill_color and explicit.

740 Maxima 5.35.1 Manual

Graphic optionfont
Default value: "" (empty string)

This option can be used to set the font face to be used by the terminal. Only one
font face and size can be used throughout the plot.

Since this is a global graphics option, its position in the scene description does not
matter.

See also font_size.

Gnuplot doesn’t handle fonts by itself, it leaves this task to the support libraries of
the different terminals, each one with its own philosophy about it. A brief summary
follows:

• x11 : Uses the normal x11 font server mechanism.

Example:

(%i1) load(draw)$
(%i2) draw2d(font = "Arial",

font_size = 20,
label(["Arial font, size 20",1,1]))$

• windows: The windows terminal doesn’t support changing of fonts from inside
the plot. Once the plot has been generated, the font can be changed right-clicking
on the menu of the graph window.

• png, jpeg, gif : The libgd library uses the font path stored in the environment
variable GDFONTPATH; in this case, it is only necessary to set option font to the
font’s name. It is also possible to give the complete path to the font file.

Examples:

Option font can be given the complete path to the font file:

(%i1) load(draw)$
(%i2) path: "/usr/share/fonts/truetype/freefont/" $
(%i3) file: "FreeSerifBoldItalic.ttf" $
(%i4) draw2d(

font = concat(path, file),
font_size = 20,
color = red,
label(["FreeSerifBoldItalic font, size 20",1,1]),
terminal = png)$

If environment variable GDFONTPATH is set to the path where font files are allo-
cated, it is possible to set graphic option font to the name of the font.

(%i1) load(draw)$
(%i2) draw2d(

font = "FreeSerifBoldItalic",
font_size = 20,
color = red,
label(["FreeSerifBoldItalic font, size 20",1,1]),
terminal = png)$

• Postscript : Standard Postscript fonts are:
"Times-Roman", "Times-Italic", "Times-Bold", "Times-BoldItalic",
"Helvetica", "Helvetica-Oblique", "Helvetica-Bold",

Chapter 50: draw 741

"Helvetic-BoldOblique", "Courier", "Courier-Oblique", "Courier-Bold",
and "Courier-BoldOblique".

Example:

(%i1) load(draw)$
(%i2) draw2d(

font = "Courier-Oblique",
font_size = 15,
label(["Courier-Oblique font, size 15",1,1]),
terminal = eps)$

• pdf : Uses same fonts as Postscript.

• pdfcairo: Uses same fonts as wxt.

• wxt : The pango library finds fonts via the fontconfig utility.

• aqua: Default is "Times-Roman".

The gnuplot documentation is an important source of information about terminals
and fonts.

Graphic optionfont size
Default value: 10

This option can be used to set the font size to be used by the terminal. Only one font
face and size can be used throughout the plot. font_size is active only when option
font is not equal to the empty string.

Since this is a global graphics option, its position in the scene description does not
matter.

See also font.

Graphic optiongnuplot file name
Default value: "maxout.gnuplot"

This is the name of the file with the necessary commands to be processed by Gnuplot.

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

Example:

(%i1) load(draw)$
(%i2) draw2d(

file_name = "my_file",
gnuplot_file_name = "my_commands_for_gnuplot",
data_file_name = "my_data_for_gnuplot",
terminal = png,
explicit(x^2,x,-1,1)) $

See also data_file_name.

Graphic optiongrid
Default value: false

If grid is true, a grid will be drawn on the xy plane.

742 Maxima 5.35.1 Manual

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(grid = true,

explicit(exp(u),u,-2,2))$

Graphic optionhead angle
Default value: 45

head_angle indicates the angle, in degrees, between the arrow heads and the segment.

This option is relevant only for vector objects.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,9],
head_length = 0.7,
head_angle = 10,
vector([1,1],[0,6]),
head_angle = 20,
vector([2,1],[0,6]),
head_angle = 30,
vector([3,1],[0,6]),
head_angle = 40,
vector([4,1],[0,6]),
head_angle = 60,
vector([5,1],[0,6]),
head_angle = 90,
vector([6,1],[0,6]),
head_angle = 120,
vector([7,1],[0,6]),
head_angle = 160,
vector([8,1],[0,6]),
head_angle = 180,
vector([9,1],[0,6]))$

See also head_both, head_length, and head_type.

Graphic optionhead both
Default value: false

If head_both is true, vectors are plotted with two arrow heads. If false, only one
arrow is plotted.

This option is relevant only for vector objects.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,8],

yrange = [0,8],
head_length = 0.7,

Chapter 50: draw 743

vector([1,1],[6,0]),
head_both = true,
vector([1,7],[6,0]))$

See also head_length, head_angle, and head_type.

Graphic optionhead length
Default value: 2

head_length indicates, in x-axis units, the length of arrow heads.

This option is relevant only for vector objects.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,12],

yrange = [0,8],
vector([0,1],[5,5]),
head_length = 1,
vector([2,1],[5,5]),
head_length = 0.5,
vector([4,1],[5,5]),
head_length = 0.25,
vector([6,1],[5,5]))$

See also head_both, head_angle, and head_type.

Graphic optionhead type
Default value: filled

head_type is used to specify how arrow heads are plotted. Possible values are:
filled (closed and filled arrow heads), empty (closed but not filled arrow heads),
and nofilled (open arrow heads).

This option is relevant only for vector objects.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,12],

yrange = [0,10],
head_length = 1,
vector([0,1],[5,5]), /* default type */
head_type = ’empty,
vector([3,1],[5,5]),
head_type = ’nofilled,
vector([6,1],[5,5]))$

See also head_both, head_angle, and head_length.

Graphic optioninterpolate color
Default value: false

This option is relevant only when enhanced3d is not false.

When interpolate_color is false, surfaces are colored with homogeneous quad-
rangles. When true, color transitions are smoothed by interpolation.

744 Maxima 5.35.1 Manual

interpolate_color also accepts a list of two numbers, [m,n]. For positive m and
n, each quadrangle or triangle is interpolated m times and n times in the respective
direction. For negative m and n, the interpolation frequency is chosen so that there
will be at least |m| and |n| points drawn; you can consider this as a special grid-
ding function. Zeros, i.e. interpolate_color=[0,0], will automatically choose an
optimal number of interpolated surface points.

Also, interpolate_color=true is equivalent to interpolate_color=[0,0].

Examples:

Color interpolation with explicit functions.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = sin(x*y),
explicit(20*exp(-x^2-y^2)-10, x ,-3, 3, y, -3, 3)) $

(%i3) draw3d(
interpolate_color = true,
enhanced3d = sin(x*y),
explicit(20*exp(-x^2-y^2)-10, x ,-3, 3, y, -3, 3)) $

(%i4) draw3d(
interpolate_color = [-10,0],
enhanced3d = sin(x*y),
explicit(20*exp(-x^2-y^2)-10, x ,-3, 3, y, -3, 3)) $

Color interpolation with the mesh graphic object.

Interpolating colors in parametric surfaces can give unexpected results.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = true,
mesh([[1,1,3], [7,3,1],[12,-2,4],[15,0,5]],

[[2,7,8], [4,3,1],[10,5,8], [12,7,1]],
[[-2,11,10],[6,9,5],[6,15,1], [20,15,2]])) $

(%i3) draw3d(
enhanced3d = true,
interpolate_color = true,
mesh([[1,1,3], [7,3,1],[12,-2,4],[15,0,5]],

[[2,7,8], [4,3,1],[10,5,8], [12,7,1]],
[[-2,11,10],[6,9,5],[6,15,1], [20,15,2]])) $

(%i4) draw3d(
enhanced3d = true,
interpolate_color = true,
view=map,
mesh([[1,1,3], [7,3,1],[12,-2,4],[15,0,5]],

[[2,7,8], [4,3,1],[10,5,8], [12,7,1]],
[[-2,11,10],[6,9,5],[6,15,1], [20,15,2]])) $

See also enhanced3d.

Graphic optionip grid
Default value: [50, 50]

Chapter 50: draw 745

ip_grid sets the grid for the first sampling in implicit plots.

This option is relevant only for implicit objects.

Graphic optionip grid in
Default value: [5, 5]

ip_grid_in sets the grid for the second sampling in implicit plots.

This option is relevant only for implicit objects.

Graphic optionkey
Default value: "" (empty string)

key is the name of a function in the legend. If key is an empty string, no key is
assigned to the function.

This option affects the following graphic objects:

• gr2d: points, polygon, rectangle, ellipse, vector, explicit, implicit,
parametric, and polar.

• gr3d: points, explicit, parametric, and parametric_surface.

Example:

(%i1) load(draw)$
(%i2) draw2d(key = "Sinus",

explicit(sin(x),x,0,10),
key = "Cosinus",
color = red,
explicit(cos(x),x,0,10))$

Graphic optionkey pos
Default value: "" (empty string)

key_pos defines at which position the legend will be drawn. If key is an empty string,
"top_right" is used. Available position specifiers are: top_left, top_center, top_
right, center_left, center, center_right, bottom_left, bottom_center, and
bottom_right.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(

key_pos = top_left,
key = "x",
explicit(x, x,0,10),
color= red,
key = "x squared",
explicit(x^2,x,0,10))$

(%i3) draw3d(
key_pos = center,
key = "x",

746 Maxima 5.35.1 Manual

explicit(x+y,x,0,10,y,0,10),
color= red,
key = "x squared",
explicit(x^2+y^2,x,0,10,y,0,10))$

Graphic optionlabel alignment
Default value: center

label_alignment is used to specify where to write labels with respect to the given
coordinates. Possible values are: center, left, and right.

This option is relevant only for label objects.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,10],
points_joined = true,
points([[5,0],[5,10]]),
color = blue,
label(["Centered alignment (default)",5,2]),
label_alignment = ’left,
label(["Left alignment",5,5]),
label_alignment = ’right,
label(["Right alignment",5,8]))$

See also label_orientation, and color.

Graphic optionlabel orientation
Default value: horizontal

label_orientation is used to specify orientation of labels. Possible values are:
horizontal, and vertical.

This option is relevant only for label objects.

Example:

In this example, a dummy point is added to get an image. Package draw needs always
data to draw an scene.

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,10],
point_size = 0,
points([[5,5]]),
color = navy,
label(["Horizontal orientation (default)",5,2]),
label_orientation = ’vertical,
color = "#654321",
label(["Vertical orientation",1,5]))$

See also label_alignment and color.

Chapter 50: draw 747

Graphic optionline type
Default value: solid

line_type indicates how lines are displayed; possible values are solid and dots, both
available in all terminals, and dashes, short_dashes, short_long_dashes, short_
short_long_dashes, and dot_dash, which are not available in png, jpg, and gif

terminals.

This option affects the following graphic objects:

• gr2d: points, polygon, rectangle, ellipse, vector, explicit, implicit,
parametric and polar.

• gr3d: points, explicit, parametric and parametric_surface.

Example:

(%i1) load(draw)$
(%i2) draw2d(line_type = dots,

explicit(1 + x^2,x,-1,1),
line_type = solid, /* default */
explicit(2 + x^2,x,-1,1))$

See also line_width.

Graphic optionline width
Default value: 1

line_width is the width of plotted lines. Its value must be a positive number.

This option affects the following graphic objects:

• gr2d: points, polygon, rectangle, ellipse, vector, explicit, implicit,
parametric and polar.

• gr3d: points and parametric.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^2,x,-1,1), /* default width */

line_width = 5.5,
explicit(1 + x^2,x,-1,1),
line_width = 10,
explicit(2 + x^2,x,-1,1))$

See also line_type.

Graphic optionlogcb
Default value: false

If logcb is true, the tics in the colorbox will be drawn in the logarithmic scale.

When enhanced3d or colorbox is false, option logcb has no effect.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

748 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) draw3d (

enhanced3d = true,
color = green,
logcb = true,
logz = true,
palette = [-15,24,-9],
explicit(exp(x^2-y^2), x,-2,2,y,-2,2)) $

See also enhanced3d, colorbox and cbrange.

Graphic optionlogx
Default value: false

If logx is true, the x axis will be drawn in the logarithmic scale.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(log(x),x,0.01,5),

logx = true)$

See also logy, logx_secondary, logy_secondary, and logz.

Graphic optionlogx secondary
Default value: false

If logx_secondary is true, the secondary x axis will be drawn in the logarithmic
scale.

This option is relevant only for 2d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(

grid = true,
key="x^2, linear scale",
color=red,
explicit(x^2,x,1,100),
xaxis_secondary = true,
xtics_secondary = true,
logx_secondary = true,
key = "x^2, logarithmic x scale",
color = blue,
explicit(x^2,x,1,100))$

See also logx, logy, logy_secondary, and logz.

Graphic optionlogy
Default value: false

Chapter 50: draw 749

If logy is true, the y axis will be drawn in the logarithmic scale.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(logy = true,

explicit(exp(x),x,0,5))$

See also logx, logx_secondary, logy_secondary, and logz.

Graphic optionlogy secondary
Default value: false

If logy_secondary is true, the secondary y axis will be drawn in the logarithmic
scale.

This option is relevant only for 2d scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(

grid = true,
key="x^2, linear scale",
color=red,
explicit(x^2,x,1,100),
yaxis_secondary = true,
ytics_secondary = true,
logy_secondary = true,
key = "x^2, logarithmic y scale",
color = blue,
explicit(x^2,x,1,100))$

See also logx, logy, logx_secondary, and logz.

Graphic optionlogz
Default value: false

If logz is true, the z axis will be drawn in the logarithmic scale.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(logz = true,

explicit(exp(u^2+v^2),u,-2,2,v,-2,2))$

See also logx and logy.

Graphic optionnticks
Default value: 29

750 Maxima 5.35.1 Manual

In 2d, nticks gives the initial number of points used by the adaptive plotting routine
for explicit objects. It is also the number of points that will be shown in parametric
and polar curves.

This option affects the following graphic objects:

• gr2d: ellipse, explicit, parametric and polar.

• gr3d: parametric.

Example:

(%i1) load(draw)$
(%i2) draw2d(transparent = true,

ellipse(0,0,4,2,0,180),
nticks = 5,
ellipse(0,0,4,2,180,180))$

Graphic optionpalette
Default value: color

palette indicates how to map gray levels onto color components. It works together
with option enhanced3d in 3D graphics, who associates every point of a surfaces to a
real number or gray level. It also works with gray images. With palette, levels are
transformed into colors.

There are two ways for defining these transformations.

First, palette can be a vector of length three with components ranging from -36 to
+36; each value is an index for a formula mapping the levels onto red, green and blue
colors, respectively:

0: 0 1: 0.5 2: 1
3: x 4: x^2 5: x^3
6: x^4 7: sqrt(x) 8: sqrt(sqrt(x))
9: sin(90x) 10: cos(90x) 11: |x-0.5|
12: (2x-1)^2 13: sin(180x) 14: |cos(180x)|
15: sin(360x) 16: cos(360x) 17: |sin(360x)|
18: |cos(360x)| 19: |sin(720x)| 20: |cos(720x)|
21: 3x 22: 3x-1 23: 3x-2
24: |3x-1| 25: |3x-2| 26: (3x-1)/2
27: (3x-2)/2 28: |(3x-1)/2| 29: |(3x-2)/2|
30: x/0.32-0.78125 31: 2*x-0.84 32: 4x;1;-2x+1.84;x/0.08-11.5
33: |2*x - 0.5| 34: 2*x 35: 2*x - 0.5
36: 2*x - 1

negative numbers mean negative colour component. palette = gray and palette =

color are short cuts for palette = [3,3,3] and palette = [7,5,15], respectively.

Second, palette can be a user defined lookup table. In this case, the format for
building a lookup table of length n is palette=[color_1, color_2, ..., color_

n], where color_i is a well formed color (see option color), such that color_1 is
assigned to the lowest gray level and color_n to the highest. The rest of colors are
interpolated.

Since this is a global graphics option, its position in the scene description does not
matter.

Chapter 50: draw 751

Examples:

It works together with option enhanced3d in 3D graphics.

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = [z-x+2*y,x,y,z],
palette = [32, -8, 17],
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3))$

It also works with gray images.

(%i1) load(draw)$
(%i2) im: apply(

’matrix,
makelist(makelist(random(200),i,1,30),i,1,30))$

(%i3) /* palette = color, default */
draw2d(image(im,0,0,30,30))$

(%i4) draw2d(palette = gray, image(im,0,0,30,30))$
(%i5) draw2d(palette = [15,20,-4],

colorbox=false,
image(im,0,0,30,30))$

palette can be a user defined lookup table. In this example, low values of x are
colored in red, and higher values in yellow.

(%i1) load(draw)$
(%i2) draw3d(

palette = [red, blue, yellow],
enhanced3d = x,
explicit(x^2+y^2,x,-1,1,y,-1,1)) $

See also colorbox and enhanced3d.

Graphic optionpoint size
Default value: 1

point_size sets the size for plotted points. It must be a non negative number.

This option has no effect when graphic option point_type is set to dot.

This option affects the following graphic objects:

• gr2d: points.

• gr3d: points.

Example:

(%i1) load(draw)$
(%i2) draw2d(points(makelist([random(20),random(50)],k,1,10)),

point_size = 5,
points(makelist(k,k,1,20),makelist(random(30),k,1,20)))$

Graphic optionpoint type
Default value: 1

point_type indicates how isolated points are displayed; the value of this option can be
any integer index greater or equal than -1, or the name of a point style: $none (-1), dot

752 Maxima 5.35.1 Manual

(0), plus (1), multiply (2), asterisk (3), square (4), filled_square (5), circle
(6), filled_circle (7), up_triangle (8), filled_up_triangle (9), down_triangle
(10), filled_down_triangle (11), diamant (12) and filled_diamant (13).

This option affects the following graphic objects:

• gr2d: points.

• gr3d: points.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,10],
point_size = 3,
point_type = diamant,
points([[1,1],[5,1],[9,1]]),
point_type = filled_down_triangle,
points([[1,2],[5,2],[9,2]]),
point_type = asterisk,
points([[1,3],[5,3],[9,3]]),
point_type = filled_diamant,
points([[1,4],[5,4],[9,4]]),
point_type = 5,
points([[1,5],[5,5],[9,5]]),
point_type = 6,
points([[1,6],[5,6],[9,6]]),
point_type = filled_circle,
points([[1,7],[5,7],[9,7]]),
point_type = 8,
points([[1,8],[5,8],[9,8]]),
point_type = filled_diamant,
points([[1,9],[5,9],[9,9]]))$

Graphic optionpoints joined
Default value: false

When points_joined is true, points are joined by lines; when false, isolated points
are drawn. A third possible value for this graphic option is impulses; in such case,
vertical segments are drawn from points to the x-axis (2D) or to the xy-plane (3D).

This option affects the following graphic objects:

• gr2d: points.

• gr3d: points.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,10],

yrange = [0,4],
point_size = 3,
point_type = up_triangle,
color = blue,

Chapter 50: draw 753

points([[1,1],[5,1],[9,1]]),
points_joined = true,
point_type = square,
line_type = dots,
points([[1,2],[5,2],[9,2]]),
point_type = circle,
color = red,
line_width = 7,
points([[1,3],[5,3],[9,3]]))$

Graphic optionproportional axes
Default value: none

When proportional_axes is equal to xy or xyz, a 2D or 3D scene will be drawn
with axes proportional to their relative lengths.

Since this is a global graphics option, its position in the scene description does not
matter.

This option works with Gnuplot version 4.2.6 or greater.

Examples:

Single 2D plot.

(%i1) load(draw)$
(%i2) draw2d(

ellipse(0,0,1,1,0,360),
transparent=true,
color = blue,
line_width = 4,
ellipse(0,0,2,1/2,0,360),
proportional_axes = xy) $

Multiplot.

(%i1) load(draw)$
(%i2) draw(

terminal = wxt,
gr2d(proportional_axes = xy,

explicit(x^2,x,0,1)),
gr2d(explicit(x^2,x,0,1),

xrange = [0,1],
yrange = [0,2],
proportional_axes=xy),

gr2d(explicit(x^2,x,0,1)))$

Graphic optionsurface hide
Default value: false

If surface_hide is true, hidden parts are not plotted in 3d surfaces.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

754 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) draw(columns=2,

gr3d(explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3)),
gr3d(surface_hide = true,

explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3)))$

Graphic optionterminal
Default value: screen

Selects the terminal to be used by Gnuplot; possible values are: screen

(default), png, pngcairo, jpg, gif, eps, eps_color, epslatex, epslatex_

standalone, svg, canvas, dumb, dumb_file, pdf, pdfcairo, wxt, animated_gif,
multipage_pdfcairo, multipage_pdf, multipage_eps, multipage_eps_color,
and aquaterm.

Terminals screen, wxt and aquaterm can be also defined as a list with two elements:
the name of the terminal itself and a non negative integer number. In this form, mul-
tiple windows can be opened at the same time, each with its corresponding number.
This feature does not work in Windows platforms.

Since this is a global graphics option, its position in the scene description does not
matter. It can be also used as an argument of function draw.

N.B. pdfcairo requires Gnuplot 4.3 or newer. pdf requires Gnuplot to be compiled
with the option --enable-pdf and libpdf must be installed. The pdf library is avail-
able from: http://www.pdflib.com/en/download/pdflib-family/pdflib-lite/

Examples:

(%i1) load(draw)$
(%i2) /* screen terminal (default) */

draw2d(explicit(x^2,x,-1,1))$
(%i3) /* png file */

draw2d(terminal = ’png,
explicit(x^2,x,-1,1))$

(%i4) /* jpg file */
draw2d(terminal = ’jpg,

dimensions = [300,300],
explicit(x^2,x,-1,1))$

(%i5) /* eps file */
draw2d(file_name = "myfile",

explicit(x^2,x,-1,1),
terminal = ’eps)$

(%i6) /* pdf file */
draw2d(file_name = "mypdf",

dimensions = 100*[12.0,8.0],
explicit(x^2,x,-1,1),
terminal = ’pdf)$

(%i7) /* wxwidgets window */
draw2d(explicit(x^2,x,-1,1),

terminal = ’wxt)$

Multiple windows.

Chapter 50: draw 755

(%i1) load(draw)$
(%i2) draw2d(explicit(x^5,x,-2,2), terminal=[screen, 3])$
(%i3) draw2d(explicit(x^2,x,-2,2), terminal=[screen, 0])$

An animated gif file.

(%i1) load(draw)$
(%i2) draw(

delay = 100,
file_name = "zzz",
terminal = ’animated_gif,
gr2d(explicit(x^2,x,-1,1)),
gr2d(explicit(x^3,x,-1,1)),
gr2d(explicit(x^4,x,-1,1)));

End of animation sequence
(%o2) [gr2d(explicit), gr2d(explicit), gr2d(explicit)]

Option delay is only active in animated gif’s; it is ignored in any other case.

Multipage output in eps format.

(%i1) load(draw)$
(%i2) draw(

file_name = "parabol",
terminal = multipage_eps,
dimensions = 100*[10,10],
gr2d(explicit(x^2,x,-1,1)),
gr3d(explicit(x^2+y^2,x,-1,1,y,-1,1))) $

See also file_name, dimensions and delay.

Graphic optiontitle
Default value: "" (empty string)

Option title, a string, is the main title for the scene. By default, no title is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(exp(u),u,-2,2),

title = "Exponential function")$

Graphic optiontransform
Default value: none

If transform is none, the space is not transformed and graphic objects are drawn as
defined. When a space transformation is desired, a list must be assigned to option
transform. In case of a 2D scene, the list takes the form [f1(x,y), f2(x,y), x, y].
In case of a 3D scene, the list is of the form [f1(x,y,z), f2(x,y,z), f3(x,y,z),

x, y, z].

The names of the variables defined in the lists may be different to those used in the
definitions of the graphic objects.

Examples:

Rotation in 2D.

756 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) th : %pi / 4$
(%i3) draw2d(

color = "#e245f0",
proportional_axes = ’xy,
line_width = 8,
triangle([3,2],[7,2],[5,5]),
border = false,
fill_color = yellow,
transform = [cos(th)*x - sin(th)*y,

sin(th)*x + cos(th)*y, x, y],
triangle([3,2],[7,2],[5,5]))$

Translation in 3D.

(%i1) load(draw)$
(%i2) draw3d(

color = "#a02c00",
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3),
transform = [x+10,y+10,z+10,x,y,z],
color = blue,
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3))$

Graphic optiontransparent
Default value: false

If transparent is false, interior regions of polygons are filled according to fill_

color.

This option affects the following graphic objects:

• gr2d: polygon, rectangle, and ellipse.

Example:

(%i1) load(draw)$
(%i2) draw2d(polygon([[3,2],[7,2],[5,5]]),

transparent = true,
color = blue,
polygon([[5,2],[9,2],[7,5]]))$

Graphic optiontube extremes
Default value: [open, open]

A list with two possible elements, open and closed, indicating whether the extremes
of a graphic object tube remain open or must be closed. By default, both extremes
are left open.

Example:

(%i1) load(draw)$
(%i2) draw3d(

tube_extremes = [open, closed],
tube(0, 0, a, 1,

a, 0, 8))$

Chapter 50: draw 757

Graphic optionunit vectors
Default value: false

If unit_vectors is true, vectors are plotted with module 1. This is useful for plotting
vector fields. If unit_vectors is false, vectors are plotted with its original length.

This option is relevant only for vector objects.

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [-1,6],

yrange = [-1,6],
head_length = 0.1,
vector([0,0],[5,2]),
unit_vectors = true,
color = red,
vector([0,3],[5,2]))$

Graphic optionuser preamble
Default value: "" (empty string)

Expert Gnuplot users can make use of this option to fine tune Gnuplot’s behaviour
by writing settings to be sent before the plot or splot command.

The value of this option must be a string or a list of strings (one per line).

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

Tell Gnuplot to draw axes on top of graphics objects,

(%i1) load(draw)$
(%i2) draw2d(

xaxis =true, xaxis_type=solid,
yaxis =true, yaxis_type=solid,
user_preamble="set grid front",
region(x^2+y^2<1 ,x,-1.5,1.5,y,-1.5,1.5))$

Graphic optionview
Default value: [60,30]

A pair of angles, measured in degrees, indicating the view direction in a 3D scene.
The first angle is the vertical rotation around the x axis, in the range [0, 360]. The
second one is the horizontal rotation around the z axis, in the range [0, 360].

If option view is given the value map, the view direction is set to be perpendicular to
the xy-plane.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(view = [170, 50],

enhanced3d = true,

758 Maxima 5.35.1 Manual

explicit(sin(x^2+y^2),x,-2,2,y,-2,2))$
(%i3) draw3d(view = map,

enhanced3d = true,
explicit(sin(x^2+y^2),x,-2,2,y,-2,2))$

Graphic optionwired surface
Default value: false

Indicates whether 3D surfaces in enhanced3d mode show the grid joinning the points
or not.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = [sin(x),x,y],
wired_surface = true,
explicit(x^2+y^2,x,-1,1,y,-1,1)) $

Graphic optionx voxel
Default value: 10

x_voxel is the number of voxels in the x direction to be used by the marching cubes
algorithm implemented by the 3d implicit object. It is also used by graphic object
region.

Graphic optionxaxis
Default value: false

If xaxis is true, the x axis is drawn.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_color = blue)$

See also xaxis_width, xaxis_type and xaxis_color.

Graphic optionxaxis color
Default value: "black"

xaxis_color specifies the color for the x axis. See color to know how colors are
defined.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

Chapter 50: draw 759

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_color = red)$

See also xaxis, xaxis_width and xaxis_type.

Graphic optionxaxis secondary
Default value: false

If xaxis_secondary is true, function values can be plotted with respect to the second
x axis, which will be drawn on top of the scene.

Note that this is a local graphics option which only affects to 2d plots.

Example:

(%i1) load(draw)$
(%i2) draw2d(

key = "Bottom x-axis",
explicit(x+1,x,1,2),
color = red,
key = "Above x-axis",
xtics_secondary = true,
xaxis_secondary = true,
explicit(x^2,x,-1,1)) $

See also xrange_secondary, xtics_secondary, xtics_rotate_secondary, xtics_
axis_secondary and xaxis_secondary.

Graphic optionxaxis type
Default value: dots

xaxis_type indicates how the x axis is displayed; possible values are solid and dots.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_type = solid)$

See also xaxis, xaxis_width and xaxis_color.

Graphic optionxaxis width
Default value: 1

xaxis_width is the width of the x axis. Its value must be a positive number.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

760 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

xaxis = true,
xaxis_width = 3)$

See also xaxis, xaxis_type and xaxis_color.

Graphic optionxlabel
Default value: "" (empty string)

Option xlabel, a string, is the label for the x axis. By default, no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(xlabel = "Time",

explicit(exp(u),u,-2,2),
ylabel = "Population")$

See also xlabel_secondary, ylabel, ylabel_secondary and zlabel.

Graphic optionxlabel secondary
Default value: "" (empty string)

Option xlabel_secondary, a string, is the label for the secondary x axis. By default,
no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(

xaxis_secondary=true,yaxis_secondary=true,
xtics_secondary=true,ytics_secondary=true,
xlabel_secondary="t[s]",
ylabel_secondary="U[V]",
explicit(sin(t),t,0,10))$

See also xlabel, ylabel, ylabel_secondary and zlabel.

Graphic optionxrange
Default value: auto

If xrange is auto, the range for the x coordinate is computed automatically.

If the user wants a specific interval for x, it must be given as a Maxima list, as in
xrange=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

Chapter 50: draw 761

(%i1) load(draw)$
(%i2) draw2d(xrange = [-3,5],

explicit(x^2,x,-1,1))$

See also yrange and zrange.

Graphic optionxrange secondary
Default value: auto

If xrange_secondary is auto, the range for the second x axis is computed automat-
ically.

If the user wants a specific interval for the second x axis, it must be given as a Maxima
list, as in xrange_secondary=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

See also xrange, yrange, zrange and yrange_secondary.

Graphic optionxtics
Default value: true

This graphic option controls the way tic marks are drawn on the x axis.

• When option xtics is bounded to symbol true, tic marks are drawn automati-
cally.

• When option xtics is bounded to symbol false, tic marks are not drawn.

• When option xtics is bounded to a positive number, this is the distance between
two consecutive tic marks.

• When option xtics is bounded to a list of length three of the form
[start,incr,end], tic marks are plotted from start to end at intervals of
length incr.

• When option xtics is bounded to a set of numbers of the form {n1, n2, ...},
tic marks are plotted at values n1, n2, ...

• When option xtics is bounded to a set of pairs of the form {["label1", n1],

["label2", n2], ...}, tic marks corresponding to values n1, n2, ... are labeled
with "label1", "label2", ..., respectively.

Since this is a global graphics option, its position in the scene description does not
matter.

Examples:

Disable tics.

(%i1) load(draw)$
(%i2) draw2d(xtics = ’false,

explicit(x^3,x,-1,1))$

Tics every 1/4 units.

(%i1) load(draw)$
(%i2) draw2d(xtics = 1/4,

explicit(x^3,x,-1,1))$

Tics from -3/4 to 3/4 in steps of 1/8.

762 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) draw2d(xtics = [-3/4,1/8,3/4],

explicit(x^3,x,-1,1))$

Tics at points -1/2, -1/4 and 3/4.

(%i1) load(draw)$
(%i2) draw2d(xtics = {-1/2,-1/4,3/4},

explicit(x^3,x,-1,1))$

Labeled tics.

(%i1) load(draw)$
(%i2) draw2d(xtics = {["High",0.75],["Medium",0],["Low",-0.75]},

explicit(x^3,x,-1,1))$

See also ytics, and ztics.

Graphic optionxtics axis
Default value: false

If xtics_axis is true, tic marks and their labels are plotted just along the x axis, if
it is false tics are plotted on the border.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionxtics rotate
Default value: false

If xtics_rotate is true, tic marks on the x axis are rotated 90 degrees.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionxtics rotate secondary
Default value: false

If xtics_rotate_secondary is true, tic marks on the secondary x axis are rotated
90 degrees.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionxtics secondary
Default value: auto

This graphic option controls the way tic marks are drawn on the second x axis.

See xtics for a complete description.

Graphic optionxtics secondary axis
Default value: false

If xtics_secondary_axis is true, tic marks and their labels are plotted just along
the secondary x axis, if it is false tics are plotted on the border.

Since this is a global graphics option, its position in the scene description does not
matter.

Chapter 50: draw 763

Graphic optionxu grid
Default value: 30

xu_grid is the number of coordinates of the first variable (x in explicit and u in
parametric 3d surfaces) to build the grid of sample points.

This option affects the following graphic objects:

• gr3d: explicit and parametric_surface.

Example:

(%i1) load(draw)$
(%i2) draw3d(xu_grid = 10,

yv_grid = 50,
explicit(x^2+y^2,x,-3,3,y,-3,3))$

See also yv_grid.

Graphic optionxy file
Default value: "" (empty string)

xy_file is the name of the file where the coordinates will be saved after clicking with
the mouse button and hitting the ’x’ key. By default, no coordinates are saved.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionxyplane
Default value: false

Allocates the xy-plane in 3D scenes. When xyplane is false, the xy-plane is placed
automatically; when it is a real number, the xy-plane intersects the z-axis at this
level. This option has no effect in 2D scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(xyplane = %e-2,

explicit(x^2+y^2,x,-1,1,y,-1,1))$

Graphic optiony voxel
Default value: 10

y_voxel is the number of voxels in the y direction to be used by the marching cubes
algorithm implemented by the 3d implicit object. It is also used by graphic object
region.

Graphic optionyaxis
Default value: false

If yaxis is true, the y axis is drawn.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

764 Maxima 5.35.1 Manual

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_color = blue)$

See also yaxis_width, yaxis_type and yaxis_color.

Graphic optionyaxis color
Default value: "black"

yaxis_color specifies the color for the y axis. See color to know how colors are
defined.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_color = red)$

See also yaxis, yaxis_width and yaxis_type.

Graphic optionyaxis secondary
Default value: false

If yaxis_secondary is true, function values can be plotted with respect to the second
y axis, which will be drawn on the right side of the scene.

Note that this is a local graphics option which only affects to 2d plots.

Example:

(%i1) load(draw)$
(%i2) draw2d(

explicit(sin(x),x,0,10),
yaxis_secondary = true,
ytics_secondary = true,
color = blue,
explicit(100*sin(x+0.1)+2,x,0,10));

See also yrange_secondary, ytics_secondary, ytics_rotate_secondary and
ytics_axis_secondary.

Graphic optionyaxis type
Default value: dots

yaxis_type indicates how the y axis is displayed; possible values are solid and dots.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_type = solid)$

See also yaxis, yaxis_width and yaxis_color.

Chapter 50: draw 765

Graphic optionyaxis width
Default value: 1

yaxis_width is the width of the y axis. Its value must be a positive number.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(x^3,x,-1,1),

yaxis = true,
yaxis_width = 3)$

See also yaxis, yaxis_type and yaxis_color.

Graphic optionylabel
Default value: "" (empty string)

Option ylabel, a string, is the label for the y axis. By default, no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(xlabel = "Time",

ylabel = "Population",
explicit(exp(u),u,-2,2))$

See also xlabel, xlabel_secondary, ylabel_secondary, and zlabel.

Graphic optionylabel secondary
Default value: "" (empty string)

Option ylabel_secondary, a string, is the label for the secondary y axis. By default,
no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(

key="current",
xlabel="t[s]",
ylabel="I[A]",ylabel_secondary="P[W]",
explicit(sin(t),t,0,10),
yaxis_secondary=true,
ytics_secondary=true,
color=red,key="Power",
explicit((sin(t))^2,t,0,10)

)$

See also xlabel, xlabel_secondary, ylabel and zlabel.

766 Maxima 5.35.1 Manual

Graphic optionyrange
Default value: auto

If yrange is auto, the range for the y coordinate is computed automatically.

If the user wants a specific interval for y, it must be given as a Maxima list, as in
yrange=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(yrange = [-2,3],

explicit(x^2,x,-1,1),
xrange = [-3,3])$

See also xrange, yrange_secondary and zrange.

Graphic optionyrange secondary
Default value: auto

If yrange_secondary is auto, the range for the second y axis is computed automat-
ically.

If the user wants a specific interval for the second y axis, it must be given as a Maxima
list, as in yrange_secondary=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw2d(

explicit(sin(x),x,0,10),
yaxis_secondary = true,
ytics_secondary = true,
yrange = [-3, 3],
yrange_secondary = [-20, 20],
color = blue,
explicit(100*sin(x+0.1)+2,x,0,10)) $

See also xrange, yrange and zrange.

Graphic optionytics
Default value: true

This graphic option controls the way tic marks are drawn on the y axis.

See xtics for a complete description.

Graphic optionytics axis
Default value: false

If ytics_axis is true, tic marks and their labels are plotted just along the y axis, if
it is false tics are plotted on the border.

Since this is a global graphics option, its position in the scene description does not
matter.

Chapter 50: draw 767

Graphic optionytics rotate
Default value: false

If ytics_rotate is true, tic marks on the y axis are rotated 90 degrees.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionytics rotate secondary
Default value: false

If ytics_rotate_secondary is true, tic marks on the secondary y axis are rotated
90 degrees.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionytics secondary
Default value: auto

This graphic option controls the way tic marks are drawn on the second y axis.

See xtics for a complete description.

Graphic optionytics secondary axis
Default value: false

If ytics_secondary_axis is true, tic marks and their labels are plotted just along
the secondary y axis, if it is false tics are plotted on the border.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionyv grid
Default value: 30

yv_grid is the number of coordinates of the second variable (y in explicit and v in
parametric 3d surfaces) to build the grid of sample points.

This option affects the following graphic objects:

• gr3d: explicit and parametric_surface.

Example:

(%i1) load(draw)$
(%i2) draw3d(xu_grid = 10,

yv_grid = 50,
explicit(x^2+y^2,x,-3,3,y,-3,3))$

See also xu_grid.

Graphic optionz voxel
Default value: 10

z_voxel is the number of voxels in the z direction to be used by the marching cubes
algorithm implemented by the 3d implicit object.

768 Maxima 5.35.1 Manual

Graphic optionzaxis
Default value: false

If zaxis is true, the z axis is drawn in 3D plots. This option has no effect in 2D
scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid,
zaxis_color = blue)$

See also zaxis_width, zaxis_type and zaxis_color.

Graphic optionzaxis color
Default value: "black"

zaxis_color specifies the color for the z axis. See color to know how colors are
defined. This option has no effect in 2D scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid,
zaxis_color = red)$

See also zaxis, zaxis_width and zaxis_type.

Graphic optionzaxis type
Default value: dots

zaxis_type indicates how the z axis is displayed; possible values are solid and dots.
This option has no effect in 2D scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid)$

See also zaxis, zaxis_width and zaxis_color.

Graphic optionzaxis width
Default value: 1

Chapter 50: draw 769

zaxis_width is the width of the z axis. Its value must be a positive number. This
option has no effect in 2D scenes.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(x^2+y^2,x,-1,1,y,-1,1),

zaxis = true,
zaxis_type = solid,
zaxis_width = 3)$

See also zaxis, zaxis_type and zaxis_color.

Graphic optionzlabel
Default value: "" (empty string)

Option zlabel, a string, is the label for the z axis. By default, no label is written.

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(zlabel = "Z variable",

ylabel = "Y variable",
explicit(sin(x^2+y^2),x,-2,2,y,-2,2),
xlabel = "X variable")$

See also xlabel, and ylabel.

Graphic optionzrange
Default value: auto

If zrange is auto, the range for the z coordinate is computed automatically.

If the user wants a specific interval for z, it must be given as a Maxima list, as in
zrange=[-2, 3].

Since this is a global graphics option, its position in the scene description does not
matter.

Example:

(%i1) load(draw)$
(%i2) draw3d(yrange = [-3,3],

zrange = [-2,5],
explicit(x^2+y^2,x,-1,1,y,-1,1),
xrange = [-3,3])$

See also xrange and yrange.

Graphic optionztics
Default value: true

This graphic option controls the way tic marks are drawn on the z axis.

See xtics for a complete description.

770 Maxima 5.35.1 Manual

Graphic optionztics axis
Default value: false

If ztics_axis is true, tic marks and their labels are plotted just along the z axis, if
it is false tics are plotted on the border.

Since this is a global graphics option, its position in the scene description does not
matter.

Graphic optionztics rotate
Default value: false

If ztics_rotate is true, tic marks on the z axis are rotated 90 degrees.

Since this is a global graphics option, its position in the scene description does not
matter.

50.2.4 Graphics objects

Graphic objectbars ([x1,h1,w1], [x2,h2,w2, ...])
Draws vertical bars in 2D.

2D

bars ([x1,h1,w1], [x2,h2,w2, ...]) draws bars centered at values x1, x2, ... with
heights h1, h2, ... and widths w1, w2, ...

This object is affected by the following graphic options: key, fill_color, fill_

density and line_width.

Example:

(%i1) load(draw)$
(%i2) draw2d(

key = "Group A",
fill_color = blue,
fill_density = 0.2,
bars([0.8,5,0.4],[1.8,7,0.4],[2.8,-4,0.4]),
key = "Group B",
fill_color = red,
fill_density = 0.6,
line_width = 4,
bars([1.2,4,0.4],[2.2,-2,0.4],[3.2,5,0.4]),
xaxis = true);

Graphic objectcylindrical (radius, z, minz, maxz, azi, minazi, maxazi)
Draws 3D functions defined in cylindrical coordinates.

3D

cylindrical(radius, z, minz, maxz, azi, minazi, maxazi) plots the function ra-
dius(z, azi) defined in cylindrical coordinates, with variable z taking values from
minz to maxz and azimuth azi taking values from minazi to maxazi.

This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, key, wired_surface, enhanced3d and color.

Example:

Chapter 50: draw 771

(%i1) load(draw)$
(%i2) draw3d(cylindrical(1,z,-2,2,az,0,2*%pi))$

Graphic objectelevation grid (mat,x0,y0,width,height)
Draws matrix mat in 3D space. z values are taken from mat, the abscissas range from
x0 to x0 + width and ordinates from y0 to y0 + height. Element a(1, 1) is projected
on point (x0, y0 + height), a(1, n) on (x0 + width, y0 + height), a(m, 1) on (x0, y0),
and a(m,n) on (x0 + width, y0).

This object is affected by the following graphic options: line_type, line_width,
key, wired_surface, enhanced3d, and color.

In older versions of Maxima, elevation_grid was called mesh. See also mesh.

Example:

(%i1) load(draw)$
(%i2) m: apply(

matrix,
makelist(makelist(random(10.0),k,1,30),i,1,20)) $

(%i3) draw3d(
color = blue,
elevation_grid(m,0,0,3,2),
xlabel = "x",
ylabel = "y",
surface_hide = true);

Graphic objectellipse (xc, yc, a, b, ang1, ang2)
Draws ellipses and circles in 2D.

2D

ellipse (xc, yc, a, b, ang1, ang2) plots an ellipse centered at [xc, yc] with hor-
izontal and vertical semi axis a and b, respectively, starting at angle ang1 with an
amplitude equal to angle ang2.

This object is affected by the following graphic options: nticks, transparent, fill_
color, border, line_width, line_type, key and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(transparent = false,

fill_color = red,
color = gray30,
transparent = false,
line_width = 5,
ellipse(0,6,3,2,270,-270),
/* center (x,y), a, b, start & end in degrees */
transparent = true,
color = blue,
line_width = 3,
ellipse(2.5,6,2,3,30,-90),
xrange = [-3,6],
yrange = [2,9])$

772 Maxima 5.35.1 Manual

Graphic objecterrors ([x1, x2, . . .], [y1, y2, . . .])
Draws points with error bars, horizontally, vertically or both, depending on the value
of option error_type.

2D

If error_type = x, arguments to errors must be of the form [x, y, xdelta] or [x,
y, xlow, xhigh]. If error_type = y, arguments must be of the form [x, y, ydelta]

or [x, y, ylow, yhigh]. If error_type = xy or error_type = boxes, arguments to
errors must be of the form [x, y, xdelta, ydelta] or [x, y, xlow, xhigh, ylow,

yhigh].

See also error_type.

This object is affected by the following graphic options: error_type, points_joined,
line_width, key, line_type, color, fill_density, xaxis_secondary, and yaxis_

secondary.

Option fill_density is only relevant when error_type=boxes.

Examples:

Horizontal error bars.

(%i1) load(draw)$
(%i2) draw2d(

error_type = y,
errors([[1,2,1], [3,5,3], [10,3,1], [17,6,2]]))$

Vertical and horizontal error bars.

(%i1) load(draw)$
(%i2) draw2d(

error_type = xy,
points_joined = true,
color = blue,
errors([[1,2,1,2], [3,5,2,1], [10,3,1,1], [17,6,1/2,2]]));

Graphic objectexplicit
explicit (fcn,var,minval,maxval)
explicit (fcn,var1,minval1,maxval1,var2,minval2,maxval2)

Draws explicit functions in 2D and 3D.

2D

explicit(fcn,var,minval,maxval) plots explicit function fcn, with variable var tak-
ing values from minval to maxval.

This object is affected by the following graphic options: nticks, adapt_depth, draw_
realpart, line_width, line_type, key, filled_func, fill_color and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(line_width = 3,

color = blue,
explicit(x^2,x,-3,3))$

(%i3) draw2d(fill_color = brown,
filled_func = true,

Chapter 50: draw 773

explicit(x^2,x,-3,3))$

3D

explicit(fcn, var1, minval1, maxval1, var2, minval2, maxval2) plots the explicit
function fcn, with variable var1 taking values from minval1 to maxval1 and variable
var2 taking values from minval2 to maxval2.

This object is affected by the following graphic options: draw_realpart, xu_grid,
yv_grid, line_type, line_width, key, wired_surface, enhanced3d, and color.

Example:

(%i1) load(draw)$
(%i2) draw3d(key = "Gauss",

color = "#a02c00",
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3),
yv_grid = 10,
color = blue,
key = "Plane",
explicit(x+y,x,-5,5,y,-5,5),
surface_hide = true)$

See also filled_func for filled functions.

Graphic objectimage (im,x0,y0,width,height)
Renders images in 2D.

2D

image (im,x0,y0,width,height) plots image im in the rectangular region from vertex
(x0,y0) to (x0+width,y0+height) on the real plane. Argument im must be a matrix
of real numbers, a matrix of vectors of length three or a picture object.

If im is a matrix of real numbers or a levels picture object, pixel values are inter-
preted according to graphic option palette, which is a vector of length three with
components ranging from -36 to +36; each value is an index for a formula mapping
the levels onto red, green and blue colors, respectively:

0: 0 1: 0.5 2: 1
3: x 4: x^2 5: x^3
6: x^4 7: sqrt(x) 8: sqrt(sqrt(x))
9: sin(90x) 10: cos(90x) 11: |x-0.5|
12: (2x-1)^2 13: sin(180x) 14: |cos(180x)|
15: sin(360x) 16: cos(360x) 17: |sin(360x)|
18: |cos(360x)| 19: |sin(720x)| 20: |cos(720x)|
21: 3x 22: 3x-1 23: 3x-2
24: |3x-1| 25: |3x-2| 26: (3x-1)/2
27: (3x-2)/2 28: |(3x-1)/2| 29: |(3x-2)/2|
30: x/0.32-0.78125 31: 2*x-0.84
32: 4x;1;-2x+1.84;x/0.08-11.5
33: |2*x - 0.5| 34: 2*x 35: 2*x - 0.5
36: 2*x - 1

negative numbers mean negative colour component.

palette = gray and palette = color are short cuts for palette = [3,3,3] and
palette = [7,5,15], respectively.

774 Maxima 5.35.1 Manual

If im is a matrix of vectors of length three or an rgb picture object, they are interpreted
as red, green and blue color components.

Examples:

If im is a matrix of real numbers, pixel values are interpreted according to graphic
option palette.

(%i1) load(draw)$
(%i2) im: apply(

’matrix,
makelist(makelist(random(200),i,1,30),i,1,30))$

(%i3) /* palette = color, default */
draw2d(image(im,0,0,30,30))$

(%i4) draw2d(palette = gray, image(im,0,0,30,30))$
(%i5) draw2d(palette = [15,20,-4],

colorbox=false,
image(im,0,0,30,30))$

See also colorbox.

If im is a matrix of vectors of length three, they are interpreted as red, green and
blue color components.

(%i1) load(draw)$
(%i2) im: apply(

’matrix,
makelist(
makelist([random(300),

random(300),
random(300)],i,1,30),i,1,30))$

(%i3) draw2d(image(im,0,0,30,30))$

Package draw automatically loads package picture. In this example, a level picture
object is built by hand and then rendered.

(%i1) load(draw)$
(%i2) im: make_level_picture([45,87,2,134,204,16],3,2);
(%o2) picture(level, 3, 2, {Array: #(45 87 2 134 204 16)})
(%i3) /* default color palette */

draw2d(image(im,0,0,30,30))$
(%i4) /* gray palette */

draw2d(palette = gray,
image(im,0,0,30,30))$

An xpm file is read and then rendered.

(%i1) load(draw)$
(%i2) im: read_xpm("myfile.xpm")$
(%i3) draw2d(image(im,0,0,10,7))$

See also make_level_picture, make_rgb_picture and read_xpm.

http://www.telefonica.net/web2/biomates/maxima/gpdraw/image

contains more elaborated examples.

Chapter 50: draw 775

Graphic objectimplicit
implicit (fcn,x,xmin,xmax,y,ymin,ymax)
implicit (fcn,x,xmin,xmax,y,ymin,ymax,z,zmin,zmax)

Draws implicit functions in 2D and 3D.

2D

implicit(fcn,x,xmin,xmax,y,ymin,ymax) plots the implicit function defined by
fcn, with variable x taking values from xmin to xmax, and variable y taking values
from ymin to ymax.

This object is affected by the following graphic options: ip_grid, ip_grid_in, line_
width, line_type, key and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(terminal = eps,

grid = true,
line_type = solid,
key = "y^2=x^3-2*x+1",
implicit(y^2=x^3-2*x+1, x, -4,4, y, -4,4),
line_type = dots,
key = "x^3+y^3 = 3*x*y^2-x-1",
implicit(x^3+y^3 = 3*x*y^2-x-1, x,-4,4, y,-4,4),
title = "Two implicit functions")$

3D

implicit (fcn,x,xmin,xmax, y,ymin,ymax, z,zmin,zmax) plots the implicit sur-
face defined by fcn, with variable x taking values from xmin to xmax, variable y
taking values from ymin to ymax and variable z taking values from zmin to zmax.
This object implements the marching cubes algorithm.

This object is affected by the following graphic options: x_voxel, y_voxel, z_voxel,
line_width, line_type, key, wired_surface, enhanced3d,and color.

Example:

(%i1) load(draw)$
(%i2) draw3d(

color=blue,
implicit((x^2+y^2+z^2-1)*(x^2+(y-1.5)^2+z^2-0.5)=0.015,

x,-1,1,y,-1.2,2.3,z,-1,1),
surface_hide=true);

Graphic objectlabel
label ([string,x,y],...)
label ([string,x,y,z],...)

Writes labels in 2D and 3D.

Colored labels work only with Gnuplot 4.3. This is a known bug in package draw.

This object is affected by the following graphic options: label_alignment, label_
orientation and color.

2D

label([string,x,y]) writes the string at point [x,y].

776 Maxima 5.35.1 Manual

Example:

(%i1) load(draw)$
(%i2) draw2d(yrange = [0.1,1.4],

color = red,
label(["Label in red",0,0.3]),
color = "#0000ff",
label(["Label in blue",0,0.6]),
color = light_blue,
label(["Label in light-blue",0,0.9],

["Another light-blue",0,1.2]))$

3D

label([string,x,y,z]) writes the string at point [x,y,z].

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3),

color = red,
label(["UP 1",-2,0,3], ["UP 2",1.5,0,4]),
color = blue,
label(["DOWN 1",2,0,-3]))$

Graphic objectmesh (row 1,row 2,...)
Draws a quadrangular mesh in 3D.

3D

Argument row i is a list of n 3D points of the form [[x_i1,y_i1,z_i1], ...,[x_

in,y_in,z_in]], and all rows are of equal length. All these points define an arbitrary
surface in 3D and in some sense it’s a generalization of the elevation_grid object.

This object is affected by the following graphic options: line_type, line_width,
color, key, wired_surface, enhanced3d, and transform.

Examples:

A simple example.

(%i1) load(draw)$
(%i2) draw3d(

mesh([[1,1,3], [7,3,1],[12,-2,4],[15,0,5]],
[[2,7,8], [4,3,1],[10,5,8], [12,7,1]],
[[-2,11,10],[6,9,5],[6,15,1], [20,15,2]])) $

Plotting a triangle in 3D.

(%i1) load(draw)$
(%i2) draw3d(

line_width = 2,
mesh([[1,0,0],[0,1,0]],

[[0,0,1],[0,0,1]])) $

Two quadrilaterals.

(%i1) load(draw)$
(%i2) draw3d(

surface_hide = true,

Chapter 50: draw 777

line_width = 3,
color = red,
mesh([[0,0,0], [0,1,0]],

[[2,0,2], [2,2,2]]),
color = blue,
mesh([[0,0,2], [0,1,2]],

[[2,0,4], [2,2,4]])) $

Graphic objectparametric
parametric (xfun,yfun,par,parmin,parmax)
parametric (xfun,yfun,zfun,par,parmin,parmax)

Draws parametric functions in 2D and 3D.

This object is affected by the following graphic options: nticks, line_width, line_
type, key, color and enhanced3d.

2D

The command parametric(xfun, yfun, par, parmin, parmax) plots the parametric
function [xfun, yfun], with parameter par taking values from parmin to parmax.

Example:

(%i1) load(draw)$
(%i2) draw2d(explicit(exp(x),x,-1,3),

color = red,
key = "This is the parametric one!!",
parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi))$

3D

parametric(xfun, yfun, zfun, par, parmin, parmax) plots the parametric curve
[xfun, yfun, zfun], with parameter par taking values from parmin to parmax.

Example:

(%i1) load(draw)$
(%i2) draw3d(explicit(exp(sin(x)+cos(x^2)),x,-3,3,y,-3,3),

color = royalblue,
parametric(cos(5*u)^2,sin(7*u),u-2,u,0,2),
color = turquoise,
line_width = 2,
parametric(t^2,sin(t),2+t,t,0,2),
surface_hide = true,
title = "Surface & curves")$

Graphic objectparametric surface (xfun, yfun, zfun, par1, par1min, par1max,
par2, par2min, par2max)

Draws parametric surfaces in 3D.

3D

The command parametric_surface(xfun, yfun, zfun, par1, par1min, par1max,
par2, par2min, par2max) plots the parametric surface [xfun, yfun, zfun], with
parameter par1 taking values from par1min to par1max and parameter par2 taking
values from par2min to par2max.

778 Maxima 5.35.1 Manual

This object is affected by the following graphic options: draw_realpart, xu_grid,
yv_grid, line_type, line_width, key, wired_surface, enhanced3d, and color.

Example:

(%i1) load(draw)$
(%i2) draw3d(title = "Sea shell",

xu_grid = 100,
yv_grid = 25,
view = [100,20],
surface_hide = true,
parametric_surface(0.5*u*cos(u)*(cos(v)+1),

0.5*u*sin(u)*(cos(v)+1),
u*sin(v) - ((u+3)/8*%pi)^2 - 20,
u, 0, 13*%pi, v, -%pi, %pi))$

Graphic objectpoints
points ([[x1,y1], [x2,y2],...])
points ([x1,x2,...], [y1,y2,...])
points ([y1,y2,...])
points ([[x1,y1,z1], [x2,y2,z2],...])
points ([x1,x2,...], [y1,y2,...], [z1,z2,...])
points (matrix)
points (1d y array)
points (1d x array, 1d y array)
points (1d x array, 1d y array, 1d z array)
points (2d xy array)
points (2d xyz array)

Draws points in 2D and 3D.

This object is affected by the following graphic options: point_size, point_type,
points_joined, line_width, key, line_type and color. In 3D mode, it is also
affected by enhanced3d.

2D

points ([[x1,y1], [x2,y2],...]) or points ([x1,x2,...], [y1,y2,...]) plots
points [x1,y1], [x2,y2], etc. If abscissas are not given, they are set to consecu-
tive positive integers, so that points ([y1,y2,...]) draws points [1,y1], [2,y2],
etc. If matrix is a two-column or two-row matrix, points (matrix) draws the asso-
ciated points. If matrix is a one-column or one-row matrix, abscissas are assigned
automatically.

If 1d y array is a 1D lisp array of numbers, points (1d y array) plots them setting
abscissas to consecutive positive integers. points (1d x array, 1d y array) plots
points with their coordinates taken from the two arrays passed as arguments. If
2d xy array is a 2D array with two columns, or with two rows, points (2d xy array)
plots the corresponding points on the plane.

Examples:

Two types of arguments for points, a list of pairs and two lists of separate coordinates.

(%i1) load(draw)$

Chapter 50: draw 779

(%i2) draw2d(
key = "Small points",
points(makelist([random(20),random(50)],k,1,10)),
point_type = circle,
point_size = 3,
points_joined = true,
key = "Great points",
points(makelist(k,k,1,20),makelist(random(30),k,1,20)),
point_type = filled_down_triangle,
key = "Automatic abscissas",
color = red,
points([2,12,8]))$

Drawing impulses.

(%i1) load(draw)$
(%i2) draw2d(

points_joined = impulses,
line_width = 2,
color = red,
points(makelist([random(20),random(50)],k,1,10)))$

Array with ordinates.

(%i1) load(draw)$
(%i2) a: make_array (flonum, 100) $
(%i3) for i:0 thru 99 do a[i]: random(1.0) $
(%i4) draw2d(points(a)) $

Two arrays with separate coordinates.

(%i1) load(draw)$
(%i2) x: make_array (flonum, 100) $
(%i3) y: make_array (fixnum, 100) $
(%i4) for i:0 thru 99 do (

x[i]: float(i/100),
y[i]: random(10)) $

(%i5) draw2d(points(x, y)) $

A two-column 2D array.

(%i1) load(draw)$
(%i2) xy: make_array(flonum, 100, 2) $
(%i3) for i:0 thru 99 do (

xy[i, 0]: float(i/100),
xy[i, 1]: random(10)) $

(%i4) draw2d(points(xy)) $

Drawing an array filled with function read_array.

(%i1) load(draw)$
(%i2) a: make_array(flonum,100) $
(%i3) read_array (file_search ("pidigits.data"), a) $
(%i4) draw2d(points(a)) $

3D

780 Maxima 5.35.1 Manual

points([[x1, y1, z1], [x2, y2, z2], ...]) or points([x1, x2, ...], [y1, y2,
...], [z1, z2,...]) plots points [x1, y1, z1], [x2, y2, z2], etc. If matrix is a
three-column or three-row matrix, points (matrix) draws the associated points.

When arguments are lisp arrays, points (1d x array, 1d y array, 1d z array) takes
coordinates from the three 1D arrays. If 2d xyz array is a 2D array with three
columns, or with three rows, points (2d xyz array) plots the corresponding points.

Examples:

One tridimensional sample,

(%i1) load(draw)$
(%i2) load (numericalio)$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) draw3d(title = "Daily average wind speeds",

point_size = 2,
points(args(submatrix (s2, 4, 5))))$

Two tridimensional samples,

(%i1) load(draw)$
(%i2) load (numericalio)$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) draw3d(

title = "Daily average wind speeds. Two data sets",
point_size = 2,
key = "Sample from stations 1, 2 and 3",
points(args(submatrix (s2, 4, 5))),
point_type = 4,
key = "Sample from stations 1, 4 and 5",
points(args(submatrix (s2, 2, 3))))$

Unidimensional arrays,

(%i1) load(draw)$
(%i2) x: make_array (fixnum, 10) $
(%i3) y: make_array (fixnum, 10) $
(%i4) z: make_array (fixnum, 10) $
(%i5) for i:0 thru 9 do (

x[i]: random(10),
y[i]: random(10),
z[i]: random(10)) $

(%i6) draw3d(points(x,y,z)) $

Bidimensional colored array,

(%i1) load(draw)$
(%i2) xyz: make_array(fixnum, 10, 3) $
(%i3) for i:0 thru 9 do (

xyz[i, 0]: random(10),
xyz[i, 1]: random(10),
xyz[i, 2]: random(10)) $

(%i4) draw3d(
enhanced3d = true,
points_joined = true,

Chapter 50: draw 781

points(xyz)) $

Color numbers explicitly specified by the user.

(%i1) load(draw)$
(%i2) pts: makelist([t,t^2,cos(t)], t, 0, 15)$
(%i3) col_num: makelist(k, k, 1, length(pts))$
(%i4) draw3d(

enhanced3d = [’part(col_num,k),k],
point_size = 3,
point_type = filled_circle,
points(pts))$

Graphic objectpolar (radius,ang,minang,maxang)
Draws 2D functions defined in polar coordinates.

2D

polar (radius,ang,minang,maxang) plots function radius(ang) defined in polar co-
ordinates, with variable ang taking values from minang to maxang.

This object is affected by the following graphic options: nticks, line_width, line_
type, key and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(user_preamble = "set grid polar",

nticks = 200,
xrange = [-5,5],
yrange = [-5,5],
color = blue,
line_width = 3,
title = "Hyperbolic Spiral",
polar(10/theta,theta,1,10*%pi))$

Graphic objectpolygon
polygon ([[x1, y1], [x2, y2], . . .])
polygon ([x1, x2, . . .], [y1, y2, . . .])

Draws polygons in 2D.

2D

The commands polygon([[x1, y1], [x2, y2], ...]) or polygon([x1, x2, ...],

[y1, y2, ...]) plot on the plane a polygon with vertices [x1, y1], [x2, y2], etc.

This object is affected by the following graphic options: transparent, fill_color,
border, line_width, key, line_type and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(color = "#e245f0",

line_width = 8,
polygon([[3,2],[7,2],[5,5]]),
border = false,
fill_color = yellow,
polygon([[5,2],[9,2],[7,5]]))$

782 Maxima 5.35.1 Manual

Graphic objectquadrilateral (point 1, point 2, point 3, point 4)
Draws a quadrilateral.

2D

quadrilateral([x1, y1], [x2, y2], [x3, y3], [x4, y4]) draws a quadrilateral
with vertices [x1, y1], [x2, y2], [x3, y3], and [x4, y4].

This object is affected by the following graphic options:
transparent, fill_color, border, line_width, key, xaxis_secondary, yaxis_

secondary, line_type, transform and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(

quadrilateral([1,1],[2,2],[3,-1],[2,-2]))$

3D

quadrilateral([x1, y1, z1], [x2, y2, z2], [x3, y3, z3], [x4, y4, z4]) draws
a quadrilateral with vertices [x1, y1, z1], [x2, y2, z2], [x3, y3, z3], and [x4,
y4, z4].

This object is affected by the following graphic options: line_type, line_width,
color, key, enhanced3d, and transform.

Graphic objectrectangle ([x1,y1], [x2,y2])
Draws rectangles in 2D.

2D

rectangle ([x1,y1], [x2,y2]) draws a rectangle with opposite vertices [x1,y1]
and [x2,y2].

This object is affected by the following graphic options: transparent, fill_color,
border, line_width, key, line_type and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(fill_color = red,

line_width = 6,
line_type = dots,
transparent = false,
fill_color = blue,
rectangle([-2,-2],[8,-1]), /* opposite vertices */
transparent = true,
line_type = solid,
line_width = 1,
rectangle([9,4],[2,-1.5]),
xrange = [-3,10],
yrange = [-3,4.5])$

Graphic objectregion (expr,var1,minval1,maxval1,var2,minval2,maxval2)
Plots a region on the plane defined by inequalities.

Chapter 50: draw 783

2D expr is an expression formed by inequalities and boolean operators and, or, and
not. The region is bounded by the rectangle defined by [minval1,maxval1] and
[minval2,maxval2].

This object is affected by the following graphic options: fill_color, key, x_voxel,
and y_voxel.

Example:

(%i1) load(draw)$
(%i2) draw2d(

x_voxel = 30,
y_voxel = 30,
region(x^2+y^2<1 and x^2+y^2 > 1/2,

x, -1.5, 1.5, y, -1.5, 1.5));

Graphic objectspherical (radius, azi, minazi, maxazi, zen, minzen, maxzen)
Draws 3D functions defined in spherical coordinates.

3D

spherical(radius, azi, minazi, maxazi, zen, minzen, maxzen) plots the function
radius(azi, zen) defined in spherical coordinates, with azimuth azi taking values from
minazi to maxazi and zenith zen taking values from minzen to maxzen.

This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, key, wired_surface, enhanced3d and color.

Example:

(%i1) load(draw)$
(%i2) draw3d(spherical(1,a,0,2*%pi,z,0,%pi))$

Graphic objecttriangle (point 1, point 2, point 3)
Draws a triangle.

2D

triangle ([x1,y1], [x2,y2], [x3,y3]) draws a triangle with vertices [x1,y1],
[x2,y2], and [x3,y3].

This object is affected by the following graphic options:
transparent, fill_color, border, line_width, key, xaxis_secondary, yaxis_

secondary, line_type, transform, and color.

Example:

(%i1) load(draw)$
(%i2) draw2d(

triangle([1,1],[2,2],[3,-1]))$

3D

triangle ([x1,y1,z1], [x2,y2,z2], [x3,y3,z3]) draws a triangle with vertices
[x1,y1,z1], [x2,y2,z2], and [x3,y3,z3].

This object is affected by the following graphic options: line_type, line_width,
color, key, enhanced3d, and transform.

784 Maxima 5.35.1 Manual

Graphic objecttube (xfun,yfun,zfun,rfun,p,pmin,pmax)
Draws a tube in 3D with varying diameter.

3D

[xfun,yfun,zfun] is the parametric curve with parameter p taking values from pmin
to pmax. Circles of radius rfun are placed with their centers on the parametric curve
and perpendicular to it.

This object is affected by the following graphic options: xu_grid, yv_grid, line_
type, line_width, key, wired_surface, enhanced3d, color, and tube_extremes.

Example:

(%i1) load(draw)$
(%i2) draw3d(

enhanced3d = true,
xu_grid = 50,
tube(cos(a), a, 0, cos(a/10)^2,

a, 0, 4*%pi))$

Graphic objectvector
vector ([x,y], [dx,dy])
vector ([x,y,z], [dx,dy,dz])

Draws vectors in 2D and 3D.

This object is affected by the following graphic options: head_both, head_length,
head_angle, head_type, line_width, line_type, key and color.

2D

vector([x,y], [dx,dy]) plots vector [dx,dy] with origin in [x,y].

Example:

(%i1) load(draw)$
(%i2) draw2d(xrange = [0,12],

yrange = [0,10],
head_length = 1,
vector([0,1],[5,5]), /* default type */
head_type = ’empty,
vector([3,1],[5,5]),
head_both = true,
head_type = ’nofilled,
line_type = dots,
vector([6,1],[5,5]))$

3D

vector([x,y,z], [dx,dy,dz]) plots vector [dx,dy,dz] with origin in [x,y,z].

Example:

(%i1) load(draw)$
(%i2) draw3d(color = cyan,

vector([0,0,0],[1,1,1]/sqrt(3)),
vector([0,0,0],[1,-1,0]/sqrt(2)),
vector([0,0,0],[1,1,-2]/sqrt(6)))$

Chapter 50: draw 785

50.3 Functions and Variables for pictures

Functionget pixel (pic,x,y)
Returns pixel from picture. Coordinates x and y range from 0 to width-1 and
height-1, respectively.

Functionmake level picture
make_level_picture (data)
make_level_picture (data,width,height)

Returns a levels picture object. make_level_picture (data) builds the picture ob-
ject from matrix data. make_level_picture (data,width,height) builds the object
from a list of numbers; in this case, both the width and the height must be given.

The returned picture object contains the following four parts:

1. symbol level

2. image width

3. image height

4. an integer array with pixel data ranging from 0 to 255. Argument data must
contain only numbers ranged from 0 to 255; negative numbers are substituted by
0, and those which are greater than 255 are set to 255.

Example:

Level picture from matrix.

(%i1) load(draw)$
(%i2) make_level_picture(matrix([3,2,5],[7,-9,3000]));
(%o2) picture(level, 3, 2, {Array: #(3 2 5 7 0 255)})

Level picture from numeric list.

(%i1) load(draw)$
(%i2) make_level_picture([-2,0,54,%pi],2,2);
(%o2) picture(level, 2, 2, {Array: #(0 0 54 3)})

Functionmake rgb picture (redlevel,greenlevel,bluelevel)
Returns an rgb-coloured picture object. All three arguments must be levels picture;
with red, green and blue levels.

The returned picture object contains the following four parts:

1. symbol rgb

2. image width

3. image height

4. an integer array of length 3*width*height with pixel data ranging from 0 to 255.
Each pixel is represented by three consecutive numbers (red, green, blue).

Example:

(%i1) load(draw)$
(%i2) red: make_level_picture(matrix([3,2],[7,260]));
(%o2) picture(level, 2, 2, {Array: #(3 2 7 255)})

786 Maxima 5.35.1 Manual

(%i3) green: make_level_picture(matrix([54,23],[73,-9]));
(%o3) picture(level, 2, 2, {Array: #(54 23 73 0)})
(%i4) blue: make_level_picture(matrix([123,82],[45,32.5698]));
(%o4) picture(level, 2, 2, {Array: #(123 82 45 33)})
(%i5) make_rgb_picture(red,green,blue);
(%o5) picture(rgb, 2, 2,

{Array: #(3 54 123 2 23 82 7 73 45 255 0 33)})

Functionnegative picture (pic)
Returns the negative of a (level or rgb) picture.

Functionpicture equalp (x,y)
Returns true in case of equal pictures, and false otherwise.

Functionpicturep (x)
Returns true if the argument is a well formed image, and false otherwise.

Functionread xpm (xpm file)
Reads a file in xpm and returns a picture object.

Functionrgb2level (pic)
Transforms an rgb picture into a level one by averaging the red, green and blue
channels.

Functiontake channel (im,color)
If argument color is red, green or blue, function take_channel returns the corre-
sponding color channel of picture im. Example:

(%i1) load(draw)$
(%i2) red: make_level_picture(matrix([3,2],[7,260]));
(%o2) picture(level, 2, 2, {Array: #(3 2 7 255)})
(%i3) green: make_level_picture(matrix([54,23],[73,-9]));
(%o3) picture(level, 2, 2, {Array: #(54 23 73 0)})
(%i4) blue: make_level_picture(matrix([123,82],[45,32.5698]));
(%o4) picture(level, 2, 2, {Array: #(123 82 45 33)})
(%i5) make_rgb_picture(red,green,blue);
(%o5) picture(rgb, 2, 2,

{Array: #(3 54 123 2 23 82 7 73 45 255 0 33)})
(%i6) take_channel(%,’green); /* simple quote!!! */
(%o6) picture(level, 2, 2, {Array: #(54 23 73 0)})

50.4 Functions and Variables for worldmap

This package automatically loads package draw.

Chapter 50: draw 787

50.4.1 Variables and Functions

Global variableboundaries array
Default value: false

boundaries_array is where the graphic object geomap looks for boundaries coordi-
nates.

Each component of boundaries_array is an array of floating point quantities, the
coordinates of a polygonal segment or map boundary.

See also geomap.

Functionnumbered boundaries (nlist)
Draws a list of polygonal segments (boundaries), labeled by its numbers (boundaries_
array coordinates). This is of great help when building new geographical entities.

Example:

Map of Europe labeling borders with their component number in boundaries_array.

(%i1) load(worldmap)$
(%i2) european_borders:

region_boundaries(-31.81,74.92,49.84,32.06)$
(%i3) numbered_boundaries(european_borders)$

Functionmake poly continent
make_poly_continent (continent name)
make_poly_continent (country list)

Makes the necessary polygons to draw a colored continent or a list of countries.

Example:

(%i1) load(worldmap)$
(%i2) /* A continent */

make_poly_continent(Africa)$
(%i3) apply(draw2d, %)$
(%i4) /* A list of countries */

make_poly_continent([Germany,Denmark,Poland])$
(%i5) apply(draw2d, %)$

Functionmake poly country (country name)
Makes the necessary polygons to draw a colored country. If islands exist, one country
can be defined with more than just one polygon.

Example:

(%i1) load(worldmap)$
(%i2) make_poly_country(India)$
(%i3) apply(draw2d, %)$

Functionmake polygon (nlist)
Returns a polygon object from boundary indices. Argument nlist is a list of compo-
nents of boundaries_array.

788 Maxima 5.35.1 Manual

Example:

Bhutan is defined by boundary numbers 171, 173 and 1143, so that make_

polygon([171,173,1143]) appends arrays of coordinates boundaries_array[171],
boundaries_array[173] and boundaries_array[1143] and returns a polygon

object suited to be plotted by draw. To avoid an error message, arrays must be
compatible in the sense that any two consecutive arrays have two coordinates in the
extremes in common. In this example, the two first components of boundaries_

array[171] are equal to the last two coordinates of boundaries_array[173],
and the two first of boundaries_array[173] are equal to the two first of
boundaries_array[1143]; in conclussion, boundary numbers 171, 173 and 1143 (in
this order) are compatible and the colored polygon can be drawn.

(%i1) load(worldmap)$
(%i2) Bhutan;
(%o2) [[171, 173, 1143]]
(%i3) boundaries_array[171];
(%o3) {Array:

#(88.750549 27.14727 88.806351 27.25305 88.901367 27.282221
88.917877 27.321039)}

(%i4) boundaries_array[173];
(%o4) {Array:

#(91.659554 27.76511 91.6008 27.66666 91.598022 27.62499
91.631348 27.536381 91.765533 27.45694 91.775253 27.4161
92.007751 27.471939 92.11441 27.28583 92.015259 27.168051
92.015533 27.08083 92.083313 27.02277 92.112183 26.920271
92.069977 26.86194 91.997192 26.85194 91.915253 26.893881
91.916924 26.85416 91.8358 26.863331 91.712479 26.799999
91.542191 26.80444 91.492188 26.87472 91.418854 26.873329
91.371353 26.800831 91.307457 26.778049 90.682457 26.77417
90.392197 26.903601 90.344131 26.894159 90.143044 26.75333
89.98996 26.73583 89.841919 26.70138 89.618301 26.72694
89.636093 26.771111 89.360786 26.859989 89.22081 26.81472
89.110237 26.829161 88.921631 26.98777 88.873016 26.95499
88.867737 27.080549 88.843307 27.108601 88.750549
27.14727)}

(%i5) boundaries_array[1143];
(%o5) {Array:

#(91.659554 27.76511 91.666924 27.88888 91.65831 27.94805
91.338028 28.05249 91.314972 28.096661 91.108856 27.971109
91.015808 27.97777 90.896927 28.05055 90.382462 28.07972
90.396088 28.23555 90.366074 28.257771 89.996353 28.32333
89.83165 28.24888 89.58609 28.139999 89.35997 27.87166
89.225517 27.795 89.125793 27.56749 88.971077 27.47361
88.917877 27.321039)}

(%i6) Bhutan_polygon: make_polygon([171,173,1143])$
(%i7) draw2d(Bhutan_polygon)$

Chapter 50: draw 789

Functionregion boundaries (x1,y1,x2,y2)
Detects polygonal segments of global variable boundaries_array fully contained in
the rectangle with vertices (x1,y1) -upper left- and (x2,y2) -bottom right-.

Example:

Returns segment numbers for plotting southern Italy.

(%i1) load(worldmap)$
(%i2) region_boundaries(10.4,41.5,20.7,35.4);
(%o2) [1846, 1863, 1864, 1881, 1888, 1894]
(%i3) draw2d(geomap(%))$

Functionregion boundaries plus (x1,y1,x2,y2)
Detects polygonal segments of global variable boundaries_array containing at least
one vertex in the rectangle defined by vertices (x1,y1) -upper left- and (x2,y2) -bottom
right-.

Example:

(%i1) load(worldmap)$
(%i2) region_boundaries_plus(10.4,41.5,20.7,35.4);
(%o2) [1060, 1062, 1076, 1835, 1839, 1844, 1846, 1858,

1861, 1863, 1864, 1871, 1881, 1888, 1894, 1897]
(%i3) draw2d(geomap(%))$

50.4.2 Graphic objects

Graphic objectgeomap
geomap (numlist)
geomap (numlist,3Dprojection)

Draws cartographic maps in 2D and 3D.

2D

This function works together with global variable boundaries_array.

Argument numlist is a list containing numbers or lists of numbers. All these numbers
must be integers greater or equal than zero, representing the components of global
array boundaries_array.

Each component of boundaries_array is an array of floating point quantities, the
coordinates of a polygonal segment or map boundary.

geomap (numlist) flattens its arguments and draws the associated boundaries in
boundaries_array.

This object is affected by the following graphic options: line_width, line_type and
color.

Examples:

A simple map defined by hand:

(%i1) load(worldmap)$
(%i2) /* Vertices of boundary #0: {(1,1),(2,5),(4,3)} */

(bnd0: make_array(flonum,6),
bnd0[0]:1.0, bnd0[1]:1.0, bnd0[2]:2.0,

790 Maxima 5.35.1 Manual

bnd0[3]:5.0, bnd0[4]:4.0, bnd0[5]:3.0)$
(%i3) /* Vertices of boundary #1: {(4,3),(5,4),(6,4),(5,1)} */

(bnd1: make_array(flonum,8),
bnd1[0]:4.0, bnd1[1]:3.0, bnd1[2]:5.0, bnd1[3]:4.0,
bnd1[4]:6.0, bnd1[5]:4.0, bnd1[6]:5.0, bnd1[7]:1.0)$

(%i4) /* Vertices of boundary #2: {(5,1), (3,0), (1,1)} */
(bnd2: make_array(flonum,6),
bnd2[0]:5.0, bnd2[1]:1.0, bnd2[2]:3.0,
bnd2[3]:0.0, bnd2[4]:1.0, bnd2[5]:1.0)$

(%i5) /* Vertices of boundary #3: {(1,1), (4,3)} */
(bnd3: make_array(flonum,4),
bnd3[0]:1.0, bnd3[1]:1.0, bnd3[2]:4.0, bnd3[3]:3.0)$

(%i6) /* Vertices of boundary #4: {(4,3), (5,1)} */
(bnd4: make_array(flonum,4),
bnd4[0]:4.0, bnd4[1]:3.0, bnd4[2]:5.0, bnd4[3]:1.0)$

(%i7) /* Pack all together in boundaries_array */
(boundaries_array: make_array(any,5),
boundaries_array[0]: bnd0, boundaries_array[1]: bnd1,
boundaries_array[2]: bnd2, boundaries_array[3]: bnd3,
boundaries_array[4]: bnd4)$

(%i8) draw2d(geomap([0,1,2,3,4]))$

The auxiliary package worldmap sets the global variable boundaries_array to
real world boundaries in (longitude, latitude) coordinates. These data are in the
public domain and come from http://www-cger.nies.go.jp/grid-e/gridtxt/

grid19.html. Package worldmap defines also boundaries for countries, continents
and coastlines as lists with the necessary components of boundaries_array (see file
share/draw/worldmap.mac for more information). Package worldmap automatically
loads package worldmap.

(%i1) load(worldmap)$
(%i2) c1: gr2d(geomap(Canada,United_States,

Mexico,Cuba))$
(%i3) c2: gr2d(geomap(Africa))$
(%i4) c3: gr2d(geomap(Oceania,China,Japan))$
(%i5) c4: gr2d(geomap(France,Portugal,Spain,

Morocco,Western_Sahara))$
(%i6) draw(columns = 2,

c1,c2,c3,c4)$

Package worldmap is also useful for plotting countries as polygons. In this case,
graphic object geomap is no longer necessary and the polygon object is used instead.
Since lists are now used and not arrays, maps rendering will be slower. See also
make_poly_country and make_poly_continent to understand the following code.

(%i1) load(worldmap)$
(%i2) mymap: append(

[color = white], /* borders are white */
[fill_color = red], make_poly_country(Bolivia),
[fill_color = cyan], make_poly_country(Paraguay),
[fill_color = green], make_poly_country(Colombia),
[fill_color = blue], make_poly_country(Chile),

Chapter 50: draw 791

[fill_color = "#23ab0f"], make_poly_country(Brazil),
[fill_color = goldenrod], make_poly_country(Argentina),
[fill_color = "midnight-blue"], make_poly_country(Uruguay))$

(%i3) apply(draw2d, mymap)$

3D

geomap (numlist) projects map boundaries on the sphere of radius 1 centered at
(0,0,0). It is possible to change the sphere or the projection type by using geomap

(numlist,3Dprojection).

Available 3D projections:

• [spherical_projection,x,y,z,r]: projects map boundaries on the sphere of
radius r centered at (x,y,z).

(%i1) load(worldmap)$
(%i2) draw3d(geomap(Australia), /* default projection */

geomap(Australia,
[spherical_projection,2,2,2,3]))$

• [cylindrical_projection,x,y,z,r,rc]: re-projects spherical map boundaries
on the cylinder of radius rc and axis passing through the poles of the globe of
radius r centered at (x,y,z).

(%i1) load(worldmap)$
(%i2) draw3d(geomap([America_coastlines,Eurasia_coastlines],

[cylindrical_projection,2,2,2,3,4]))$

• [conic_projection,x,y,z,r,alpha]: re-projects spherical map boundaries on
the cones of angle alpha, with axis passing through the poles of the globe of
radius r centered at (x,y,z). Both the northern and southern cones are tangent
to sphere.

(%i1) load(worldmap)$
(%i2) draw3d(geomap(World_coastlines,

[conic_projection,0,0,0,1,90]))$

See also http://www.telefonica.net/web2/biomates/maxima/gpdraw/geomap for
more elaborated examples.

792 Maxima 5.35.1 Manual

Chapter 51: drawdf 793

51 drawdf

51.1 Introduction to drawdf

The function drawdf draws the direction field of a first-order Ordinary Differential Equa-
tion (ODE) or a system of two autonomous first-order ODE’s.

Since this is an additional package, in order to use it you must first load it with
load(drawdf). Drawdf is built upon the draw package, which requires Gnuplot 4.2.

To plot the direction field of a single ODE, the ODE must be written in the form:

dy

dx
= F (x, y)

and the function F should be given as the argument for drawdf. If the independent and
dependent variables are not x, and y, as in the equation above, then those two variables
should be named explicitly in a list given as an argument to the drawdf command (see the
examples).

To plot the direction field of a set of two autonomous ODE’s, they must be written in
the form

dx

dt
= G(x, y)

dy

dt
= F (x, y)

and the argument for drawdf should be a list with the two functions G and F, in that
order; namely, the first expression in the list will be taken to be the time derivative of
the variable represented on the horizontal axis, and the second expression will be the time
derivative of the variable represented on the vertical axis. Those two variables do not have
to be x and y, but if they are not, then the second argument given to drawdf must be
another list naming the two variables, first the one on the horizontal axis and then the one
on the vertical axis.

If only one ODE is given, drawdf will implicitly admit x=t, and G(x,y)=1, transforming
the non-autonomous equation into a system of two autonomous equations.

51.2 Functions and Variables for drawdf

51.2.1 Functions

Functiondrawdf
drawdf (dydx, ...options and objects...)
drawdf (dvdu, [u,v], ...options and objects...)
drawdf (dvdu, [u,umin,umax], [v,vmin,vmax], ...options and objects...)
drawdf ([dxdt,dydt], ...options and objects...)
drawdf ([dudt,dvdt], [u,v], ...options and objects...)
drawdf ([dudt,dvdt], [u,umin,umax], [v,vmin,vmax], ...options and objects...)

Function drawdf draws a 2D direction field with optional solution curves and other
graphics using the draw package.

794 Maxima 5.35.1 Manual

The first argument specifies the derivative(s), and must be either an expression or a
list of two expressions. dydx, dxdt and dydt are expressions that depend on x and y.
dvdu, dudt and dvdt are expressions that depend on u and v.

If the independent and dependent variables are not x and y, then their names must be
specified immediately following the derivative(s), either as a list of two names [u,v],
or as two lists of the form [u,umin,umax] and [v,vmin,vmax].

The remaining arguments are graphic options, graphic objects, or lists containing
graphic options and objects, nested to arbitrary depth. The set of graphic options
and objects supported by drawdf is a superset of those supported by draw2d and
gr2d from the draw package.

The arguments are interpreted sequentially: graphic options affect all following
graphic objects. Furthermore, graphic objects are drawn on the canvas in order
specified, and may obscure graphics drawn earlier. Some graphic options affect the
global appearence of the scene.

The additional graphic objects supported by drawdf include: solns_at, points_at,
saddles_at, soln_at, point_at, and saddle_at.

The additional graphic options supported by drawdf include: field_degree, soln_
arrows, field_arrows, field_grid, field_color, show_field, tstep, nsteps,
duration, direction, field_tstep, field_nsteps, and field_duration.

Commonly used graphic objects inherited from the draw package include: explicit,
implicit, parametric, polygon, points, vector, label, and all others supported
by draw2d and gr2d.

Commonly used graphic options inherited from the draw package include:
points_joined, color, point_type, point_size, line_width, line_type, key,
title, xlabel, ylabel, user_preamble, terminal, dimensions, file_name, and
all others supported by draw2d and gr2d.

See also draw2d.

Users of wxMaxima or Imaxima may optionally use wxdrawdf, which is identical to
drawdf except that the graphics are drawn within the notebook using wxdraw.

To make use of this function, write first load(drawdf).

Examples:

(%i1) load(drawdf)$
(%i2) drawdf(exp(-x)+y)$ /* default vars: x,y */
(%i3) drawdf(exp(-t)+y, [t,y])$ /* default range: [-10,10] */
(%i4) drawdf([y,-9*sin(x)-y/5], [x,1,5], [y,-2,2])$

For backward compatibility, drawdf accepts most of the parameters supported by
plotdf.

(%i5) drawdf(2*cos(t)-1+y, [t,y], [t,-5,10], [y,-4,9],
[trajectory_at,0,0])$

soln_at and solns_at draw solution curves passing through the specified points,
using a slightly enhanced 4th-order Runge Kutta numerical integrator.

(%i6) drawdf(2*cos(t)-1+y, [t,-5,10], [y,-4,9],
solns_at([0,0.1],[0,-0.1]),
color=blue, soln_at(0,0))$

Chapter 51: drawdf 795

field_degree=2 causes the field to be composed of quadratic splines, based on the
first and second derivatives at each grid point. field_grid=[COLS,ROWS] specifies
the number of columns and rows in the grid.

(%i7) drawdf(2*cos(t)-1+y, [t,-5,10], [y,-4,9],
field_degree=2, field_grid=[20,15],
solns_at([0,0.1],[0,-0.1]),
color=blue, soln_at(0,0))$

soln_arrows=true adds arrows to the solution curves, and (by default) removes them
from the direction field. It also changes the default colors to emphasize the solution
curves.

(%i8) drawdf(2*cos(t)-1+y, [t,-5,10], [y,-4,9],
soln_arrows=true,
solns_at([0,0.1],[0,-0.1],[0,0]))$

duration=40 specifies the time duration of numerical integration (default 10). In-
tegration will also stop automatically if the solution moves too far away from the
plotted region, or if the derivative becomes complex or infinite. Here we also specify
field_degree=2 to plot quadratic splines. The equations below model a predator-
prey system.

(%i9) drawdf([x*(1-x-y), y*(3/4-y-x/2)], [x,0,1.1], [y,0,1],
field_degree=2, duration=40,
soln_arrows=true, point_at(1/2,1/2),
solns_at([0.1,0.2], [0.2,0.1], [1,0.8], [0.8,1],

[0.1,0.1], [0.6,0.05], [0.05,0.4],
[1,0.01], [0.01,0.75]))$

field_degree=’solns causes the field to be composed of many small solution curves
computed by 4th-order Runge Kutta, with better results in this case.

(%i10) drawdf([x*(1-x-y), y*(3/4-y-x/2)], [x,0,1.1], [y,0,1],
field_degree=’solns, duration=40,
soln_arrows=true, point_at(1/2,1/2),
solns_at([0.1,0.2], [0.2,0.1], [1,0.8],

[0.8,1], [0.1,0.1], [0.6,0.05],
[0.05,0.4], [1,0.01], [0.01,0.75]))$

saddles_at attempts to automatically linearize the equation at each saddle, and to
plot a numerical solution corresponding to each eigenvector, including the separatri-
ces. tstep=0.05 specifies the maximum time step for the numerical integrator (the
default is 0.1). Note that smaller time steps will sometimes be used in order to keep
the x and y steps small. The equations below model a damped pendulum.

(%i11) drawdf([y,-9*sin(x)-y/5], tstep=0.05,
soln_arrows=true, point_size=0.5,
points_at([0,0], [2*%pi,0], [-2*%pi,0]),
field_degree=’solns,
saddles_at([%pi,0], [-%pi,0]))$

show_field=false suppresses the field entirely.

(%i12) drawdf([y,-9*sin(x)-y/5], tstep=0.05,
show_field=false, soln_arrows=true,
point_size=0.5,

796 Maxima 5.35.1 Manual

points_at([0,0], [2*%pi,0], [-2*%pi,0]),
saddles_at([3*%pi,0], [-3*%pi,0],

[%pi,0], [-%pi,0]))$

drawdf passes all unrecognized parameters to draw2d or gr2d, allowing you to com-
bine the full power of the draw package with drawdf.

(%i13) drawdf(x^2+y^2, [x,-2,2], [y,-2,2], field_color=gray,
key="soln 1", color=black, soln_at(0,0),
key="soln 2", color=red, soln_at(0,1),
key="isocline", color=green, line_width=2,
nticks=100, parametric(cos(t),sin(t),t,0,2*%pi))$

drawdf accepts nested lists of graphic options and objects, allowing convenient use of
makelist and other function calls to generate graphics.

(%i14) colors : [’red,’blue,’purple,’orange,’green]$
(%i15) drawdf([x-x*y/2, (x*y - 3*y)/4],

[x,2.5,3.5], [y,1.5,2.5],
field_color = gray,
makelist([key = concat("soln",k),

color = colors[k],
soln_at(3, 2 + k/20)],

k,1,5))$

Chapter 52: dynamics 797

52 dynamics

52.1 The dynamics package

Package dynamics includes functions for 3D visualization, animations, graphical analysis
of differential and difference equations and numerical solution of differential equations. The
functions for differential equations are described in the section on Numerical Methods and
the functions to plot the Mandelbrot and Julia sets are described in the section on Plotting.

All the functions in this package will be loaded automatically the first time they are
used.

52.2 Graphical analysis of discrete dynamical systems

Functionchaosgame ([[x1, y1]. . . [xm, ym]], [x0, y0], b, n, options, . . .);
Implements the so-called chaos game: the initial point (x0, y0) is plotted and then
one of the m points [x1, y1]. . .xm, ym] will be selected at random. The next point
plotted will be on the segment from the previous point plotted to the point chosen
randomly, at a distance from the random point which will be b times that segment’s
length. The procedure is repeated n times. The options are the same as for plot2d.

Example. A plot of Sierpinsky’s triangle:

(%i1) chaosgame([[0, 0], [1, 0], [0.5, sqrt(3)/2]], [0.1, 0.1], 1/2,
30000, [style, dots]);

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
nt

ra
ct

io
n

fa
ct

or
: 0

.5

The chaos game with 3 points

Functionevolution (F, y0, n, . . . , options, . . .);
Draws n+1 points in a two-dimensional graph, where the horizontal coordinates of the
points are the integers 0, 1, 2, ..., n, and the vertical coordinates are the corresponding
values y(n) of the sequence defined by the recurrence relation

yn+1 = F (yn)

798 Maxima 5.35.1 Manual

With initial value y(0) equal to y0. F must be an expression that depends only on
one variable (in the example, it depend on y, but any other variable can be used), y0
must be a real number and n must be a positive integer. This function accepts the
same options as plot2d.

Example.

(%i1) evolution(cos(y), 2, 11);

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

y(
n)

n

Functionevolution2d ([F, G], [u, v], [u0, y0], n, options, . . .);
Shows, in a two-dimensional plot, the first n+1 points in the sequence of points defined
by the two-dimensional discrete dynamical system with recurrence relations

{
un+1 = F (un, vn)
vn+1 = G(un, vn)

With initial values u0 and v0. F and G must be two expressions that depend only
on two variables, u and v, which must be named explicitly in a list. The options are
the same as for plot2d.

Example. Evolution of a two-dimensional discrete dynamical system:

(%i1) f: 0.6*x*(1+2*x)+0.8*y*(x-1)-y^2-0.9$
(%i2) g: 0.1*x*(1-6*x+4*y)+0.1*y*(1+9*y)-0.4$
(%i3) evolution2d([f,g], [x,y], [-0.5,0], 50000, [style,dots]);

Chapter 52: dynamics 799

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

y

x

And an enlargement of a small region in that fractal:

(%i9) evolution2d([f,g], [x,y], [-0.5,0], 300000, [x,-0.8,-0.6],
[y,-0.4,-0.2], [style, dots]);

-0.4

-0.35

-0.3

-0.25

-0.2

-0.8 -0.75 -0.7 -0.65 -0.6

y

x

Functionifs ([r1, . . . , rm], [A1,. . . , Am], [[x1, y1], . . . , [xm, ym]], [x0, y0], n,
options, . . .);

Implements the Iterated Function System method. This method is similar to the
method described in the function chaosgame. but instead of shrinking the segment
from the current point to the randomly chosen point, the 2 components of that seg-
ment will be multiplied by the 2 by 2 matrix Ai that corresponds to the point chosen
randomly.

The random choice of one of the m attractive points can be made with a non-uniform
probability distribution defined by the weights r1,...,rm. Those weights are given in
cumulative form; for instance if there are 3 points with probabilities 0.2, 0.5 and 0.3,
the weights r1, r2 and r3 could be 2, 7 and 10. The options are the same as for
plot2d.

Example. Barnsley’s fern, obtained with 4 matrices and 4 points:

800 Maxima 5.35.1 Manual

(%i1) a1: matrix([0.85,0.04],[-0.04,0.85])$
(%i2) a2: matrix([0.2,-0.26],[0.23,0.22])$
(%i3) a3: matrix([-0.15,0.28],[0.26,0.24])$
(%i4) a4: matrix([0,0],[0,0.16])$
(%i5) p1: [0,1.6]$
(%i6) p2: [0,1.6]$
(%i7) p3: [0,0.44]$
(%i8) p4: [0,0]$
(%i9) w: [85,92,99,100]$
(%i10) ifs(w, [a1,a2,a3,a4], [p1,p2,p3,p4], [5,0], 50000, [style,dots]);

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-3 -2 -1 0 1 2 3 4 5

Iterated Function System of 4 transformations

Functionorbits (F, y0, n1, n2, [x, x0, xf, xstep], options, . . .);
Draws the orbits diagram for a family of one-dimensional discrete dynamical systems,
with one parameter x; that kind of diagram is used to study the bifurcations of a
one-dimensional discrete system.

The function F(y) defines a sequence with a starting value of y0, as in the case of the
function evolution, but in this case that function will also depend on a parameter
x that will take values in the interval from x0 to xf with increments of xstep. Each
value used for the parameter x is shown on the horizontal axis. The vertical axis
will show the n2 values of the sequence y(n1+1),..., y(n1+n2+1) obtained after letting
the sequence evolve n1 iterations. In addition to the options accepted by plot2d, it
accepts an option pixels that sets up the maximum number of different points that
will be represented in the vertical direction.

Example. Orbits diagram of the quadratic map, with a parameter a:

(%i1) orbits(x^2+a, 0, 50, 200, [a, -2, 0.25], [style, dots]);

Chapter 52: dynamics 801

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0

x

a

To enlarge the region around the lower bifurcation near x = -1.25 use:

(%i2) orbits(x^2+a, 0, 100, 400, [a,-1,-1.53], [x,-1.6,-0.8],
[nticks, 400], [style,dots]);

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-1.5 -1.4 -1.3 -1.2 -1.1 -1

x

a

Functionstaircase (F, y0, n,options,. . .);
Draws a staircase diagram for the sequence defined by the recurrence relation

yn+1 = F (yn)

The interpretation and allowed values of the input parameters is the same as for
the function evolution. A staircase diagram consists of a plot of the function F(y),
together with the line G(y) = y. A vertical segment is drawn from the point (y0,
y0) on that line until the point where it intersects the function F. From that point a
horizontal segment is drawn until it reaches the point (y1, y1) on the line, and the
procedure is repeated n times until the point (yn, yn) is reached. The options are the
same as for plot2d.

Example.

802 Maxima 5.35.1 Manual

(%i1) staircase(cos(y), 1, 11, [y, 0, 1.2]);

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

y(
n+

1)

y(n)

52.3 Visualization with VTK

Function scene creates 3D images and animations using the Visualization ToolKit (VTK)
software. In order to use that function, Xmaxima and VTK should be installed in your
system (including the TCL bindings of VTK, which in some system might come in a separate
package).

Functionscene (objects, . . . , options, . . .);
Accepts an empty list or a list of several objects and options. The program launches
Xmaxima, which opens an external window representing the given objects in a 3-
dimensional space and applying the options given. Each object must belong to one of
the following 4 classes: sphere, cube, cylinder or cone (see Scene objects). Objects
are identified by giving their name or by a list in which the first element is the class
name and the following elements are options for that object.

Example. A hexagonal pyramid with a blue background:

(%i1) scene(cone, [background,"#9980e5"])$

Chapter 52: dynamics 803

By holding down the left button of the mouse while it is moved on the graphics
window, the camera can be rotated showing different views of the pyramid. The two
plot options elevation and azimuth can also be used to change the initial orientation
of the viewing camera. The camera can be moved by holding the middle mouse button
while moving it and holding the right-side mouse button while moving it up or down
will zoom in or out.

Each object option should be a list starting with the option name, followed by its
value. The list of allowed options can be found in the Scene object’s options

section.

Example. This will show a sphere falling to the ground and bouncing off without
loosing any energy. To start or pause the animation, press the play/pause button.

(%i1) p: makelist ([0,0,2.1- 9.8*t^2/2], t, 0, 0.64, 0.01)$

(%i2) p: append (p, reverse(p))$

(%i3) ball: [sphere, [radius,0.1], [thetaresolution,20],
[phiresolution,20], [position,0,0,2.1], [color,red],
[animate,position,p]]$

(%i4) ground: [cube, [xlength,2], [ylength,2], [zlength,0.2],
[position,0,0,-0.1],[color,violet]]$

(%i5) scene (ball, ground, restart)$

804 Maxima 5.35.1 Manual

The restart option was used to make the animation restart automatically every time
the last point in the position list is reached. The accepted values for the colors are
the same as for the color option of plot2d.

52.3.1 Scene options

Scene optionazimuth [azimuth, angle]
Default value: 135

The rotation of the camera on the horizontal (x, y) plane. angle must be a real
number; an angle of 0 means that the camera points in the direction of the y axis and
the x axis will appear on the right.

Scene optionbackground [background, color]
Default value: black

The color of the graphics window’s background. It accepts color names or hexadecimal
red-green-blue strings (see the color option of plot2d).

Scene optionelevation [elevation, angle]
Default value: 30

The vertical rotation of the camera. The angle must be a real number; an angle of 0
means that the camera points on the horizontal, and the default angle of 30 means
that the camera is pointing 30 degrees down from the horizontal.

Chapter 52: dynamics 805

Scene optionheight [height, pixels]
Default value: 500

The height, in pixels, of the graphics window. pixels must be a positive integer
number.

Scene optionrestart [restart, value]
Default value: false

A true value means that animations will restart automatically when the end of the
list is reached. Writing just “restart” is equivalent to [restart, true].

Scene optiontstep [tstep, time]
Default value: 10

The amount of time, in mili-seconds, between iterations among consecutive animation
frames. time must be a real number.

Scene optionwidth [width, pixels]
Default value: 500

The width, in pixels, of the graphics window. pixels must be a positive integer
number.

Scene optionwindowname [windowtitle, name]
Default value: .scene

name must be a string that can be used as the name of the Tk window created by
Xmaxima for the scene graphics. The default value .scene implies that a new top
level window will be created.

Scene optionwindowtitle [windowtitle, name]
Default value: Xmaxima: scene

name must be a string that will be written in the title of the window created by
scene.

52.3.2 Scene objects

Scene objectcone [cone, options]
Creates a regular pyramid with height equal to 1 and a hexagonal base with vertices
0.5 units away from the axis. Options height and radius can be used to change
those defaults and option resolution can be used to change the number of edges
of the base; higher values will make it look like a cone. By default, the axis will be
along the x axis, the middle point of the axis will be at the origin and the vertex on
the positive side of the x axis; use options orientation and center to change those
defaults.

Example. This shows a pyramid that starts rotating around the z axis when the play
button is pressed.

806 Maxima 5.35.1 Manual

(%i1) scene([cone, [orientation,0,30,0], [tstep,100],
[animate,orientation,makelist([0,30,i],i,5,360,5)]], restart)$

Scene objectcube [cube, options]
A cube with edges of 1 unit and faces parallel to the xy, xz and yz planes. The lengths
of the three edges can be changed with options xlength, ylength and zlength, turn-
ing it into a rectangular box and the faces can be rotated with option orientation.

Scene objectcylinder [cylinder, options]
Creates a regular prism with height equal to 1 and a hexagonal base with vertices
0.5 units away from the axis. Options height and radius can be used to change
those defaults and option resolution can be used to change the number of edges of
the base; higher values will make it look like a cylinder. The default height can be
changed with the option height. By default, the axis will be along the x axis and the
middle point of the axis will be at the origin; use options orientation and center

to change those defaults.

Scene objectsphere [sphere, options]
A sphere with default radius of 0.5 units and center at the origin.

52.3.3 Scene object’s options

Object optionanimation [animation, property, positions]
property should be one of the following 4 object’s properties: origin, scale,
position or orientation and positions should be a list of points. When the play
button is pressed, the object property will be changed sequentially through all the
values in the list, at intervals of time given by the option tstep. The rewind button
can be used to point at the start of the sequence making the animation restart after
the play button is pressed again.

See also track.

Object optioncapping [capping, number]
Default value: 1

In a cone or a cylinder, it defines whether the base (or bases) will be shown. A value
of 1 for number makes the base visible and a value of 0 makes it invisible.

Object optioncenter [center, point]
Default value: [0, 0, 0]

The coordinates of the object’s geometric center, with respect to its position. point
can be a list with 3 real numbers, or 3 real numbers separated by commas. In a
cylinder, cone or cube it will be at half its height and in a sphere at its center.

Chapter 52: dynamics 807

Object optioncolor [color, colorname]
Default value: white

The color of the object. It accepts color names or hexadecimal red-green-blue strings
(see the color option of plot2d).

Object optionendphi [endphi, angle]
Default value: 180

In a sphere phi is the angle on the vertical plane that passes through the z axis,
measured from the positive part of the z axis. angle must be a number between 0
and 180 that sets the final value of phi at which the surface will end. A value smaller
than 180 will eliminate a part of the sphere’s surface.

See also startphi and phiresolution.

Object optionendtheta [endtheta, angle]
Default value: 360

In a sphere theta is the angle on the horizontal plane (longitude), measured from the
positive part of the x axis. angle must be a number between 0 and 360 that sets
the final value of theta at which the surface will end. A value smaller than 360 will
eliminate a part of the sphere’s surface.

See also starttheta and thetaresolution.

Object optionheight [height, value]
Default value: 1

value must be a positive number which sets the height of a cone or a cylinder.

Object optionlinewidth [linewidth, value]
Default value: 1

The width of the lines, when option wireframe is used. value must be a positive
number.

Object optionopacity [opacity, value]
Default value: 1

value must be a number between 0 and 1. The lower the number, the more transparent
the object will become. The default value of 1 means a completely opaque object.

Object optionorientation [orientation, angles]
Default value: [0, 0, 0]

Three angles by which the object will be rotated with respect to the three axis. angles
can be a list with 3 real numbers, or 3 real numbers separated by commas. Example:
[0, 0, 90] rotates the x axis of the object to the y axis of the reference frame.

808 Maxima 5.35.1 Manual

Object optionorigin [origin, point]
Default value: [0, 0, 0]

The coordinates of the object’s origin, with respect to which its other dimensions are
defined. point can be a list with 3 real numbers, or 3 real numbers separated by
commas.

Object optionphiresolution [phiresolution, num]
Default value:

The number of sub-intervals into which the phi angle interval from startphi to
endphi will be divided. num must be a positive integer.

See also startphi and endphi.

Object optionpoints [points]
Only the vertices of the triangulation used to render the surface will be shown. Ex-
ample: [sphere, [points]]

See also surface and wireframe.

Object optionpointsize [pointsize, value]
Default value: 1

The size of the points, when option points is used. value must be a positive number.

Object optionposition [position, point]
Default value: [0, 0, 0]

The coordinates of the object’s position. point can be a list with 3 real numbers, or
3 real numbers separated by commas.

Object optionradius [radius, value]
Default value: 0.5

The radius or a sphere or the distance from the axis to the base’s vertices in a cylinder
or a cone. value must be a positive number.

Object optionresolution [resolution, number]
Default value: 6

number must be a integer greater than 2 that sets the number of edges in the base
of a cone or a cylinder.

Object optionscale [scale, factors]
Default value: [1, 1, 1]

Three numbers by which the object will be scaled with respect to the three axis.
factors can be a list with 3 real numbers, or 3 real numbers separated by commas.
Example: [2, 0.5, 1] enlarges the object to twice its size in the x direction, reduces
the dimensions in the y direction to half and leaves the z dimensions unchanged.

Chapter 52: dynamics 809

Object optionstartphi [startphi, angle]
Default value: 0

In a sphere phi is the angle on the vertical plane that passes through the z axis,
measured from the positive part of the z axis. angle must be a number between 0 and
180 that sets the initial value of phi at which the surface will start. A value bigger
than 0 will eliminate a part of the sphere’s surface.

See also endphi and phiresolution.

Object optionstarttheta [starttheta, angle]
Default value: 0

In a sphere theta is the angle on the horizontal plane (longitude), measured from the
positive part of the x axis. angle must be a number between 0 and 360 that sets
the initial value of theta at which the surface will start. A value bigger than 0 will
eliminate a part of the sphere’s surface.

See also endtheta and thetaresolution.

Object optionsurface [surface]
The surfaces of the object will be rendered and the lines and points of the triangulation
used to build the surface will not be shown. This is the default behavior, which can
be changed using either the option points or wireframe.

Object optionthetaresolution [thetaresolution, num]
Default value:

The number of sub-intervals into which the theta angle interval from starttheta to
endtheta will be divided. num must be a positive integer.

See also starttheta and endtheta.

Object optiontrack [track, positions]
positions should be a list of points. When the play button is pressed, the object
position will be changed sequentially through all the points in the list, at intervals of
time given by the option tstep, leaving behind a track of the object’s trajectory. The
rewind button can be used to point at the start of the sequence making the animation
restart after the play button is pressed again.

Example. This will show the trajectory of a ball thrown with speed of 5 m/s, at an
angle of 45 degrees, when the air resistance can be neglected:

(%i1) p: makelist ([0,4*t,4*t- 9.8*t^2/2], t, 0, 0.82, 0.01)$

(%i2) ball: [sphere, [radius,0.1], [color,red], [track,p]]$

(%i3) ground: [cube, [xlength,2], [ylength,4], [zlength,0.2],
[position,0,1.5,-0.2],[color,green]]$

(%i4) scene (ball, ground)$

See also animation.

810 Maxima 5.35.1 Manual

Object optionxlength [xlength, length]
Default value: 1

The height of a cube in the x direction. length must be a positive number. See also
ylength and zlength.

Object optionylength [ylength, length]
Default value: 1

The height of a cube in the y direction. length must be a positive number. See also
xlength and zlength.

Object optionzlength [zlength, length]
Default value: 1

The height of a cube in z the direction. length must be a positive number. See also
xlength and ylength.

Object optionwireframe [wireframe]
Only the edges of the triangulation used to render the surface will be shown. Example:
[cube, [wireframe]]

See also surface and points.

Chapter 53: ezunits 811

53 ezunits

53.1 Introduction to ezunits

ezunits is a package for working with dimensional quantities, including some functions
for dimensional analysis. ezunits can carry out arithmetic operations on dimensional
quantities and unit conversions. The built-in units include Systeme Internationale (SI) and
US customary units, and other units can be declared. See also physical_constants, a
collection of physical constants.

load(ezunits) loads this package. demo(ezunits) displays several examples. The
convenience function known_units returns a list of the built-in and user-declared units,
while display_known_unit_conversions displays the set of known conversions in an easy-
to-read format.

An expression a‘b represents a dimensional quantity, with a indicating a nondimensional
quantity and b indicating the dimensional units. A symbol can be used as a unit without
declaring it as such; unit symbols need not have any special properties. The quantity and
unit of an expression a‘b can be extracted by the qty and units functions, respectively.

A symbol may be declared to be a dimensional quantity, with specified quantity or
specified units or both.

An expression a‘b‘‘c converts from unit b to unit c. ezunits has built-in conversions
for SI base units, SI derived units, and some non-SI units. Unit conversions not already
known to ezunits can be declared. The unit conversions known to ezunits are specified
by the global variable known_unit_conversions, which comprises built-in and user-defined
conversions. Conversions for products, quotients, and powers of units are derived from the
set of known unit conversions.

As Maxima generally prefers exact numbers (integers or rationals) to inexact (float or
bigfloat), so ezunits preserves exact numbers when they appear in dimensional quantities.
All built-in unit conversions are expressed in terms of exact numbers; inexact numbers in
declared conversions are coerced to exact.

There is no preferred system for display of units; input units are not converted to other
units unless conversion is explicitly indicated. ezunits recognizes the prefixes m-, k-, M,
and G- (for milli-, kilo-, mega-, and giga-) as applied to SI base units and SI derived units,
but such prefixes are applied only when indicated by an explicit conversion.

Arithmetic operations on dimensional quantities are carried out by conventional rules
for such operations.

(x‘a) ∗ (y‘b) is equal to (x ∗ y)‘(a ∗ b).
(x‘a) + (y‘a) is equal to (x+ y)‘a.

(x‘a)y is equal to xy‘ay when y is nondimensional.

ezunits does not require that units in a sum have the same dimensions; such terms are
not added together, and no error is reported.

ezunits includes functions for elementary dimensional analysis, namely the fundamental
dimensions and fundamental units of a dimensional quantity, and computation of dimen-
sionless quantities and natural units. The functions for dimensional analysis were adapted
from similar functions in another package, written by Barton Willis.

812 Maxima 5.35.1 Manual

For the purpose of dimensional analysis, a list of fundamental dimensions and an asso-
ciated list of fundamental units are maintained; by default the fundamental dimensions are
length, mass, time, charge, temperature, and quantity, and the fundamental units are the
associated SI units, but other fundamental dimensions and units can be declared.

53.2 Introduction to physical constants

physical_constants is a collection of physical constants, copied from CODATA
2006 recommended values (http://physics.nist.gov/constants). load(physical_

constants) loads this package, and loads ezunits also, if it is not already loaded.

A physical constant is represented as a symbol which has a property which is the constant
value. The constant value is a dimensional quantity, as represented by ezunits. The
function constvalue fetches the constant value; the constant value is not the ordinary
value of the symbol, so symbols of physical constants persist in evaluated expressions until
their values are fetched by constvalue.

physical_constants includes some auxilliary information, namely, a description string
for each constant, an estimate of the error of its numerical value, and a property for TeX
display. To identify physical constants, each symbol has the physical_constant property;
propvars(physical_constant) therefore shows the list of all such symbols.

physical_constants comprises the following constants.

%c speed of light in vacuum

%mu_0 magnetic constant

%e_0 electric constant

%Z_0 characteristic impedance of vacuum

%G Newtonian constant of gravitation

%h Planck constant

%h_bar Planck constant

%m_P Planck mass

%T_P Planck temperature

%l_P Planck length

%t_P Planck time

%%e elementary charge

%Phi_0 magnetic flux quantum

%G_0 conductance quantum

%K_J Josephson constant

%R_K von Klitzing constant

%mu_B Bohr magneton

%mu_N nuclear magneton

Chapter 53: ezunits 813

%alpha fine-structure constant

%R_inf Rydberg constant

%a_0 Bohr radius

%E_h Hartree energy

%ratio_h_me

quantum of circulation

%m_e electron mass

%N_A Avogadro constant

%m_u atomic mass constant

%F Faraday constant

%R molar gas constant

%%k Boltzmann constant

%V_m molar volume of ideal gas

%n_0 Loschmidt constant

%ratio_S0_R

Sackur-Tetrode constant (absolute entropy constant)

%sigma Stefan-Boltzmann constant

%c_1 first radiation constant

%c_1L first radiation constant for spectral radiance

%c_2 second radiation constant

%b Wien displacement law constant

%b_prime Wien displacement law constant

Reference: http://physics.nist.gov/constants

Examples:

The list of all symbols which have the physical_constant property.

(%i1) load (physical_constants)$
(%i2) propvars (physical_constant);
(%o2) [%c, %mu_0, %e_0, %Z_0, %G, %h, %h_bar, %m_P, %T_P, %l_P,
%t_P, %%e, %Phi_0, %G_0, %K_J, %R_K, %mu_B, %mu_N, %alpha,
%R_inf, %a_0, %E_h, %ratio_h_me, %m_e, %N_A, %m_u, %F, %R, %%k,
%V_m, %n_0, %ratio_S0_R, %sigma, %c_1, %c_1L, %c_2, %b, %b_prime]

Properties of the physical constant %c.

(%i1) load (physical_constants)$
(%i2) constantp (%c);
(%o2) true
(%i3) get (%c, description);
(%o3) speed of light in vacuum

814 Maxima 5.35.1 Manual

(%i4) constvalue (%c);
m

(%o4) 299792458 ‘ -
s

(%i5) get (%c, RSU);
(%o5) 0
(%i6) tex (%c);
$$c$$
(%o6) false

The energy equivalent of 1 pound-mass. The symbol %c persists until its value is fetched
by constvalue.

(%i1) load (physical_constants)$
(%i2) m * %c^2;

2
(%o2) %c m
(%i3) %, m = 1 ‘ lbm;

2
(%o3) %c ‘ lbm
(%i4) constvalue (%);

2
lbm m

(%o4) 89875517873681764 ‘ ------
2
s

(%i5) E : % ‘‘ J;
Computing conversions to base units; may take a moment.

366838848464007200
(%o5) ------------------ ‘ J

9
(%i6) E ‘‘ GJ;

458548560580009
(%o6) --------------- ‘ GJ

11250000
(%i7) float (%);
(%o7) 4.0759872051556356e+7 ‘ GJ

53.3 Functions and Variables for ezunits

Operator‘
The dimensional quantity operator. An expression a‘b represents a dimensional quan-
tity, with a indicating a nondimensional quantity and b indicating the dimensional
units. A symbol can be used as a unit without declaring it as such; unit symbols need
not have any special properties. The quantity and unit of an expression a‘b can be
extracted by the qty and units functions, respectively.

Arithmetic operations on dimensional quantities are carried out by conventional rules
for such operations.

(x‘a) ∗ (y‘b) is equal to (x ∗ y)‘(a ∗ b).

Chapter 53: ezunits 815

(x‘a) + (y‘a) is equal to (x+ y)‘a.

(x‘a)y is equal to xy‘ay when y is nondimensional.

ezunits does not require that units in a sum have the same dimensions; such terms
are not added together, and no error is reported.

load(ezunits) enables this operator.

Examples:

SI (Systeme Internationale) units.

(%i1) load (ezunits)$
(%i2) foo : 10 ‘ m;
(%o2) 10 ‘ m
(%i3) qty (foo);
(%o3) 10
(%i4) units (foo);
(%o4) m
(%i5) dimensions (foo);
(%o5) length

"Customary" units.

(%i1) load (ezunits)$
(%i2) bar : x ‘ acre;
(%o2) x ‘ acre
(%i3) dimensions (bar);

2
(%o3) length
(%i4) fundamental_units (bar);

2
(%o4) m

Units ad hoc.

(%i1) load (ezunits)$
(%i2) baz : 3 ‘ sheep + 8 ‘ goat + 1 ‘ horse;
(%o2) 8 ‘ goat + 3 ‘ sheep + 1 ‘ horse
(%i3) subst ([sheep = 3*goat, horse = 10*goat], baz);
(%o3) 27 ‘ goat
(%i4) baz2 : 1000‘gallon/fortnight;

gallon
(%o4) 1000 ‘ ---------

fortnight
(%i5) subst (fortnight = 14*day, baz2);

500 gallon
(%o5) --- ‘ ------

7 day

Arithmetic operations on dimensional quantities.

(%i1) load (ezunits)$
(%i2) 100 ‘ kg + 200 ‘ kg;
(%o2) 300 ‘ kg
(%i3) 100 ‘ m^3 - 100 ‘ m^3;

3

816 Maxima 5.35.1 Manual

(%o3) 0 ‘ m
(%i4) (10 ‘ kg) * (17 ‘ m/s^2);

kg m
(%o4) 170 ‘ ----

2
s

(%i5) (x ‘ m) / (y ‘ s);
x m

(%o5) - ‘ -
y s

(%i6) (a ‘ m)^2;
2 2

(%o6) a ‘ m

Operator‘‘
The unit conversion operator. An expression a‘b‘‘c converts from unit b to unit c.
ezunits has built-in conversions for SI base units, SI derived units, and some non-
SI units. Unit conversions not already known to ezunits can be declared. The
unit conversions known to ezunits are specified by the global variable known_unit_

conversions, which comprises built-in and user-defined conversions. Conversions
for products, quotients, and powers of units are derived from the set of known unit
conversions.

There is no preferred system for display of units; input units are not converted to
other units unless conversion is explicitly indicated. ezunits does not attempt to
simplify units by prefixes (milli-, centi-, deci-, etc) unless such conversion is explicitly
indicated.

load(ezunits) enables this operator.

Examples:

The set of known unit conversions.

(%i1) load (ezunits)$
(%i2) display2d : false$
(%i3) known_unit_conversions;
(%o3) {acre = 4840*yard^2,Btu = 1055*J,cfm = feet^3/minute,

cm = m/100,day = 86400*s,feet = 381*m/1250,ft = feet,
g = kg/1000,gallon = 757*l/200,GHz = 1000000000*Hz,
GOhm = 1000000000*Ohm,GPa = 1000000000*Pa,
GWb = 1000000000*Wb,Gg = 1000000*kg,Gm = 1000000000*m,
Gmol = 1000000*mol,Gs = 1000000000*s,ha = hectare,
hectare = 100*m^2,hour = 3600*s,Hz = 1/s,inch = feet/12,
km = 1000*m,kmol = 1000*mol,ks = 1000*s,l = liter,
lbf = pound_force,lbm = pound_mass,liter = m^3/1000,
metric_ton = Mg,mg = kg/1000000,MHz = 1000000*Hz,
microgram = kg/1000000000,micrometer = m/1000000,
micron = micrometer,microsecond = s/1000000,
mile = 5280*feet,minute = 60*s,mm = m/1000,
mmol = mol/1000,month = 2629800*s,MOhm = 1000000*Ohm,
MPa = 1000000*Pa,ms = s/1000,MWb = 1000000*Wb,

Chapter 53: ezunits 817

Mg = 1000*kg,Mm = 1000000*m,Mmol = 1000000000*mol,
Ms = 1000000*s,ns = s/1000000000,ounce = pound_mass/16,
oz = ounce,Ohm = s*J/C^2,
pound_force = 32*ft*pound_mass/s^2,
pound_mass = 200*kg/441,psi = pound_force/inch^2,
Pa = N/m^2,week = 604800*s,Wb = J/A,yard = 3*feet,
year = 31557600*s,C = s*A,F = C^2/J,GA = 1000000000*A,
GC = 1000000000*C,GF = 1000000000*F,GH = 1000000000*H,
GJ = 1000000000*J,GK = 1000000000*K,GN = 1000000000*N,
GS = 1000000000*S,GT = 1000000000*T,GV = 1000000000*V,
GW = 1000000000*W,H = J/A^2,J = m*N,kA = 1000*A,
kC = 1000*C,kF = 1000*F,kH = 1000*H,kHz = 1000*Hz,
kJ = 1000*J,kK = 1000*K,kN = 1000*N,kOhm = 1000*Ohm,
kPa = 1000*Pa,kS = 1000*S,kT = 1000*T,kV = 1000*V,
kW = 1000*W,kWb = 1000*Wb,mA = A/1000,mC = C/1000,
mF = F/1000,mH = H/1000,mHz = Hz/1000,mJ = J/1000,
mK = K/1000,mN = N/1000,mOhm = Ohm/1000,mPa = Pa/1000,
mS = S/1000,mT = T/1000,mV = V/1000,mW = W/1000,
mWb = Wb/1000,MA = 1000000*A,MC = 1000000*C,
MF = 1000000*F,MH = 1000000*H,MJ = 1000000*J,
MK = 1000000*K,MN = 1000000*N,MS = 1000000*S,
MT = 1000000*T,MV = 1000000*V,MW = 1000000*W,
N = kg*m/s^2,R = 5*K/9,S = 1/Ohm,T = J/(m^2*A),V = J/C,
W = J/s}

Elementary unit conversions.

(%i1) load (ezunits)$
(%i2) 1 ‘ ft ‘‘ m;
Computing conversions to base units; may take a moment.

381
(%o2) ---- ‘ m

1250
(%i3) %, numer;
(%o3) 0.3048 ‘ m
(%i4) 1 ‘ kg ‘‘ lbm;

441
(%o4) --- ‘ lbm

200
(%i5) %, numer;
(%o5) 2.205 ‘ lbm
(%i6) 1 ‘ W ‘‘ Btu/hour;

720 Btu
(%o6) --- ‘ ----

211 hour
(%i7) %, numer;

Btu
(%o7) 3.412322274881517 ‘ ----

hour
(%i8) 100 ‘ degC ‘‘ degF;
(%o8) 212 ‘ degF

818 Maxima 5.35.1 Manual

(%i9) -40 ‘ degF ‘‘ degC;
(%o9) (- 40) ‘ degC
(%i10) 1 ‘ acre*ft ‘‘ m^3;

60228605349 3
(%o10) ----------- ‘ m

48828125
(%i11) %, numer;

3
(%o11) 1233.48183754752 ‘ m

Coercing quantities in feet and meters to one or the other.

(%i1) load (ezunits)$
(%i2) 100 ‘ m + 100 ‘ ft;
(%o2) 100 ‘ m + 100 ‘ ft
(%i3) (100 ‘ m + 100 ‘ ft) ‘‘ ft;
Computing conversions to base units; may take a moment.

163100
(%o3) ------ ‘ ft

381
(%i4) %, numer;
(%o4) 428.0839895013123 ‘ ft
(%i5) (100 ‘ m + 100 ‘ ft) ‘‘ m;

3262
(%o5) ---- ‘ m

25
(%i6) %, numer;
(%o6) 130.48 ‘ m

Dimensional analysis to find fundamental dimensions and fundamental units.

(%i1) load (ezunits)$
(%i2) foo : 1 ‘ acre * ft;
(%o2) 1 ‘ acre ft
(%i3) dimensions (foo);

3
(%o3) length
(%i4) fundamental_units (foo);

3
(%o4) m
(%i5) foo ‘‘ m^3;
Computing conversions to base units; may take a moment.

60228605349 3
(%o5) ----------- ‘ m

48828125
(%i6) %, numer;

3
(%o6) 1233.48183754752 ‘ m

Declared unit conversions.

(%i1) load (ezunits)$
(%i2) declare_unit_conversion (MMBtu = 10^6*Btu, kW = 1000*W);
(%o2) done

Chapter 53: ezunits 819

(%i3) declare_unit_conversion (kWh = kW*hour, MWh = 1000*kWh,
bell = 1800*s);

(%o3) done
(%i4) 1 ‘ kW*s ‘‘ MWh;
Computing conversions to base units; may take a moment.

1
(%o4) ------- ‘ MWh

3600000
(%i5) 1 ‘ kW/m^2 ‘‘ MMBtu/bell/ft^2;

1306449 MMBtu
(%o5) ---------- ‘ --------

8242187500 2
bell ft

Functionconstvalue (x)
Shows the value and the units of one of the constants declared by package physical_

constants, which includes a list of physical constants, or of a new constant declared
in package ezunits (see declare_constvalue).

Note that constant values as recognized by constvalue are separate from values
declared by numerval and recognized by constantp.

Example:

(%i1) load (physical_constants)$
(%i2) constvalue (%G);

3
m

(%o2) 6.67428 ‘ -----
2

kg s
(%i3) get (’%G, ’description);
(%o3) Newtonian constant of gravitation

Functiondeclare constvalue (a, x)
Declares the value of a constant to be used in package ezunits. This function should
be loaded with load(ezunits).

Example:

(%i1) load (ezunits)$
(%i2) declare_constvalue (FOO, 100 ‘ lbm / acre);

lbm
(%o2) 100 ‘ ----

acre
(%i3) FOO * (50 ‘ acre);
(%o3) 50 FOO ‘ acre
(%i4) constvalue (%);
(%o4) 5000 ‘ lbm

Functionremove constvalue (a)
Reverts the effect of declare_constvalue. This function should be loaded with
load(ezunits).

820 Maxima 5.35.1 Manual

Functionunits (x)
Returns the units of a dimensional quantity x, or returns 1 if x is nondimensional.

x may be a literal dimensional expression a‘b, a symbol with declared units via
declare_units, or an expression containing either or both of those.

This function should be loaded with load(ezunits).

Example:

(%i1) load (ezunits)$
(%i2) foo : 100 ‘ kg;
(%o2) 100 ‘ kg
(%i3) bar : x ‘ m/s;

m
(%o3) x ‘ -

s
(%i4) units (foo);
(%o4) kg
(%i5) units (bar);

m
(%o5) -

s
(%i6) units (foo * bar);

kg m
(%o6) ----

s
(%i7) units (foo / bar);

kg s
(%o7) ----

m
(%i8) units (foo^2);

2
(%o8) kg

Functiondeclare units (a, u)
Declares that units should return units u for a, where u is an expression. This
function should be loaded with load(ezunits).

Example:

(%i1) load (ezunits)$
(%i2) units (aa);
(%o2) 1
(%i3) declare_units (aa, J);
(%o3) J
(%i4) units (aa);
(%o4) J
(%i5) units (aa^2);

2
(%o5) J
(%i6) foo : 100 ‘ kg;
(%o6) 100 ‘ kg

Chapter 53: ezunits 821

(%i7) units (aa * foo);
(%o7) kg J

Functionqty (x)
Returns the nondimensional part of a dimensional quantity x, or returns x if x is
nondimensional. x may be a literal dimensional expression a‘b, a symbol with declared
quantity, or an expression containing either or both of those.

This function should be loaded with load(ezunits).

Example:

(%i1) load (ezunits)$
(%i2) foo : 100 ‘ kg;
(%o2) 100 ‘ kg
(%i3) qty (foo);
(%o3) 100
(%i4) bar : v ‘ m/s;

m
(%o4) v ‘ -

s
(%i5) foo * bar;

kg m
(%o5) 100 v ‘ ----

s
(%i6) qty (foo * bar);
(%o6) 100 v

Functiondeclare qty (a, x)
Declares that qty should return x for symbol a, where x is a nondimensional quantity.
This function should be loaded with load(ezunits).

Example:

(%i1) load (ezunits)$
(%i2) declare_qty (aa, xx);
(%o2) xx
(%i3) qty (aa);
(%o3) xx
(%i4) qty (aa^2);

2
(%o4) xx
(%i5) foo : 100 ‘ kg;
(%o5) 100 ‘ kg
(%i6) qty (aa * foo);
(%o6) 100 xx

Functionunitp (x)
Returns true if x is a literal dimensional expression, a symbol declared dimensional,
or an expression in which the main operator is declared dimensional. unitp returns
false otherwise.

822 Maxima 5.35.1 Manual

load(ezunits) loads this function.

Examples:

unitp applied to a literal dimensional expression.

(%i1) load (ezunits)$
(%i2) unitp (100 ‘ kg);
(%o2) true

unitp applied to a symbol declared dimensional.

(%i1) load (ezunits)$
(%i2) unitp (foo);
(%o2) false
(%i3) declare (foo, dimensional);
(%o3) done
(%i4) unitp (foo);
(%o4) true

unitp applied to an expression in which the main operator is declared dimensional.

(%i1) load (ezunits)$
(%i2) unitp (bar (x, y, z));
(%o2) false
(%i3) declare (bar, dimensional);
(%o3) done
(%i4) unitp (bar (x, y, z));
(%o4) true

Functiondeclare unit conversion (u = v, ...)
Appends equations u = v, ... to the list of unit conversions known to the unit
conversion operator ‘‘. u and v are both multiplicative terms, in which any variables
are units, or both literal dimensional expressions.

At present, it is necessary to express conversions such that the left-hand side of each
equation is a simple unit (not a multiplicative expression) or a literal dimensional
expression with the quantity equal to 1 and the unit being a simple unit. This
limitation might be relaxed in future versions.

known_unit_conversions is the list of known unit conversions.

This function should be loaded with load(ezunits).

Examples:

Unit conversions expressed by equations of multiplicative terms.

(%i1) load (ezunits)$
(%i2) declare_unit_conversion (nautical_mile = 1852 * m,

fortnight = 14 * day);
(%o2) done
(%i3) 100 ‘ nautical_mile / fortnight ‘‘ m/s;
Computing conversions to base units; may take a moment.

463 m
(%o3) ---- ‘ -

3024 s

Unit conversions expressed by equations of literal dimensional expressions.

Chapter 53: ezunits 823

(%i1) load (ezunits)$
(%i2) declare_unit_conversion (1 ‘ fluid_ounce = 2 ‘ tablespoon);
(%o2) done
(%i3) declare_unit_conversion (1 ‘ tablespoon = 3 ‘ teaspoon);
(%o3) done
(%i4) 15 ‘ fluid_ounce ‘‘ teaspoon;
Computing conversions to base units; may take a moment.
(%o4) 90 ‘ teaspoon

Functiondeclare dimensions (a 1, d 1, ..., a n, d n)
Declares a 1, ..., a n to have dimensions d 1, ..., d n, respectively.

Each a k is a symbol or a list of symbols. If it is a list, then every symbol in a k is
declared to have dimension d k.

load(ezunits) loads these functions.

Examples:

(%i1) load (ezunits) $
(%i2) declare_dimensions ([x, y, z], length, [t, u], time);
(%o2) done
(%i3) dimensions (y^2/u);

2
length

(%o3) -------
time

(%i4) fundamental_units (y^2/u);
0 errors, 0 warnings

2
m

(%o4) --
s

Functionremove dimensions (a 1, ..., a n)
Reverts the effect of declare_dimensions. This function should be loaded with
load(ezunits).

Functiondeclare fundamental dimensions (d 1, d 2, d 3, ...)
Functionremove fundamental dimensions (d 1, d 2, d 3, ...)

Global variablefundamental dimensions
declare_fundamental_dimensions declares fundamental dimensions. Symbols d 1,
d 2, d 3, ... are appended to the list of fundamental dimensions, if they are not
already on the list.

remove_fundamental_dimensions reverts the effect of declare_fundamental_

dimensions.

fundamental_dimensions is the list of fundamental dimensions. By default, the list
comprises several physical dimensions.

load(ezunits) loads these functions.

Examples:

824 Maxima 5.35.1 Manual

(%i1) load (ezunits) $
(%i2) fundamental_dimensions;
(%o2) [length, mass, time, current, temperature, quantity]
(%i3) declare_fundamental_dimensions (money, cattle, happiness);
(%o3) done
(%i4) fundamental_dimensions;
(%o4) [length, mass, time, current, temperature, quantity,

money, cattle, happiness]
(%i5) remove_fundamental_dimensions (cattle, happiness);
(%o5) done
(%i6) fundamental_dimensions;
(%o6) [length, mass, time, current, temperature, quantity, money]

Functiondeclare fundamental units (u 1, d 1, ..., u n, d n)
Functionremove fundamental units (u 1, ..., u n)

declare_fundamental_units declares u 1, ..., u n to have dimensions d 1, ..., d n,
respectively. All arguments must be symbols.

After calling declare_fundamental_units, dimensions(u k) returns d k for each
argument u 1, ..., u n, and fundamental_units(d k) returns u k for each argument
d 1, ..., d n.

remove_fundamental_units reverts the effect of declare_fundamental_units.

load(ezunits) loads these functions.

Examples:

(%i1) load (ezunits) $
(%i2) declare_fundamental_dimensions (money, cattle, happiness);
(%o2) done
(%i3) declare_fundamental_units (dollar, money, goat, cattle,

smile, happiness);
(%o3) [dollar, goat, smile]
(%i4) dimensions (100 ‘ dollar/goat/km^2);

money
(%o4) --------------

2
cattle length

(%i5) dimensions (x ‘ smile/kg);
happiness

(%o5) ---------
mass

(%i6) fundamental_units (money*cattle/happiness);
0 errors, 0 warnings

dollar goat
(%o6) -----------

smile

Functiondimensions (x)
Functiondimensions as list (x)

dimensions returns the dimensions of the dimensional quantity x as an expression
comprising products and powers of base dimensions.

Chapter 53: ezunits 825

dimensions_as_list returns the dimensions of the dimensional quantity x as a list,
in which each element is an integer which indicates the power of the corresponding
base dimension in the dimensions of x.

load(ezunits) loads these functions.

Examples:

(%i1) load (ezunits)$
(%i2) dimensions (1000 ‘ kg*m^2/s^3);

2
length mass

(%o2) ------------
3

time
(%i3) declare_units (foo, acre*ft/hour);

acre ft
(%o3) -------

hour
(%i4) dimensions (foo);

3
length

(%o4) -------
time

(%i1) load (ezunits)$
(%i2) fundamental_dimensions;
(%o2) [length, mass, time, charge, temperature, quantity]
(%i3) dimensions_as_list (1000 ‘ kg*m^2/s^3);
(%o3) [2, 1, - 3, 0, 0, 0]
(%i4) declare_units (foo, acre*ft/hour);

acre ft
(%o4) -------

hour
(%i5) dimensions_as_list (foo);
(%o5) [3, 0, - 1, 0, 0, 0]

Functionfundamental units
fundamental_units (x)
fundamental_units ()

fundamental_units(x) returns the units associated with the fundamental dimen-
sions of x. as determined by dimensions(x).

x may be a literal dimensional expression a‘b, a symbol with declared units via
declare_units, or an expression containing either or both of those.

fundamental_units() returns the list of all known fundamental units, as declared
by declare_fundamental_units.

load(ezunits) loads this function.

Examples:

(%i1) load (ezunits)$
(%i2) fundamental_units ();

826 Maxima 5.35.1 Manual

(%o2) [m, kg, s, A, K, mol]
(%i3) fundamental_units (100 ‘ mile/hour);

m
(%o3) -

s
(%i4) declare_units (aa, g/foot^2);

g
(%o4) -----

2
foot

(%i5) fundamental_units (aa);
kg

(%o5) --
2
m

Functiondimensionless (L)
Returns a basis for the dimensionless quantities which can be formed from a list L of
dimensional quantities.

load(ezunits) loads this function.

Examples:

(%i1) load (ezunits) $
(%i2) dimensionless ([x ‘ m, y ‘ m/s, z ‘ s]);
0 errors, 0 warnings
0 errors, 0 warnings

y z
(%o2) [---]

x

Dimensionless quantities derived from fundamental physical quantities. Note that the
first element on the list is proportional to the fine-structure constant.

(%i1) load (ezunits) $
(%i2) load (physical_constants) $
(%i3) dimensionless([%h_bar, %m_e, %m_P, %%e, %c, %e_0]);
0 errors, 0 warnings
0 errors, 0 warnings

2
%%e %m_e

(%o3) [--------------, ----]
%c %e_0 %h_bar %m_P

Functionnatural unit (expr, [v 1, ..., v n])
Finds exponents e 1, ..., e n such that dimension(expr) = dimension(v 1^e 1 ...

v n^e n).

load(ezunits) loads this function.

Examples:

Chapter 54: f90 827

54 f90

54.1 Functions and Variables for f90

Functionf90 (expr 1, . . . , expr n)
Prints one or more expressions expr 1, . . . , expr n as a Fortran 90 program. Output
is printed to the standard output.

f90 prints output in the so-called "free form" input format for Fortran 90: there is
no special attention to column positions. Long lines are split at a fixed width with
the ampersand & continuation character.

load(f90) loads this function. See also the function fortran.

Examples:

(%i1) load (f90)$
(%i2) foo : expand ((xxx + yyy + 7)^4);

4 3 3 2 2 2
(%o2) yyy + 4 xxx yyy + 28 yyy + 6 xxx yyy + 84 xxx yyy

2 3 2
+ 294 yyy + 4 xxx yyy + 84 xxx yyy + 588 xxx yyy + 1372 yyy

4 3 2
+ xxx + 28 xxx + 294 xxx + 1372 xxx + 2401
(%i3) f90 (’foo = foo);
foo = yyy**4+4*xxx*yyy**3+28*yyy**3+6*xxx**2*yyy**2+84*xxx*yyy**2&
+294*yyy**2+4*xxx**3*yyy+84*xxx**2*yyy+588*xxx*yyy+1372*yyy+xxx**&
4+28*xxx**3+294*xxx**2+1372*xxx+2401
(%o3) false

Multiple expressions. Capture standard output into a file via the with_stdout func-
tion.

(%i1) load (f90)$
(%i2) foo : sin (3*x + 1) - cos (7*x - 2);
(%o2) sin(3 x + 1) - cos(7 x - 2)
(%i3) with_stdout ("foo.f90",

f90 (x=0.25, y=0.625, ’foo=foo, ’stop, ’end));
(%o3) false
(%i4) printfile ("foo.f90");
x = 0.25
y = 0.625
foo = sin(3*x+1)-cos(7*x-2)
stop
end
(%o4) foo.f90

828 Maxima 5.35.1 Manual

Chapter 55: finance 829

55 finance

55.1 Introduction to finance

This is the Finance Package (Ver 0.1).

In all the functions, rate is the compound interest rate, num is the number of periods
and must be positive and flow refers to cash flow so if you have an Output the flow is
negative and positive for Inputs.

Note that before using the functions defined in this package, you have to load it writing
load(finance)$.

Author: Nicolas Guarin Zapata.

55.2 Functions and Variables for finance

Functiondays360 (year1,month1,day1,year2,month2,day2)
Calculates the distance between 2 dates, assuming 360 days years, 30 days months.

Example:

(%i1) load(finance)$
(%i2) days360(2008,12,16,2007,3,25);
(%o2) - 621

Functionfv (rate,PV,num)
We can calculate the future value of a Present one given a certain interest rate. rate
is the interest rate, PV is the present value and num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) fv(0.12,1000,3);
(%o2) 1404.928

Functionpv (rate,FV,num)
We can calculate the present value of a Future one given a certain interest rate. rate
is the interest rate, FV is the future value and num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) pv(0.12,1000,3);
(%o2) 711.7802478134108

Functiongraph flow (val)
Plots the money flow in a time line, the positive values are in blue and upside; the
negative ones are in red and downside. The direction of the flow is given by the sign
of the value. val is a list of flow values.

Example:

(%i1) load(finance)$
(%i2) graph_flow([-5000,-3000,800,1300,1500,2000])$

830 Maxima 5.35.1 Manual

Functionannuity pv (rate,PV,num)
We can calculate the annuity knowing the present value (like an amount), it is a
constant and periodic payment. rate is the interest rate, PV is the present value and
num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) annuity_pv(0.12,5000,10);
(%o2) 884.9208207992202

Functionannuity fv (rate,FV,num)
We can calculate the annuity knowing the desired value (future value), it is a constant
and periodic payment. rate is the interest rate, FV is the future value and num is
the number of periods.

Example:

(%i1) load(finance)$
(%i2) annuity_fv(0.12,65000,10);
(%o2) 3703.970670389863

Functiongeo annuity pv (rate,growing rate,PV,num)
We can calculate the annuity knowing the present value (like an amount), in a growing
periodic payment. rate is the interest rate, growing rate is the growing rate, PV is
the present value and num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) geo_annuity_pv(0.14,0.05,5000,10);
(%o2) 802.6888176505123

Functiongeo annuity fv (rate,growing rate,FV,num)
We can calculate the annuity knowing the desired value (future value), in a growing
periodic payment. rate is the interest rate, growing rate is the growing rate, FV is
the future value and num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) geo_annuity_fv(0.14,0.05,5000,10);
(%o2) 216.5203395312695

Functionamortization (rate,amount,num)
Amortization table determined by a specific rate. rate is the interest rate, amount is
the amount value, and num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) amortization(0.05,56000,12)$

"n" "Balance" "Interest" "Amortization" "Payment"
0.000 56000.000 0.000 0.000 0.000
1.000 52481.777 2800.000 3518.223 6318.223

Chapter 55: finance 831

2.000 48787.643 2624.089 3694.134 6318.223
3.000 44908.802 2439.382 3878.841 6318.223
4.000 40836.019 2245.440 4072.783 6318.223
5.000 36559.597 2041.801 4276.422 6318.223
6.000 32069.354 1827.980 4490.243 6318.223
7.000 27354.599 1603.468 4714.755 6318.223
8.000 22404.106 1367.730 4950.493 6318.223
9.000 17206.088 1120.205 5198.018 6318.223
10.000 11748.170 860.304 5457.919 6318.223
11.000 6017.355 587.408 5730.814 6318.223
12.000 0.000 300.868 6017.355 6318.223

Functionarit amortization (rate,increment,amount,num)
The amortization table determined by a specific rate and with growing payment can
be claculated by arit_amortization. Notice that the payment is not constant, it
presents an arithmetic growing, increment is then the difference between two con-
secutive rows in the "Payment" column. rate is the interest rate, increment is the
increment, amount is the amount value, and num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) arit_amortization(0.05,1000,56000,12)$

"n" "Balance" "Interest" "Amortization" "Payment"
0.000 56000.000 0.000 0.000 0.000
1.000 57403.679 2800.000 -1403.679 1396.321
2.000 57877.541 2870.184 -473.863 2396.321
3.000 57375.097 2893.877 502.444 3396.321
4.000 55847.530 2868.755 1527.567 4396.321
5.000 53243.586 2792.377 2603.945 5396.321
6.000 49509.443 2662.179 3734.142 6396.321
7.000 44588.594 2475.472 4920.849 7396.321
8.000 38421.703 2229.430 6166.892 8396.321
9.000 30946.466 1921.085 7475.236 9396.321
10.000 22097.468 1547.323 8848.998 10396.321
11.000 11806.020 1104.873 10291.448 11396.321
12.000 -0.000 590.301 11806.020 12396.321

Functiongeo amortization (rate,growing rate,amount,num)
The amortization table determined by rate, amount, and number of periods can be
found by geo_amortization. Notice that the payment is not constant, it presents a
geometric growing, growing rate is then the quotient between two consecutive rows
in the "Payment" column. rate is the interest rate, amount is the amount value, and
num is the number of periods.

Example:

(%i1) load(finance)$
(%i2) geo_amortization(0.05,0.03,56000,12)$

"n" "Balance" "Interest" "Amortization" "Payment"
0.000 56000.000 0.000 0.000 0.000

832 Maxima 5.35.1 Manual

1.000 53365.296 2800.000 2634.704 5434.704
2.000 50435.816 2668.265 2929.480 5597.745
3.000 47191.930 2521.791 3243.886 5765.677
4.000 43612.879 2359.596 3579.051 5938.648
5.000 39676.716 2180.644 3936.163 6116.807
6.000 35360.240 1983.836 4316.475 6300.311
7.000 30638.932 1768.012 4721.309 6489.321
8.000 25486.878 1531.947 5152.054 6684.000
9.000 19876.702 1274.344 5610.176 6884.520
10.000 13779.481 993.835 6097.221 7091.056
11.000 7164.668 688.974 6614.813 7303.787
12.000 0.000 358.233 7164.668 7522.901

Functionsaving (rate,amount,num)
The table that represents the values in a constant and periodic saving can be found
by saving. amount represents the desired quantity and num the number of periods
to save.

Example:

(%i1) load(finance)$
(%i2) saving(0.15,12000,15)$

"n" "Balance" "Interest" "Payment"
0.000 0.000 0.000 0.000
1.000 252.205 0.000 252.205
2.000 542.240 37.831 252.205
3.000 875.781 81.336 252.205
4.000 1259.352 131.367 252.205
5.000 1700.460 188.903 252.205
6.000 2207.733 255.069 252.205
7.000 2791.098 331.160 252.205
8.000 3461.967 418.665 252.205
9.000 4233.467 519.295 252.205
10.000 5120.692 635.020 252.205
11.000 6141.000 768.104 252.205
12.000 7314.355 921.150 252.205
13.000 8663.713 1097.153 252.205
14.000 10215.474 1299.557 252.205
15.000 12000.000 1532.321 252.205

Functionnpv (rate,val)
Calculates the present value of a value series to evaluate the viability in a project.
val is a list of varying cash flows.

Example:

(%i1) load(finance)$
(%i2) npv(0.25,[100,500,323,124,300]);
(%o2) 714.4703999999999

Chapter 55: finance 833

Functionirr (val,IO)
IRR (Internal Rate of Return) is the value of rate which makes Net Present Value
zero. flowValues is a list of varying cash flows, I0 is the initial investment.

Example:

(%i1) load(finance)$
(%i2) res:irr([-5000,0,800,1300,1500,2000],0)$
(%i3) rhs(res[1][1]);
(%o3) .03009250374237132

Functionbenefit cost (rate,input,output)
Calculates the ratio Benefit/Cost. Benefit is the Net Present Value (NPV) of the
inputs, and Cost is the Net Present Value (NPV) of the outputs. Notice that if there
is not an input or output value in a specific period, the input/output would be a zero
for that period. rate is the interest rate, input is a list of input values, and output is
a list of output values.

Example:

(%i1) load(finance)$
(%i2) benefit_cost(0.24,[0,300,500,150],[100,320,0,180]);
(%o2) 1.427249324905784

834 Maxima 5.35.1 Manual

Chapter 56: fractals 835

56 fractals

56.1 Introduction to fractals

This package defines some well known fractals:

- with random IFS (Iterated Function System): the Sierpinsky triangle, a Tree and a
Fern

- Complex Fractals: the Mandelbrot and Julia Sets

- the Koch snowflake sets

- Peano maps: the Sierpinski and Hilbert maps

Author: José Ramı́rez Labrador.

For questions, suggestions and bugs, please feel free to contact me at

pepe DOT ramirez AAATTT uca DOT es

56.2 Definitions for IFS fractals

Some fractals can be generated by iterative applications of contractive affine transfor-
mations in a random way; see

Hoggar S. G., "Mathematics for computer graphics", Cambridge University Press 1994.

We define a list with several contractive affine transformations, and we randomly select
the transformation in a recursive way. The probability of the choice of a transformation
must be related with the contraction ratio.

You can change the transformations and find another fractal

Functionsierpinskiale (n)
Sierpinski Triangle: 3 contractive maps; .5 contraction constant and translations; all
maps have the same contraction ratio. Argument n must be great enougth, 10000 or
greater.

Example:

(%i1) load(fractals)$
(%i2) n: 10000$
(%i3) plot2d([discrete,sierpinskiale(n)], [style,dots])$

Functiontreefale (n)
3 contractive maps all with the same contraction ratio. Argument n must be great
enougth, 10000 or greater.

Example:

(%i1) load(fractals)$
(%i2) n: 10000$
(%i3) plot2d([discrete,treefale(n)], [style,dots])$

836 Maxima 5.35.1 Manual

Functionfernfale (n)
4 contractive maps, the probability to choice a transformation must be related with
the contraction ratio. Argument n must be great enougth, 10000 or greater.

Example:

(%i1) load(fractals)$
(%i2) n: 10000$
(%i3) plot2d([discrete,fernfale(n)], [style,dots])$

56.3 Definitions for complex fractals

Functionmandelbrot set (x, y)
Mandelbrot set.

Example:

This program is time consuming because it must make a lot of operations; the com-
puting time is also related with the number of grid points.

(%i1) load(fractals)$
(%i2) plot3d (mandelbrot_set, [x, -2.5, 1], [y, -1.5, 1.5],

[gnuplot_preamble, "set view map"],
[gnuplot_pm3d, true],
[grid, 150, 150])$

Functionjulia set (x, y)
Julia sets.

This program is time consuming because it must make a lot of operations; the com-
puting time is also related with the number of grid points.

Example:

(%i1) load(fractals)$
(%i2) plot3d (julia_set, [x, -2, 1], [y, -1.5, 1.5],

[gnuplot_preamble, "set view map"],
[gnuplot_pm3d, true],
[grid, 150, 150])$

See also julia_parameter.

Optional variablejulia parameter
Default value: %i

Complex parameter for Julia fractals. Its default value is %i; we suggest the values
-.745+%i*.113002, -.39054-%i*.58679, -.15652+%i*1.03225, -.194+%i*.6557

and .011031-%i*.67037.

Functionjulia sin (x, y)
While function julia_set implements the transformation julia_parameter+z^2,
function julia_sin implements julia_parameter*sin(z). See source code for more
details.

This program runs slowly because it calculates a lot of sines.

Chapter 56: fractals 837

Example:

This program is time consuming because it must make a lot of operations; the com-
puting time is also related with the number of grid points.

(%i1) load(fractals)$
(%i2) julia_parameter:1+.1*%i$
(%i3) plot3d (julia_sin, [x, -2, 2], [y, -3, 3],

[gnuplot_preamble, "set view map"],
[gnuplot_pm3d, true],
[grid, 150, 150])$

See also julia_parameter.

56.4 Definitions for Koch snowflakes

Functionsnowmap (ent, nn)
Koch snowflake sets. Function snowmap plots the snow Koch map over the vertex
of an initial closed polygonal, in the complex plane. Here the orientation of the
polygon is important. Argument nn is the number of recursive applications of Koch
transformation; nn must be small (5 or 6).

Examples:

(%i1) load(fractals)$
(%i2) plot2d([discrete,

snowmap([1,exp(%i*%pi*2/3),exp(-%i*%pi*2/3),1],4)])$
(%i3) plot2d([discrete,

snowmap([1,exp(-%i*%pi*2/3),exp(%i*%pi*2/3),1],4)])$
(%i4) plot2d([discrete, snowmap([0,1,1+%i,%i,0],4)])$
(%i5) plot2d([discrete, snowmap([0,%i,1+%i,1,0],4)])$

56.5 Definitions for Peano maps

Continuous curves that cover an area. Warning: the number of points exponentially
grows with n.

Functionhilbertmap (nn)
Hilbert map. Argument nn must be small (5, for example). Maxima can crash if nn
is 7 or greater.

Example:

(%i1) load(fractals)$
(%i2) plot2d([discrete,hilbertmap(6)])$

Functionsierpinskimap (nn)
Sierpinski map. Argument nn must be small (5, for example). Maxima can crash if
nn is 7 or greater.

Example:

(%i1) load(fractals)$
(%i2) plot2d([discrete,sierpinskimap(6)])$

838 Maxima 5.35.1 Manual

Chapter 57: ggf 839

57 ggf

57.1 Functions and Variables for ggf

Option variableGGFINFINITY
Default value: 3

This is an option variable for function ggf.

When computing the continued fraction of the generating function, a partial quotient
having a degree (strictly) greater than GGFINFINITY will be discarded and the
current convergent will be considered as the exact value of the generating function;
most often the degree of all partial quotients will be 0 or 1; if you use a greater
value, then you should give enough terms in order to make the computation accurate
enough.

See also ggf.

Option variableGGFCFMAX
Default value: 3

This is an option variable for function ggf.

When computing the continued fraction of the generating function, if no good result
has been found (see the GGFINFINITY flag) after having computed GGFCFMAX
partial quotients, the generating function will be considered as not being a fraction
of two polynomials and the function will exit. Put freely a greater value for more
complicated generating functions.

See also ggf.

Functionggf (l)
Compute the generating function (if it is a fraction of two polynomials) of a sequence,
its first terms being given. l is a list of numbers.

The solution is returned as a fraction of two polynomials. If no solution has been
found, it returns with done.

This function is controlled by global variables GGFINFINITY and GGFCFMAX. See
also GGFINFINITY and GGFCFMAX.

To use this function write first load("ggf").

840 Maxima 5.35.1 Manual

Chapter 58: graphs 841

58 graphs

58.1 Introduction to graphs

The graphs package provides graph and digraph data structure for Maxima. Graphs
and digraphs are simple (have no multiple edges nor loops), although digraphs can have a
directed edge from u to v and a directed edge from v to u.

Internally graphs are represented by adjacency lists and implemented as a lisp structures.
Vertices are identified by their ids (an id is an integer). Edges/arcs are represented by lists
of length 2. Labels can be assigned to vertices of graphs/digraphs and weights can be
assigned to edges/arcs of graphs/digraphs.

There is a draw_graph function for drawing graphs. Graphs are drawn using a force
based vertex positioning algorithm. draw_graph can also use graphviz programs available
from http://www.graphviz.org. draw_graph is based on the maxima draw package.

To use the graphs package, first load it with load(graphs).

58.2 Functions and Variables for graphs

58.2.1 Building graphs

Functioncreate graph
create_graph (v list, e list)
create_graph (n, e list)
create_graph (v list, e list, directed)

Creates a new graph on the set of vertices v list and with edges e list.

v list is a list of vertices ([v1, v2,..., vn]) or a list of vertices together with vertex
labels ([[v1,l1], [v2,l2],..., [vn,ln]]).

n is the number of vertices. Vertices will be identified by integers from 0 to n-1.

e list is a list of edges ([e1, e2,..., em]) or a list of edges together with edge-weights
([[e1, w1], ..., [em, wm]]).

If directed is not false, a directed graph will be returned.

Example 1: create a cycle on 3 vertices:

(%i1) load (graphs)$
(%i2) g : create_graph([1,2,3], [[1,2], [2,3], [1,3]])$
(%i3) print_graph(g)$
Graph on 3 vertices with 3 edges.
Adjacencies:
3 : 1 2
2 : 3 1
1 : 3 2

Example 2: create a cycle on 3 vertices with edge weights:

842 Maxima 5.35.1 Manual

(%i1) load (graphs)$
(%i2) g : create_graph([1,2,3], [[[1,2], 1.0], [[2,3], 2.0],

[[1,3], 3.0]])$
(%i3) print_graph(g)$
Graph on 3 vertices with 3 edges.
Adjacencies:
3 : 1 2
2 : 3 1
1 : 3 2

Example 3: create a directed graph:

(%i1) load (graphs)$
(%i2) d : create_graph(

[1,2,3,4],
[
[1,3], [1,4],
[2,3], [2,4]
],
’directed = true)$

(%i3) print_graph(d)$
Digraph on 4 vertices with 4 arcs.
Adjacencies:

4 :
3 :
2 : 4 3
1 : 4 3

Functioncopy graph (g)
Returns a copy of the graph g.

Functioncirculant graph (n, d)
Returns the circulant graph with parameters n and d.

Example:

(%i1) load (graphs)$
(%i2) g : circulant_graph(10, [1,3])$
(%i3) print_graph(g)$
Graph on 10 vertices with 20 edges.
Adjacencies:

9 : 2 6 0 8
8 : 1 5 9 7
7 : 0 4 8 6
6 : 9 3 7 5
5 : 8 2 6 4
4 : 7 1 5 3
3 : 6 0 4 2
2 : 9 5 3 1
1 : 8 4 2 0
0 : 7 3 9 1

Chapter 58: graphs 843

Functionclebsch graph ()
Returns the Clebsch graph.

Functioncomplement graph (g)
Returns the complement of the graph g.

Functioncomplete bipartite graph (n, m)
Returns the complete bipartite graph on n+m vertices.

Functioncomplete graph (n)
Returns the complete graph on n vertices.

Functioncycle digraph (n)
Returns the directed cycle on n vertices.

Functioncycle graph (n)
Returns the cycle on n vertices.

Functioncuboctahedron graph (n)
Returns the cuboctahedron graph.

Functioncube graph (n)
Returns the n-dimensional cube.

Functiondodecahedron graph ()
Returns the dodecahedron graph.

Functionempty graph (n)
Returns the empty graph on n vertices.

Functionflower snark (n)
Returns the flower graph on 4n vertices.

Example:

(%i1) load (graphs)$
(%i2) f5 : flower_snark(5)$
(%i3) chromatic_index(f5);
(%o3) 4

Functionfrom adjacency matrix (A)
Returns the graph represented by its adjacency matrix A.

Functionfrucht graph ()
Returns the Frucht graph.

844 Maxima 5.35.1 Manual

Functiongraph product (g1, g1)
Returns the direct product of graphs g1 and g2.

Example:

(%i1) load (graphs)$
(%i2) grid : graph_product(path_graph(3), path_graph(4))$
(%i3) draw_graph(grid)$

Functiongraph union (g1, g1)
Returns the union (sum) of graphs g1 and g2.

Functiongrid graph (n, m)
Returns the n x m grid.

Functiongreat rhombicosidodecahedron graph ()
Returns the great rhombicosidodecahedron graph.

Functiongreat rhombicuboctahedron graph ()
Returns the great rhombicuboctahedron graph.

Functiongrotzch graph ()
Returns the Grotzch graph.

Functionheawood graph ()
Returns the Heawood graph.

Functionicosahedron graph ()
Returns the icosahedron graph.

Functionicosidodecahedron graph ()
Returns the icosidodecahedron graph.

Functioninduced subgraph (V, g)
Returns the graph induced on the subset V of vertices of the graph g.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) V : [0,1,2,3,4]$
(%i4) g : induced_subgraph(V, p)$
(%i5) print_graph(g)$
Graph on 5 vertices with 5 edges.
Adjacencies:

4 : 3 0
3 : 2 4
2 : 1 3
1 : 0 2
0 : 1 4

Chapter 58: graphs 845

Functionline graph (g)
Returns the line graph of the graph g.

Functionmake graph
make_graph (vrt, f)
make_graph (vrt, f, oriented)

Creates a graph using a predicate function f.

vrt is a list/set of vertices or an integer. If vrt is an integer, then vertices of the graph
will be integers from 1 to vrt.

f is a predicate function. Two vertices a and b will be connected if f(a,b)=true.

If directed is not false, then the graph will be directed.

Example 1:

(%i1) load(graphs)$
(%i2) g : make_graph(powerset({1,2,3,4,5}, 2), disjointp)$
(%i3) is_isomorphic(g, petersen_graph());
(%o3) true
(%i4) get_vertex_label(1, g);
(%o4) {1, 2}

Example 2:

(%i1) load(graphs)$
(%i2) f(i, j) := is (mod(j, i)=0)$
(%i3) g : make_graph(20, f, directed=true)$
(%i4) out_neighbors(4, g);
(%o4) [8, 12, 16, 20]
(%i5) in_neighbors(18, g);
(%o5) [1, 2, 3, 6, 9]

Functionmycielski graph (g)
Returns the mycielskian graph of the graph g.

Functionnew graph ()
Returns the graph with no vertices and no edges.

Functionpath digraph (n)
Returns the directed path on n vertices.

Functionpath graph (n)
Returns the path on n vertices.

Functionpetersen graph
petersen_graph ()
petersen_graph (n, d)

Returns the petersen graph P {n,d}. The default values for n and d are n=5 and d=2.

Functionrandom bipartite graph (a, b, p)
Returns a random bipartite graph on a+b vertices. Each edge is present with proba-
bility p.

846 Maxima 5.35.1 Manual

Functionrandom digraph (n, p)
Returns a random directed graph on n vertices. Each arc is present with probability
p.

Functionrandom regular graph
random_regular_graph (n)
random_regular_graph (n, d)

Returns a random d-regular graph on n vertices. The default value for d is d=3.

Functionrandom graph (n, p)
Returns a random graph on n vertices. Each edge is present with probability p.

Functionrandom graph1 (n, m)
Returns a random graph on n vertices and random m edges.

Functionrandom network (n, p, w)
Returns a random network on n vertices. Each arc is present with probability p and
has a weight in the range [0,w]. The function returns a list [network, source,

sink].

Example:

(%i1) load (graphs)$
(%i2) [net, s, t] : random_network(50, 0.2, 10.0);
(%o2) [DIGRAPH, 50, 51]
(%i3) max_flow(net, s, t)$
(%i4) first(%);
(%o4) 27.65981397932507

Functionrandom tournament (n)
Returns a random tournament on n vertices.

Functionrandom tree (n)
Returns a random tree on n vertices.

Functionsmall rhombicosidodecahedron graph ()
Returns the small rhombicosidodecahedron graph.

Functionsmall rhombicuboctahedron graph ()
Returns the small rhombicuboctahedron graph.

Functionsnub cube graph ()
Returns the snub cube graph.

Functionsnub dodecahedron graph ()
Returns the snub dodecahedron graph.

Chapter 58: graphs 847

Functiontruncated cube graph ()
Returns the truncated cube graph.

Functiontruncated dodecahedron graph ()
Returns the truncated dodecahedron graph.

Functiontruncated icosahedron graph ()
Returns the truncated icosahedron graph.

Functiontruncated tetrahedron graph ()
Returns the truncated tetrahedron graph.

Functiontutte graph ()
Returns the Tutte graph.

Functionunderlying graph (g)
Returns the underlying graph of the directed graph g.

Functionwheel graph (n)
Returns the wheel graph on n+1 vertices.

58.2.2 Graph properties

Functionadjacency matrix (gr)
Returns the adjacency matrix of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) c5 : cycle_graph(4)$
(%i3) adjacency_matrix(c5);

[0 1 0 1]
[]
[1 0 1 0]

(%o3) []
[0 1 0 1]
[]
[1 0 1 0]

Functionaverage degree (gr)
Returns the average degree of vertices in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) average_degree(grotzch_graph());

40
(%o2) --

11

848 Maxima 5.35.1 Manual

Functionbiconnected components (gr)
Returns the (vertex sets of) 2-connected components of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph(

[1,2,3,4,5,6,7],
[
[1,2],[2,3],[2,4],[3,4],
[4,5],[5,6],[4,6],[6,7]
])$

(%i3) biconnected_components(g);
(%o3) [[6, 7], [4, 5, 6], [1, 2], [2, 3, 4]]

Functionbipartition (gr)
Returns a bipartition of the vertices of the graph gr or an empty list if gr is not
bipartite.

Example:

(%i1) load (graphs)$
(%i2) h : heawood_graph()$
(%i3) [A,B]:bipartition(h);
(%o3) [[8, 12, 6, 10, 0, 2, 4], [13, 5, 11, 7, 9, 1, 3]]
(%i4) draw_graph(h, show_vertices=A, program=circular)$

Functionchromatic index (gr)
Returns the chromatic index of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) chromatic_index(p);
(%o3) 4

Functionchromatic number (gr)
Returns the chromatic number of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) chromatic_number(cycle_graph(5));
(%o2) 3
(%i3) chromatic_number(cycle_graph(6));
(%o3) 2

Functionclear edge weight (e, gr)
Removes the weight of the edge e in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph(3, [[[0,1], 1.5], [[1,2], 1.3]])$

Chapter 58: graphs 849

(%i3) get_edge_weight([0,1], g);
(%o3) 1.5
(%i4) clear_edge_weight([0,1], g)$
(%i5) get_edge_weight([0,1], g);
(%o5) 1

Functionclear vertex label (v, gr)
Removes the label of the vertex v in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph([[0,"Zero"], [1, "One"]], [[0,1]])$
(%i3) get_vertex_label(0, g);
(%o3) Zero
(%i4) clear_vertex_label(0, g);
(%o4) done
(%i5) get_vertex_label(0, g);
(%o5) false

Functionconnected components (gr)
Returns the (vertex sets of) connected components of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g: graph_union(cycle_graph(5), path_graph(4))$
(%i3) connected_components(g);
(%o3) [[1, 2, 3, 4, 0], [8, 7, 6, 5]]

Functiondiameter (gr)
Returns the diameter of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) diameter(dodecahedron_graph());
(%o2) 5

Functionedge coloring (gr)
Returns an optimal coloring of the edges of the graph gr.

The function returns the chromatic index and a list representing the coloring of the
edges of gr.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) [ch_index, col] : edge_coloring(p);
(%o3) [4, [[[0, 5], 3], [[5, 7], 1], [[0, 1], 1], [[1, 6], 2],
[[6, 8], 1], [[1, 2], 3], [[2, 7], 4], [[7, 9], 2], [[2, 3], 2],
[[3, 8], 3], [[5, 8], 2], [[3, 4], 1], [[4, 9], 4], [[6, 9], 3],
[[0, 4], 2]]]
(%i4) assoc([0,1], col);

850 Maxima 5.35.1 Manual

(%o4) 1
(%i5) assoc([0,5], col);
(%o5) 3

Functiondegree sequence (gr)
Returns the list of vertex degrees of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) degree_sequence(random_graph(10, 0.4));
(%o2) [2, 2, 2, 2, 2, 2, 3, 3, 3, 3]

Functionedge connectivity (gr)
Returns the edge-connectivity of the graph gr.

See also min_edge_cut.

Functionedges (gr)
Returns the list of edges (arcs) in a (directed) graph gr.

Example:

(%i1) load (graphs)$
(%i2) edges(complete_graph(4));
(%o2) [[2, 3], [1, 3], [1, 2], [0, 3], [0, 2], [0, 1]]

Functionget edge weight
get_edge_weight (e, gr)
get_edge_weight (e, gr, ifnot)

Returns the weight of the edge e in the graph gr.

If there is no weight assigned to the edge, the function returns 1. If the edge is not
present in the graph, the function signals an error or returns the optional argument
ifnot.

Example:

(%i1) load (graphs)$
(%i2) c5 : cycle_graph(5)$
(%i3) get_edge_weight([1,2], c5);
(%o3) 1
(%i4) set_edge_weight([1,2], 2.0, c5);
(%o4) done
(%i5) get_edge_weight([1,2], c5);
(%o5) 2.0

Functionget vertex label (v, gr)
Returns the label of the vertex v in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph([[0,"Zero"], [1, "One"]], [[0,1]])$
(%i3) get_vertex_label(0, g);
(%o3) Zero

Chapter 58: graphs 851

Functiongraph charpoly (gr, x)
Returns the characteristic polynomial (in variable x) of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_charpoly(p, x), factor;

5 4
(%o3) (x - 3) (x - 1) (x + 2)

Functiongraph center (gr)
Returns the center of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : grid_graph(5,5)$
(%i3) graph_center(g);
(%o3) [12]

Functiongraph eigenvalues (gr)
Returns the eigenvalues of the graph gr. The function returns eigenvalues in the same
format as maxima eigenvalue function.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_eigenvalues(p);
(%o3) [[3, - 2, 1], [1, 4, 5]]

Functiongraph periphery (gr)
Returns the periphery of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : grid_graph(5,5)$
(%i3) graph_periphery(g);
(%o3) [24, 20, 4, 0]

Functiongraph size (gr)
Returns the number of edges in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_size(p);
(%o3) 15

Functiongraph order (gr)
Returns the number of vertices in the graph gr.

Example:

852 Maxima 5.35.1 Manual

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) graph_order(p);
(%o3) 10

Functiongirth (gr)
Returns the length of the shortest cycle in gr.

Example:

(%i1) load (graphs)$
(%i2) g : heawood_graph()$
(%i3) girth(g);
(%o3) 6

Functionhamilton cycle (gr)
Returns the Hamilton cycle of the graph gr or an empty list if gr is not hamiltonian.

Example:

(%i1) load (graphs)$
(%i2) c : cube_graph(3)$
(%i3) hc : hamilton_cycle(c);
(%o3) [7, 3, 2, 6, 4, 0, 1, 5, 7]
(%i4) draw_graph(c, show_edges=vertices_to_cycle(hc))$

Functionhamilton path (gr)
Returns the Hamilton path of the graph gr or an empty list if gr does not have a
Hamilton path.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) hp : hamilton_path(p);
(%o3) [0, 5, 7, 2, 1, 6, 8, 3, 4, 9]
(%i4) draw_graph(p, show_edges=vertices_to_path(hp))$

Functionisomorphism (gr1, gr2)
Returns a an isomorphism between graphs/digraphs gr1 and gr2. If gr1 and gr2 are
not isomorphic, it returns an empty list.

Example:

(%i1) load (graphs)$
(%i2) clk5:complement_graph(line_graph(complete_graph(5)))$
(%i3) isomorphism(clk5, petersen_graph());
(%o3) [9 -> 0, 2 -> 1, 6 -> 2, 5 -> 3, 0 -> 4, 1 -> 5, 3 -> 6,

4 -> 7, 7 -> 8, 8 -> 9]

Functionin neighbors (v, gr)
Returns the list of in-neighbors of the vertex v in the directed graph gr.

Example:

Chapter 58: graphs 853

(%i1) load (graphs)$
(%i2) p : path_digraph(3)$
(%i3) in_neighbors(2, p);
(%o3) [1]
(%i4) out_neighbors(2, p);
(%o4) []

Functionis biconnected (gr)
Returns true if gr is 2-connected and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_biconnected(cycle_graph(5));
(%o2) true
(%i3) is_biconnected(path_graph(5));
(%o3) false

Functionis bipartite (gr)
Returns true if gr is bipartite (2-colorable) and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_bipartite(petersen_graph());
(%o2) false
(%i3) is_bipartite(heawood_graph());
(%o3) true

Functionis connected (gr)
Returns true if the graph gr is connected and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_connected(graph_union(cycle_graph(4), path_graph(3)));
(%o2) false

Functionis digraph (gr)
Returns true if gr is a directed graph and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_digraph(path_graph(5));
(%o2) false
(%i3) is_digraph(path_digraph(5));
(%o3) true

Functionis edge in graph (e, gr)
Returns true if e is an edge (arc) in the (directed) graph g and false otherwise.

Example:

854 Maxima 5.35.1 Manual

(%i1) load (graphs)$
(%i2) c4 : cycle_graph(4)$
(%i3) is_edge_in_graph([2,3], c4);
(%o3) true
(%i4) is_edge_in_graph([3,2], c4);
(%o4) true
(%i5) is_edge_in_graph([2,4], c4);
(%o5) false
(%i6) is_edge_in_graph([3,2], cycle_digraph(4));
(%o6) false

Functionis graph (gr)
Returns true if gr is a graph and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_graph(path_graph(5));
(%o2) true
(%i3) is_graph(path_digraph(5));
(%o3) false

Functionis graph or digraph (gr)
Returns true if gr is a graph or a directed graph and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_graph_or_digraph(path_graph(5));
(%o2) true
(%i3) is_graph_or_digraph(path_digraph(5));
(%o3) true

Functionis isomorphic (gr1, gr2)
Returns true if graphs/digraphs gr1 and gr2 are isomorphic and false otherwise.

See also isomorphism.

Example:

(%i1) load (graphs)$
(%i2) clk5:complement_graph(line_graph(complete_graph(5)))$
(%i3) is_isomorphic(clk5, petersen_graph());
(%o3) true

Functionis planar (gr)
Returns true if gr is a planar graph and false otherwise.

The algorithm used is the Demoucron’s algorithm, which is a quadratic time algo-
rithm.

Example:

(%i1) load (graphs)$
(%i2) is_planar(dodecahedron_graph());

Chapter 58: graphs 855

(%o2) true
(%i3) is_planar(petersen_graph());
(%o3) false
(%i4) is_planar(petersen_graph(10,2));
(%o4) true

Functionis sconnected (gr)
Returns true if the directed graph gr is strongly connected and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_sconnected(cycle_digraph(5));
(%o2) true
(%i3) is_sconnected(path_digraph(5));
(%o3) false

Functionis vertex in graph (v, gr)
Returns true if v is a vertex in the graph g and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) c4 : cycle_graph(4)$
(%i3) is_vertex_in_graph(0, c4);
(%o3) true
(%i4) is_vertex_in_graph(6, c4);
(%o4) false

Functionis tree (gr)
Returns true if gr is a tree and false otherwise.

Example:

(%i1) load (graphs)$
(%i2) is_tree(random_tree(4));
(%o2) true
(%i3) is_tree(graph_union(random_tree(4), random_tree(5)));
(%o3) false

Functionlaplacian matrix (gr)
Returns the laplacian matrix of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) laplacian_matrix(cycle_graph(5));

[2 - 1 0 0 - 1]
[]
[- 1 2 - 1 0 0]
[]

(%o2) [0 - 1 2 - 1 0]
[]
[0 0 - 1 2 - 1]
[]
[- 1 0 0 - 1 2]

856 Maxima 5.35.1 Manual

Functionmax clique (gr)
Returns a maximum clique of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : random_graph(100, 0.5)$
(%i3) max_clique(g);
(%o3) [6, 12, 31, 36, 52, 59, 62, 63, 80]

Functionmax degree (gr)
Returns the maximal degree of vertices of the graph gr and a vertex of maximal
degree.

Example:

(%i1) load (graphs)$
(%i2) g : random_graph(100, 0.02)$
(%i3) max_degree(g);
(%o3) [6, 79]
(%i4) vertex_degree(95, g);
(%o4) 2

Functionmax flow (net, s, t)
Returns a maximum flow through the network net with the source s and the sink t.

The function returns the value of the maximal flow and a list representing the weights
of the arcs in the optimal flow.

Example:

(%i1) load (graphs)$
(%i2) net : create_graph(
[1,2,3,4,5,6],
[[[1,2], 1.0],
[[1,3], 0.3],
[[2,4], 0.2],
[[2,5], 0.3],
[[3,4], 0.1],
[[3,5], 0.1],
[[4,6], 1.0],
[[5,6], 1.0]],
directed=true)$

(%i3) [flow_value, flow] : max_flow(net, 1, 6);
(%o3) [0.7, [[[1, 2], 0.5], [[1, 3], 0.2], [[2, 4], 0.2],
[[2, 5], 0.3], [[3, 4], 0.1], [[3, 5], 0.1], [[4, 6], 0.3],
[[5, 6], 0.4]]]
(%i4) fl : 0$
(%i5) for u in out_neighbors(1, net)

do fl : fl + assoc([1, u], flow)$
(%i6) fl;
(%o6) 0.7

Chapter 58: graphs 857

Functionmax independent set (gr)
Returns a maximum independent set of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) mi : max_independent_set(d);
(%o3) [0, 3, 5, 9, 10, 11, 18, 19]
(%i4) draw_graph(d, show_vertices=mi)$

Functionmax matching (gr)
Returns a maximum matching of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) m : max_matching(d);
(%o3) [[5, 7], [8, 9], [6, 10], [14, 19], [13, 18], [12, 17],

[11, 16], [0, 15], [3, 4], [1, 2]]
(%i4) draw_graph(d, show_edges=m)$

Functionmin degree (gr)
Returns the minimum degree of vertices of the graph gr and a vertex of minimum
degree.

Example:

(%i1) load (graphs)$
(%i2) g : random_graph(100, 0.1)$
(%i3) min_degree(g);
(%o3) [3, 49]
(%i4) vertex_degree(21, g);
(%o4) 9

Functionmin edge cut (gr)
Returns the minimum edge cut in the graph gr.

See also edge_connectivity.

Functionmin vertex cover (gr)
Returns the minimum vertex cover of the graph gr.

Functionmin vertex cut (gr)
Returns the minimum vertex cut in the graph gr.

See also vertex_connectivity.

Functionminimum spanning tree (gr)
Returns the minimum spanning tree of the graph gr.

Example:

858 Maxima 5.35.1 Manual

(%i1) load (graphs)$
(%i2) g : graph_product(path_graph(10), path_graph(10))$
(%i3) t : minimum_spanning_tree(g)$
(%i4) draw_graph(g, show_edges=edges(t))$

Functionneighbors (v, gr)
Returns the list of neighbors of the vertex v in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : petersen_graph()$
(%i3) neighbors(3, p);
(%o3) [4, 8, 2]

Functionodd girth (gr)
Returns the length of the shortest odd cycle in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : graph_product(cycle_graph(4), cycle_graph(7))$
(%i3) girth(g);
(%o3) 4
(%i4) odd_girth(g);
(%o4) 7

Functionout neighbors (v, gr)
Returns the list of out-neighbors of the vertex v in the directed graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : path_digraph(3)$
(%i3) in_neighbors(2, p);
(%o3) [1]
(%i4) out_neighbors(2, p);
(%o4) []

Functionplanar embedding (gr)
Returns the list of facial walks in a planar embedding of gr and false if gr is not a
planar graph.

The graph gr must be biconnected.

The algorithm used is the Demoucron’s algorithm, which is a quadratic time algo-
rithm.

Example:

(%i1) load (graphs)$
(%i2) planar_embedding(grid_graph(3,3));
(%o2) [[3, 6, 7, 8, 5, 2, 1, 0], [4, 3, 0, 1], [3, 4, 7, 6],

[8, 7, 4, 5], [1, 2, 5, 4]]

Chapter 58: graphs 859

Functionprint graph (gr)
Prints some information about the graph gr.

Example:

(%i1) load (graphs)$
(%i2) c5 : cycle_graph(5)$
(%i3) print_graph(c5)$
Graph on 5 vertices with 5 edges.
Adjacencies:

4 : 0 3
3 : 4 2
2 : 3 1
1 : 2 0
0 : 4 1

(%i4) dc5 : cycle_digraph(5)$
(%i5) print_graph(dc5)$
Digraph on 5 vertices with 5 arcs.
Adjacencies:

4 : 0
3 : 4
2 : 3
1 : 2
0 : 1

(%i6) out_neighbors(0, dc5);
(%o6) [1]

Functionradius (gr)
Returns the radius of the graph gr.

Example:

(%i1) load (graphs)$
(%i2) radius(dodecahedron_graph());
(%o2) 5

Functionset edge weight (e, w, gr)
Assigns the weight w to the edge e in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : create_graph([1, 2], [[[1,2], 1.2]])$
(%i3) get_edge_weight([1,2], g);
(%o3) 1.2
(%i4) set_edge_weight([1,2], 2.1, g);
(%o4) done
(%i5) get_edge_weight([1,2], g);
(%o5) 2.1

Functionset vertex label (v, l, gr)
Assigns the label l to the vertex v in the graph gr.

Example:

860 Maxima 5.35.1 Manual

(%i1) load (graphs)$
(%i2) g : create_graph([[1, "One"], [2, "Two"]], [[1,2]])$
(%i3) get_vertex_label(1, g);
(%o3) One
(%i4) set_vertex_label(1, "oNE", g);
(%o4) done
(%i5) get_vertex_label(1, g);
(%o5) oNE

Functionshortest path (u, v, gr)
Returns the shortest path from u to v in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) path : shortest_path(0, 7, d);
(%o3) [0, 1, 19, 13, 7]
(%i4) draw_graph(d, show_edges=vertices_to_path(path))$

Functionshortest weighted path (u, v, gr)
Returns the length of the shortest weighted path and the shortest weighted path from
u to v in the graph gr.

The length of a weighted path is the sum of edge weights of edges in the path. If an
edge has no weight, then it has a default weight 1.

Example:

(%i1) load (graphs)$
(%i2) g: petersen_graph(20, 2)$
(%i3) for e in edges(g) do set_edge_weight(e, random(1.0), g)$
(%i4) shortest_weighted_path(0, 10, g);
(%o4) [2.575143920268482, [0, 20, 38, 36, 34, 32, 30, 10]]

Functionstrong components (gr)
Returns the strong components of a directed graph gr.

Example:

(%i1) load (graphs)$
(%i2) t : random_tournament(4)$
(%i3) strong_components(t);
(%o3) [[1], [0], [2], [3]]
(%i4) vertex_out_degree(3, t);
(%o4) 3

Functiontopological sort (dag)
Returns a topological sorting of the vertices of a directed graph dag or an empty list
if dag is not a directed acyclic graph.

Example:

Chapter 58: graphs 861

(%i1) load (graphs)$
(%i2) g:create_graph(

[1,2,3,4,5],
[
[1,2], [2,5], [5,3],
[5,4], [3,4], [1,3]
],
directed=true)$

(%i3) topological_sort(g);
(%o3) [1, 2, 5, 3, 4]

Functionvertex connectivity (g)
Returns the vertex connectivity of the graph g.

See also min_vertex_cut.

Functionvertex degree (v, gr)
Returns the degree of the vertex v in the graph gr.

Functionvertex distance (u, v, gr)
Returns the length of the shortest path between u and v in the (directed) graph gr.

Example:

(%i1) load (graphs)$
(%i2) d : dodecahedron_graph()$
(%i3) vertex_distance(0, 7, d);
(%o3) 4
(%i4) shortest_path(0, 7, d);
(%o4) [0, 1, 19, 13, 7]

Functionvertex eccentricity (v, gr)
Returns the eccentricity of the vertex v in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g:cycle_graph(7)$
(%i3) vertex_eccentricity(0, g);
(%o3) 3

Functionvertex in degree (v, gr)
Returns the in-degree of the vertex v in the directed graph gr.

Example:

(%i1) load (graphs)$
(%i2) p5 : path_digraph(5)$
(%i3) print_graph(p5)$
Digraph on 5 vertices with 4 arcs.
Adjacencies:
4 :
3 : 4

862 Maxima 5.35.1 Manual

2 : 3
1 : 2
0 : 1

(%i4) vertex_in_degree(4, p5);
(%o4) 1
(%i5) in_neighbors(4, p5);
(%o5) [3]

Functionvertex out degree (v, gr)
Returns the out-degree of the vertex v in the directed graph gr.

Example:

(%i1) load (graphs)$
(%i2) t : random_tournament(10)$
(%i3) vertex_out_degree(0, t);
(%o3) 2
(%i4) out_neighbors(0, t);
(%o4) [7, 1]

Functionvertices (gr)
Returns the list of vertices in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) vertices(complete_graph(4));
(%o2) [3, 2, 1, 0]

Functionvertex coloring (gr)
Returns an optimal coloring of the vertices of the graph gr.

The function returns the chromatic number and a list representing the coloring of the
vertices of gr.

Example:

(%i1) load (graphs)$
(%i2) p:petersen_graph()$
(%i3) vertex_coloring(p);
(%o3) [3, [[0, 2], [1, 3], [2, 2], [3, 3], [4, 1], [5, 3],

[6, 1], [7, 1], [8, 2], [9, 2]]]

Functionwiener index (gr)
Returns the Wiener index of the graph gr.

Example:

(%i2) wiener_index(dodecahedron_graph());
(%o2) 500

Chapter 58: graphs 863

58.2.3 Modifying graphs

Functionadd edge (e, gr)
Adds the edge e to the graph gr.

Example:

(%i1) load (graphs)$
(%i2) p : path_graph(4)$
(%i3) neighbors(0, p);
(%o3) [1]
(%i4) add_edge([0,3], p);
(%o4) done
(%i5) neighbors(0, p);
(%o5) [3, 1]

Functionadd edges (e list, gr)
Adds all edges in the list e list to the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : empty_graph(3)$
(%i3) add_edges([[0,1],[1,2]], g)$
(%i4) print_graph(g)$
Graph on 3 vertices with 2 edges.
Adjacencies:
2 : 1
1 : 2 0
0 : 1

Functionadd vertex (v, gr)
Adds the vertex v to the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g : path_graph(2)$
(%i3) add_vertex(2, g)$
(%i4) print_graph(g)$
Graph on 3 vertices with 1 edges.
Adjacencies:

2 :
1 : 0
0 : 1

Functionadd vertices (v list, gr)
Adds all vertices in the list v list to the graph gr.

Functionconnect vertices (v list, u list, gr)
Connects all vertices from the list v list with the vertices in the list u list in the graph
gr.

864 Maxima 5.35.1 Manual

v list and u list can be single vertices or lists of vertices.

Example:

(%i1) load (graphs)$
(%i2) g : empty_graph(4)$
(%i3) connect_vertices(0, [1,2,3], g)$
(%i4) print_graph(g)$
Graph on 4 vertices with 3 edges.
Adjacencies:
3 : 0
2 : 0
1 : 0
0 : 3 2 1

Functioncontract edge (e, gr)
Contracts the edge e in the graph gr.

Example:

(%i1) load (graphs)$
(%i2) g: create_graph(

8, [[0,3],[1,3],[2,3],[3,4],[4,5],[4,6],[4,7]])$
(%i3) print_graph(g)$
Graph on 8 vertices with 7 edges.
Adjacencies:
7 : 4
6 : 4
5 : 4
4 : 7 6 5 3
3 : 4 2 1 0
2 : 3
1 : 3
0 : 3

(%i4) contract_edge([3,4], g)$
(%i5) print_graph(g)$
Graph on 7 vertices with 6 edges.
Adjacencies:
7 : 3
6 : 3
5 : 3
3 : 5 6 7 2 1 0
2 : 3
1 : 3
0 : 3

Functionremove edge (e, gr)
Removes the edge e from the graph gr.

Example:

(%i1) load (graphs)$
(%i2) c3 : cycle_graph(3)$

Chapter 58: graphs 865

(%i3) remove_edge([0,1], c3)$
(%i4) print_graph(c3)$
Graph on 3 vertices with 2 edges.
Adjacencies:
2 : 0 1
1 : 2
0 : 2

Functionremove vertex (v, gr)
Removes the vertex v from the graph gr.

58.2.4 Reading and writing to files

Functiondimacs export
dimacs_export (gr, fl)
dimacs_export (gr, fl, comment1, ..., commentn)

Exports the graph into the file fl in the DIMACS format. Optional comments will be
added to the top of the file.

Functiondimacs import (fl)
Returns the graph from file fl in the DIMACS format.

Functiongraph6 decode (str)
Returns the graph encoded in the graph6 format in the string str.

Functiongraph6 encode (gr)
Returns a string which encodes the graph gr in the graph6 format.

Functiongraph6 export (gr list, fl)
Exports graphs in the list gr list to the file fl in the graph6 format.

Functiongraph6 import (fl)
Returns a list of graphs from the file fl in the graph6 format.

Functionsparse6 decode (str)
Returns the graph encoded in the sparse6 format in the string str.

Functionsparse6 encode (gr)
Returns a string which encodes the graph gr in the sparse6 format.

Functionsparse6 export (gr list, fl)
Exports graphs in the list gr list to the file fl in the sparse6 format.

Functionsparse6 import (fl)
Returns a list of graphs from the file fl in the sparse6 format.

866 Maxima 5.35.1 Manual

58.2.5 Visualization

Functiondraw graph
draw_graph (graph)
draw_graph (graph, option1, ..., optionk)

Draws the graph using the draw package.

The algorithm used to position vertices is specified by the optional argument pro-
gram. The default value is program=spring_embedding. draw graph can also use
the graphviz programs for positioning vertices, but graphviz must be installed sepa-
rately.

Example 1:

(%i1) load (graphs)$
(%i2) g:grid_graph(10,10)$
(%i3) m:max_matching(g)$
(%i4) draw_graph(g,

spring_embedding_depth=100,
show_edges=m, edge_type=dots,
vertex_size=0)$

Example 2:

(%i1) load (graphs)$
(%i2) g:create_graph(16,

[
[0,1],[1,3],[2,3],[0,2],[3,4],[2,4],
[5,6],[6,4],[4,7],[6,7],[7,8],[7,10],[7,11],
[8,10],[11,10],[8,9],[11,12],[9,15],[12,13],
[10,14],[15,14],[13,14]
])$

(%i3) t:minimum_spanning_tree(g)$
(%i4) draw_graph(

g,
show_edges=edges(t),
show_edge_width=4,
show_edge_color=green,
vertex_type=filled_square,
vertex_size=2
)$

Example 3:

(%i1) load (graphs)$
(%i2) g:create_graph(16,

[
[0,1],[1,3],[2,3],[0,2],[3,4],[2,4],
[5,6],[6,4],[4,7],[6,7],[7,8],[7,10],[7,11],
[8,10],[11,10],[8,9],[11,12],[9,15],[12,13],
[10,14],[15,14],[13,14]
])$

(%i3) mi : max_independent_set(g)$

Chapter 58: graphs 867

(%i4) draw_graph(
g,
show_vertices=mi,
show_vertex_type=filled_up_triangle,
show_vertex_size=2,
edge_color=cyan,
edge_width=3,
show_id=true,
text_color=brown
)$

Example 4:

(%i1) load (graphs)$
(%i2) net : create_graph(

[0,1,2,3,4,5],
[
[[0,1], 3], [[0,2], 2],
[[1,3], 1], [[1,4], 3],
[[2,3], 2], [[2,4], 2],
[[4,5], 2], [[3,5], 2]
],
directed=true
)$

(%i3) draw_graph(
net,
show_weight=true,
vertex_size=0,
show_vertices=[0,5],
show_vertex_type=filled_square,
head_length=0.2,
head_angle=10,
edge_color="dark-green",
text_color=blue
)$

Example 5:

(%i1) load(graphs)$
(%i2) g: petersen_graph(20, 2);
(%o2) GRAPH
(%i3) draw_graph(g, redraw=true, program=planar_embedding);
(%o3) done

Example 6:

(%i1) load(graphs)$
(%i2) t: tutte_graph();
(%o2) GRAPH
(%i3) draw_graph(t, redraw=true,

fixed_vertices=[1,2,3,4,5,6,7,8,9]);
(%o3) done

868 Maxima 5.35.1 Manual

Option variabledraw graph program
Default value: spring embedding

The default value for the program used to position vertices in draw_graph program.

draw graph optionshow id
Default value: false

If true then ids of the vertices are displayed.

draw graph optionshow label
Default value: false

If true then labels of the vertices are displayed.

draw graph optionlabel alignment
Default value: center

Determines how to align the labels/ids of the vertices. Can be left, center or right.

draw graph optionshow weight
Default value: false

If true then weights of the edges are displayed.

draw graph optionvertex type
Default value: circle

Defines how vertices are displayed. See the point type option for the draw package
for possible values.

draw graph optionvertex size
The size of vertices.

draw graph optionvertex color
The color used for displaying vertices.

draw graph optionshow vertices
Default value: []

Display selected vertices in the using a different color.

draw graph optionshow vertex type
Defines how vertices specified in show vertices are displayed. See the point type
option for the draw package for possible values.

draw graph optionshow vertex size
The size of vertices in show vertices.

draw graph optionshow vertex color
The color used for displaying vertices in the show vertices list.

Chapter 58: graphs 869

draw graph optionvertex partition
Default value: []

A partition [[v1,v2,...],...,[vk,...,vn]] of the vertices of the graph. The ver-
tices of each list in the partition will be drawn in a different color.

draw graph optionvertex coloring
Specifies coloring of the vertices. The coloring col must be specified in the format as
returned by vertex coloring.

draw graph optionedge color
The color used for displaying edges.

draw graph optionedge width
The width of edges.

draw graph optionedge type
Defines how edges are displayed. See the line type option for the draw package.

draw graph optionshow edges
Display edges specified in the list e list using a different color.

draw graph optionshow edge color
The color used for displaying edges in the show edges list.

draw graph optionshow edge width
The width of edges in show edges.

draw graph optionshow edge type
Defines how edges in show edges are displayed. See the line type option for the draw

package.

draw graph optionedge partition
A partition [[e1,e2,...],...,[ek,...,em]] of edges of the graph. The edges of
each list in the partition will be drawn using a different color.

draw graph optionedge coloring
The coloring of edges. The coloring must be specified in the format as returned by
the function edge coloring.

draw graph optionredraw
Default value: false

If true, vertex positions are recomputed even if the positions have been saved from
a previous drawing of the graph.

870 Maxima 5.35.1 Manual

draw graph optionhead angle
Default value: 15

The angle for the arrows displayed on arcs (in directed graphs).

draw graph optionhead length
Default value: 0.1

The length for the arrows displayed on arcs (in directed graphs).

draw graph optionspring embedding depth
Default value: 50

The number of iterations in the spring embedding graph drawing algorithm.

draw graph optionterminal
The terminal used for drawing (see the terminal option in the draw package).

draw graph optionfile name
The filename of the drawing if terminal is not screen.

draw graph optionprogram
Defines the program used for positioning vertices of the graph. Can be one of the
graphviz programs (dot, neato, twopi, circ, fdp), circular, spring embedding or pla-
nar embedding. planar embedding is only available for 2-connected planar graphs.
When program=spring_embedding, a set of vertices with fixed position can be spec-
ified with the fixed vertices option.

draw graph optionfixed vertices
Specifies a list of vertices which will have positions fixed along a regular polygon. Can
be used when program=spring_embedding.

Functionvertices to path (v list)
Converts a list v list of vertices to a list of edges of the path defined by v list.

Functionvertices to cycle (v list)
Converts a list v list of vertices to a list of edges of the cycle defined by v list.

Chapter 59: grobner 871

59 grobner

59.1 Introduction to grobner

grobner is a package for working with Groebner bases in Maxima.

To use the following functions you must load the ‘grobner.lisp’ package.

load(grobner);

A demo can be started by

demo("grobner.demo");

or

batch("grobner.demo")

Some of the calculation in the demo will take a lot of time therefore the output
‘grobner-demo.output’ of the demo can be found in the same directory as the demo file.

59.1.1 Notes on the grobner package

The package was written by

Marek Rychlik

http://alamos.math.arizona.edu

and is released 2002-05-24 under the terms of the General Public License(GPL) (see file
‘grobner.lisp’). This documentation was extracted from the files

‘README’, ‘grobner.lisp’, ‘grobner.demo’, ‘grobner-demo.output’

by Günter Nowak. Suggestions for improvement of the documentation can be discussed at
the maxima-mailing-list maxima@math.utexas.edu. The code is a little bit out of date now.
Modern implementation use the fast F4 algorithm described in

A new efficient algorithm for computing Gröbner bases (F4)
Jean-Charles Faugère
LIP6/CNRS Université Paris VI
January 20, 1999

59.1.2 Implementations of admissible monomial orders in grobner

• lex

pure lexicographic, default order for monomial comparisons

• grlex

total degree order, ties broken by lexicographic

• grevlex

total degree, ties broken by reverse lexicographic

• invlex

inverse lexicographic order

mailto:maxima@math.utexas.edu

872 Maxima 5.35.1 Manual

59.2 Functions and Variables for grobner

59.2.1 Global switches for grobner

Option variablepoly monomial order
Default value: lex

This global switch controls which monomial order is used in polynomial and Groebner
Bases calculations. If not set, lex will be used.

Option variablepoly coefficient ring
Default value: expression_ring

This switch indicates the coefficient ring of the polynomials that will be used in
grobner calculations. If not set, maxima’s general expression ring will be used. This
variable may be set to ring_of_integers if desired.

Option variablepoly primary elimination order
Default value: false

Name of the default order for eliminated variables in elimination-based functions. If
not set, lex will be used.

Option variablepoly secondary elimination order
Default value: false

Name of the default order for kept variables in elimination-based functions. If not
set, lex will be used.

Option variablepoly elimination order
Default value: false

Name of the default elimination order used in elimination calculations. If set, it
overrides the settings in variables poly_primary_elimination_order and poly_

secondary_elimination_order. The user must ensure that this is a true elimination
order valid for the number of eliminated variables.

Option variablepoly return term list
Default value: false

If set to true, all functions in this package will return each polynomial as a list of
terms in the current monomial order rather than a maxima general expression.

Option variablepoly grobner debug
Default value: false

If set to true, produce debugging and tracing output.

Chapter 59: grobner 873

Option variablepoly grobner algorithm
Default value: buchberger

Possible values:

buchberger

parallel_buchberger

gebauer_moeller

The name of the algorithm used to find the Groebner Bases.

Option variablepoly top reduction only
Default value: false

If not false, use top reduction only whenever possible. Top reduction means that
division algorithm stops after the first reduction.

59.2.2 Simple operators in grobner

poly_add, poly_subtract, poly_multiply and poly_expt are the arithmetical opera-
tions on polynomials. These are performed using the internal representation, but the results
are converted back to the maxima general form.

Functionpoly add (poly1, poly2, varlist)
Adds two polynomials poly1 and poly2.

(%i1) poly_add(z+x^2*y,x-z,[x,y,z]);
2

(%o1) x y + x

Functionpoly subtract (poly1, poly2, varlist)
Subtracts a polynomial poly2 from poly1.

(%i1) poly_subtract(z+x^2*y,x-z,[x,y,z]);
2

(%o1) 2 z + x y - x

Functionpoly multiply (poly1, poly2, varlist)
Returns the product of polynomials poly1 and poly2.

(%i2) poly_multiply(z+x^2*y,x-z,[x,y,z])-(z+x^2*y)*(x-z),expand;
(%o1) 0

Functionpoly s polynomial (poly1, poly2, varlist)
Returns the syzygy polynomial (S-polynomial) of two polynomials poly1 and poly2.

Functionpoly primitive part (poly1, varlist)
Returns the polynomial poly divided by the GCD of its coefficients.

(%i1) poly_primitive_part(35*y+21*x,[x,y]);
(%o1) 5 y + 3 x

874 Maxima 5.35.1 Manual

Functionpoly normalize (poly, varlist)
Returns the polynomial poly divided by the leading coefficient. It assumes that the
division is possible, which may not always be the case in rings which are not fields.

59.2.3 Other functions in grobner

Functionpoly expand (poly, varlist)
This function parses polynomials to internal form and back. It is equivalent to
expand(poly) if poly parses correctly to a polynomial. If the representation is not
compatible with a polynomial in variables varlist, the result is an error. It can be
used to test whether an expression correctly parses to the internal representation.
The following examples illustrate that indexed and transcendental function variables
are allowed.

(%i1) poly_expand((x-y)*(y+x),[x,y]);
2 2

(%o1) x - y
(%i2) poly_expand((y+x)^2,[x,y]);

2 2
(%o2) y + 2 x y + x
(%i3) poly_expand((y+x)^5,[x,y]);

5 4 2 3 3 2 4 5
(%o3) y + 5 x y + 10 x y + 10 x y + 5 x y + x
(%i4) poly_expand(-1-x*exp(y)+x^2/sqrt(y),[x]);

2
y x

(%o4) - x %e + ------- - 1
sqrt(y)

(%i5) poly_expand(-1-sin(x)^2+sin(x),[sin(x)]);
2

(%o5) - sin (x) + sin(x) - 1

Functionpoly expt (poly, number, varlist)
exponentitates poly by a positive integer number. If number is not a positive integer
number an error will be raised.

(%i1) poly_expt(x-y,3,[x,y])-(x-y)^3,expand;
(%o1) 0

Functionpoly content (poly. varlist)
poly_content extracts the GCD of its coefficients

(%i1) poly_content(35*y+21*x,[x,y]);
(%o1) 7

Chapter 59: grobner 875

Functionpoly pseudo divide (poly, polylist, varlist)
Pseudo-divide a polynomial poly by the list of n polynomials polylist. Return multiple
values. The first value is a list of quotients a. The second value is the remainder r.
The third argument is a scalar coefficient c, such that c ∗ poly can be divided by
polylist within the ring of coefficients, which is not necessarily a field. Finally, the
fourth value is an integer count of the number of reductions performed. The resulting
objects satisfy the equation:

c ∗ poly =
n∑
i=1

(ai ∗ polylisti) + r

Functionpoly exact divide (poly1, poly2, varlist)
Divide a polynomial poly1 by another polynomial poly2. Assumes that exact division
with no remainder is possible. Returns the quotient.

Functionpoly normal form (poly, polylist, varlist)
poly_normal_form finds the normal form of a polynomial poly with respect to a set
of polynomials polylist.

Functionpoly buchberger criterion (polylist, varlist)
Returns true if polylist is a Groebner basis with respect to the current term order,
by using the Buchberger criterion: for every two polynomials h1 and h2 in polylist
the S-polynomial S(h1, h2) reduces to 0 modulo polylist.

Functionpoly buchberger (polylist fl varlist)
poly_buchberger performs the Buchberger algorithm on a list of polynomials and
returns the resulting Groebner basis.

59.2.4 Standard postprocessing of Groebner Bases

The k-th elimination ideal Ik of an ideal I over K[x1, ..., x1] is I ∩K[xk+1, ..., xn].

The colon ideal I : J is the ideal {h|∀w ∈ J : wh ∈ I}.
The ideal I : p∞ is the ideal {h|∃n ∈ N : pnh ∈ I}.
The ideal I : J∞ is the ideal {h|∃n ∈ N, ∃p ∈ J : pnh ∈ I}.
The radical ideal

√
I is the ideal {h|∃n ∈ N : hn ∈ I}.

Functionpoly reduction (polylist, varlist)
poly_reduction reduces a list of polynomials polylist, so that each polynomial is
fully reduced with respect to the other polynomials.

Functionpoly minimization (polylist, varlist)
Returns a sublist of the polynomial list polylist spanning the same monomial ideal as
polylist but minimal, i.e. no leading monomial of a polynomial in the sublist divides
the leading monomial of another polynomial.

876 Maxima 5.35.1 Manual

Functionpoly normalize list (polylist, varlist)
poly_normalize_list applies poly_normalize to each polynomial in the list. That
means it divides every polynomial in a list polylist by its leading coefficient.

Functionpoly grobner (polylist, varlist)
Returns a Groebner basis of the ideal span by the polynomials polylist. Affected by
the global flags.

Functionpoly reduced grobner (polylist, varlist)
Returns a reduced Groebner basis of the ideal span by the polynomials polylist.
Affected by the global flags.

Functionpoly depends p (poly, var, varlist)
poly_depends tests whether a polynomial depends on a variable var.

Functionpoly elimination ideal (polylist, number, varlist)
poly_elimination_ideal returns the grobner basis of the number-th elimination
ideal of an ideal specified as a list of generating polynomials (not necessarily Groebner
basis).

Functionpoly colon ideal (polylist1, polylist2, varlist)
Returns the reduced Groebner basis of the colon ideal

I(polylist1) : I(polylist2)

where polylist1 and polylist2 are two lists of polynomials.

Functionpoly ideal intersection (polylist1, polylist2, varlist)
poly_ideal_intersection returns the intersection of two ideals.

Functionpoly lcm (poly1, poly2, varlist)
Returns the lowest common multiple of poly1 and poly2.

Functionpoly gcd (poly1, poly2, varlist)
Returns the greatest common divisor of poly1 and poly2.

See also ezgcd, gcd, gcdex, and gcdivide.

Example:

(%i1) p1:6*x^3+19*x^2+19*x+6;
3 2

(%o1) 6 x + 19 x + 19 x + 6
(%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;

5 4 3 2
(%o2) 6 x + 13 x + 12 x + 13 x + 6 x
(%i3) poly_gcd(p1, p2, [x]);

2
(%o3) 6 x + 13 x + 6

Chapter 59: grobner 877

Functionpoly grobner equal (polylist1, polylist2, varlist)
poly_grobner_equal tests whether two Groebner Bases generate the same ideal. Re-
turns true if two lists of polynomials polylist1 and polylist2, assumed to be Groebner
Bases, generate the same ideal, and false otherwise. This is equivalent to checking
that every polynomial of the first basis reduces to 0 modulo the second basis and vice
versa. Note that in the example below the first list is not a Groebner basis, and thus
the result is false.

(%i1) poly_grobner_equal([y+x,x-y],[x,y],[x,y]);
(%o1) false

Functionpoly grobner subsetp (polylist1, polylist2, varlist)
poly_grobner_subsetp tests whether an ideal generated by polylist1 is contained in
the ideal generated by polylist2. For this test to always succeed, polylist2 must be a
Groebner basis.

Functionpoly grobner member (poly, polylist, varlist)
Returns true if a polynomial poly belongs to the ideal generated by the polynomial
list polylist, which is assumed to be a Groebner basis. Returns false otherwise.

poly_grobner_member tests whether a polynomial belongs to an ideal generated by a
list of polynomials, which is assumed to be a Groebner basis. Equivalent to normal_

form being 0.

Functionpoly ideal saturation1 (polylist, poly, varlist)
Returns the reduced Groebner basis of the saturation of the ideal

I(polylist) : poly∞

Geometrically, over an algebraically closed field, this is the set of polynomials in the
ideal generated by polylist which do not identically vanish on the variety of poly.

Functionpoly ideal saturation (polylist1, polylist2, varlist)
Returns the reduced Groebner basis of the saturation of the ideal

I(polylist1) : I(polylist2)∞

Geometrically, over an algebraically closed field, this is the set of polynomials in the
ideal generated by polylist1 which do not identically vanish on the variety of polylist2.

Functionpoly ideal polysaturation1 (polylist1, polylist2, varlist)
polylist2 ist a list of n polynomials [poly1,...,polyn]. Returns the reduced Groeb-
ner basis of the ideal

I(polylist) : poly1∞ : ... : polyn∞

obtained by a sequence of successive saturations in the polynomials of the polynomial
list polylist2 of the ideal generated by the polynomial list polylist1.

878 Maxima 5.35.1 Manual

Functionpoly ideal polysaturation (polylist, polylistlist, varlist)
polylistlist is a list of n list of polynomials [polylist1,...,polylistn]. Returns
the reduced Groebner basis of the saturation of the ideal

I(polylist) : I(polylist1)
∞ : ... : I(polylistn)∞

Functionpoly saturation extension (poly, polylist, varlist1, varlist2)
poly_saturation_extension implements the famous Rabinowitz trick.

Functionpoly polysaturation extension (poly, polylist, varlist1, varlist2)

Chapter 60: impdiff 879

60 impdiff

60.1 Functions and Variables for impdiff

Functionimplicit derivative (f,indvarlist,orderlist,depvar)
This subroutine computes implicit derivatives of multivariable functions. f is an array
function, the indexes are the derivative degree in the indvarlist order; indvarlist is the
independent variable list; orderlist is the order desired; and depvar is the dependent
variable.

To use this function write first load("impdiff").

880 Maxima 5.35.1 Manual

Chapter 61: interpol 881

61 interpol

61.1 Introduction to interpol

Package interpol defines the Lagrangian, the linear and the cubic splines methods for
polynomial interpolation.

For comments, bugs or suggestions, please contact me at ’mario AT edu DOT xunta
DOT es’.

61.2 Functions and Variables for interpol

Functionlagrange
lagrange (points)
lagrange (points, option)

Computes the polynomial interpolation by the Lagrangian method. Argument points
must be either:

• a two column matrix, p:matrix([2,4],[5,6],[9,3]),

• a list of pairs, p: [[2,4],[5,6],[9,3]],

• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-
matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.

With the option argument it is possible to select the name for the independent vari-
able, which is ’x by default; to define another one, write something like varname=’z.

Note that when working with high degree polynomials, floating point evaluations are
unstable.

See also linearinterpol, cspline, and ratinterpol.

Examples:

(%i1) load(interpol)$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) lagrange(p);

(x - 7) (x - 6) (x - 3) (x - 1)
(%o3) -------------------------------

35
(x - 8) (x - 6) (x - 3) (x - 1)

- -------------------------------
12

7 (x - 8) (x - 7) (x - 3) (x - 1)
+ ---------------------------------

30
(x - 8) (x - 7) (x - 6) (x - 1)

- -------------------------------
60

882 Maxima 5.35.1 Manual

(x - 8) (x - 7) (x - 6) (x - 3)
+ -------------------------------

84
(%i4) f(x):=’’%;

(x - 7) (x - 6) (x - 3) (x - 1)
(%o4) f(x) := -------------------------------

35
(x - 8) (x - 6) (x - 3) (x - 1)

- -------------------------------
12

7 (x - 8) (x - 7) (x - 3) (x - 1)
+ ---------------------------------

30
(x - 8) (x - 7) (x - 6) (x - 1)

- -------------------------------
60

(x - 8) (x - 7) (x - 6) (x - 3)
+ -------------------------------

84
(%i5) /* Evaluate the polynomial at some points */

expand(map(f,[2.3,5/7,%pi]));
4 3 2

919062 73 %pi 701 %pi 8957 %pi
(%o5) [- 1.567535, ------, ------- - -------- + ---------

84035 420 210 420
5288 %pi 186

- -------- + ---]
105 5

(%i6) %,numer;
(%o6) [- 1.567535, 10.9366573451538, 2.89319655125692]
(%i7) load(draw)$ /* load draw package */
(%i8) /* Plot the polynomial together with points */

draw2d(
color = red,
key = "Lagrange polynomial",
explicit(f(x),x,0,10),
point_size = 3,
color = blue,
key = "Sample points",
points(p))$

(%i9) /* Change variable name */
lagrange(p, varname=w);
(w - 7) (w - 6) (w - 3) (w - 1)

(%o9) -------------------------------
35

(w - 8) (w - 6) (w - 3) (w - 1)
- -------------------------------

12
7 (w - 8) (w - 7) (w - 3) (w - 1)

Chapter 61: interpol 883

+ ---------------------------------
30

(w - 8) (w - 7) (w - 6) (w - 1)
- -------------------------------

60
(w - 8) (w - 7) (w - 6) (w - 3)

+ -------------------------------
84

Functioncharfun2 (x, a, b)
Returns true if number x belongs to the interval [a, b), and false otherwise.

Functionlinearinterpol
linearinterpol (points)
linearinterpol (points, option)

Computes the polynomial interpolation by the linear method. Argument points must
be either:

• a two column matrix, p:matrix([2,4],[5,6],[9,3]),

• a list of pairs, p: [[2,4],[5,6],[9,3]],

• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-
matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.

With the option argument it is possible to select the name for the independent vari-
able, which is ’x by default; to define another one, write something like varname=’z.

See also lagrange, cspline, and ratinterpol.

Examples:

(%i1) load(interpol)$
(%i2) p: matrix([7,2],[8,3],[1,5],[3,2],[6,7])$
(%i3) linearinterpol(p);

13 3 x
(%o3) (-- - ---) charfun2(x, minf, 3)

2 2
+ (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)

5 x
+ (--- - 3) charfun2(x, 3, 6)

3

(%i4) f(x):=’’%;
13 3 x

(%o4) f(x) := (-- - ---) charfun2(x, minf, 3)
2 2

+ (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)
5 x

+ (--- - 3) charfun2(x, 3, 6)
3

884 Maxima 5.35.1 Manual

(%i5) /* Evaluate the polynomial at some points */
map(f,[7.3,25/7,%pi]);

62 5 %pi
(%o5) [2.3, --, ----- - 3]

21 3
(%i6) %,numer;
(%o6) [2.3, 2.952380952380953, 2.235987755982989]
(%i7) load(draw)$ /* load draw package */
(%i8) /* Plot the polynomial together with points */

draw2d(
color = red,
key = "Linear interpolator",
explicit(f(x),x,-5,20),
point_size = 3,
color = blue,
key = "Sample points",
points(args(p)))$

(%i9) /* Change variable name */
linearinterpol(p, varname=’s);
13 3 s

(%o9) (-- - ---) charfun2(s, minf, 3)
2 2

+ (s - 5) charfun2(s, 7, inf) + (37 - 5 s) charfun2(s, 6, 7)
5 s

+ (--- - 3) charfun2(s, 3, 6)
3

Functioncspline
cspline (points)
cspline (points, option1, option2, ...)

Computes the polynomial interpolation by the cubic splines method. Argument points
must be either:

• a two column matrix, p:matrix([2,4],[5,6],[9,3]),

• a list of pairs, p: [[2,4],[5,6],[9,3]],

• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-
matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.

There are three options to fit specific needs:

• ’d1, default ’unknown, is the first derivative at x1; if it is ’unknown, the second
derivative at x1 is made equal to 0 (natural cubic spline); if it is equal to a
number, the second derivative is calculated based on this number.

• ’dn, default ’unknown, is the first derivative at xn; if it is ’unknown, the second
derivative at xn is made equal to 0 (natural cubic spline); if it is equal to a
number, the second derivative is calculated based on this number.

• ’varname, default ’x, is the name of the independent variable.

Chapter 61: interpol 885

See also lagrange, linearinterpol, and ratinterpol.

Examples:

(%i1) load(interpol)$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) /* Unknown first derivatives at the extremes

is equivalent to natural cubic splines */
cspline(p);

3 2
1159 x 1159 x 6091 x 8283

(%o3) (------- - ------- - ------ + ----) charfun2(x, minf, 3)
3288 1096 3288 1096

3 2
2587 x 5174 x 494117 x 108928

+ (- ------- + ------- - -------- + ------) charfun2(x, 7, inf)
1644 137 1644 137

3 2
4715 x 15209 x 579277 x 199575

+ (------- - -------- + -------- - ------) charfun2(x, 6, 7)
1644 274 1644 274

3 2
3287 x 2223 x 48275 x 9609

+ (- ------- + ------- - ------- + ----) charfun2(x, 3, 6)
4932 274 1644 274

(%i4) f(x):=’’%$
(%i5) /* Some evaluations */

map(f,[2.3,5/7,%pi]), numer;
(%o5) [1.991460766423356, 5.823200187269903, 2.227405312429507]
(%i6) load(draw)$ /* load draw package */
(%i7) /* Plotting interpolating function */

draw2d(
color = red,
key = "Cubic splines",
explicit(f(x),x,0,10),
point_size = 3,
color = blue,
key = "Sample points",
points(p))$

(%i8) /* New call, but giving values at the derivatives */
cspline(p,d1=0,dn=0);

3 2
1949 x 11437 x 17027 x 1247

(%o8) (------- - -------- + ------- + ----) charfun2(x, minf, 3)
2256 2256 2256 752

3 2
1547 x 35581 x 68068 x 173546

+ (- ------- + -------- - ------- + ------) charfun2(x, 7, inf)
564 564 141 141
3 2

886 Maxima 5.35.1 Manual

607 x 35147 x 55706 x 38420
+ (------ - -------- + ------- - -----) charfun2(x, 6, 7)

188 564 141 47
3 2

3895 x 1807 x 5146 x 2148
+ (- ------- + ------- - ------ + ----) charfun2(x, 3, 6)

5076 188 141 47
(%i8) /* Defining new interpolating function */

g(x):=’’%$
(%i9) /* Plotting both functions together */

draw2d(
color = black,
key = "Cubic splines (default)",
explicit(f(x),x,0,10),
color = red,
key = "Cubic splines (d1=0,dn=0)",
explicit(g(x),x,0,10),
point_size = 3,
color = blue,
key = "Sample points",
points(p))$

Functionratinterpol
ratinterpol (points, numdeg)
ratinterpol (points, numdeg, option1)

Generates a rational interpolator for data given by points and the degree of the
numerator being equal to numdeg ; the degree of the denominator is calculated auto-
matically. Argument points must be either:

• a two column matrix, p:matrix([2,4],[5,6],[9,3]),

• a list of pairs, p: [[2,4],[5,6],[9,3]],

• a list of numbers, p: [4,6,3], in which case the abscissas will be assigned auto-
matically to 1, 2, 3, etc.

In the first two cases the pairs are ordered with respect to the first coordinate before
making computations.

There is one option to fit specific needs:

• ’varname, default ’x, is the name of the independent variable.

See also lagrange, linearinterpol, cspline, minpack_lsquares, and lbfgs.

Examples:

(%i1) load(interpol)$
(%i2) load(draw)$
(%i3) p:[[7.2,2.5],[8.5,2.1],[1.6,5.1],[3.4,2.4],[6.7,7.9]]$
(%i4) for k:0 thru length(p)-1 do

draw2d(
explicit(ratinterpol(p,k),x,0,9),
point_size = 3,
points(p),

Chapter 61: interpol 887

title = concat("Degree of numerator = ",k),
yrange=[0,10])$

888 Maxima 5.35.1 Manual

Chapter 62: lapack 889

62 lapack

62.1 Introduction to lapack

lapack is a Common Lisp translation (via the program f2cl) of the Fortran library
LAPACK, as obtained from the SLATEC project.

62.2 Functions and Variables for lapack

Functiondgeev
dgeev (A)
dgeev (A, right p, left p)

Computes the eigenvalues and, optionally, the eigenvectors of a matrix A. All elements
of A must be integer or floating point numbers. A must be square (same number of
rows and columns). A might or might not be symmetric.

dgeev(A) computes only the eigenvalues of A. dgeev(A, right p, left p) computes
the eigenvalues of A and the right eigenvectors when right p = true and the left
eigenvectors when left p = true.

A list of three items is returned. The first item is a list of the eigenvalues. The
second item is false or the matrix of right eigenvectors. The third item is false or
the matrix of left eigenvectors.

The right eigenvector v(j) (the j-th column of the right eigenvector matrix) satisfies

A.v(j) = lambda(j).v(j)

where lambda(j) is the corresponding eigenvalue. The left eigenvector u(j) (the j-th
column of the left eigenvector matrix) satisfies

u(j) ∗ ∗H.A = lambda(j).u(j) ∗ ∗H
where u(j) ∗ ∗H denotes the conjugate transpose of u(j). The Maxima function
ctranspose computes the conjugate transpose.

The computed eigenvectors are normalized to have Euclidean norm equal to 1, and
largest component has imaginary part equal to zero.

Example:

(%i1) load (lapack)$
(%i2) fpprintprec : 6;
(%o2) 6
(%i3) M : matrix ([9.5, 1.75], [3.25, 10.45]);

[9.5 1.75]
(%o3) []

[3.25 10.45]
(%i4) dgeev (M);
(%o4) [[7.54331, 12.4067], false, false]
(%i5) [L, v, u] : dgeev (M, true, true);

[- .666642 - .515792]
(%o5) [[7.54331, 12.4067], [],

890 Maxima 5.35.1 Manual

[.745378 - .856714]
[- .856714 - .745378]
[]]
[.515792 - .666642]

(%i6) D : apply (diag_matrix, L);
[7.54331 0]

(%o6) []
[0 12.4067]

(%i7) M . v - v . D;
[0.0 - 8.88178E-16]

(%o7) []
[- 8.88178E-16 0.0]

(%i8) transpose (u) . M - D . transpose (u);
[0.0 - 4.44089E-16]

(%o8) []
[0.0 0.0]

Functiondgeqrf (A)
Computes the QR decomposition of the matrix A. All elements of A must be integer
or floating point numbers. A may or may not have the same number of rows and
columns.

A list of two items is returned. The first item is the matrix Q, which is a square,
orthonormal matrix which has the same number of rows as A. The second item is the
matrix R, which is the same size as A, and which has all elements equal to zero below
the diagonal. The product Q . R, where "." is the noncommutative multiplication
operator, is equal to A (ignoring floating point round-off errors).

(%i1) load (lapack) $
(%i2) fpprintprec : 6 $
(%i3) M : matrix ([1, -3.2, 8], [-11, 2.7, 5.9]) $
(%i4) [q, r] : dgeqrf (M);

[- .0905357 .995893]
(%o4) [[],

[.995893 .0905357]
[- 11.0454 2.97863 5.15148]
[]]
[0 - 2.94241 8.50131]

(%i5) q . r - M;
[- 7.77156E-16 1.77636E-15 - 8.88178E-16]

(%o5) []
[0.0 - 1.33227E-15 8.88178E-16]

(%i6) mat_norm (%, 1);
(%o6) 3.10862E-15

Functiondgesv (A, b)
Computes the solution x of the linear equation Ax = b, where A is a square matrix,
and b is a matrix of the same number of rows as A and any number of columns. The
return value x is the same size as b.

Chapter 62: lapack 891

The elements of A and b must evaluate to real floating point numbers via float;
thus elements may be any numeric type, symbolic numerical constants, or expressions
which evaluate to floats. The elements of x are always floating point numbers. All
arithmetic is carried out as floating point operations.

dgesv computes the solution via the LU decomposition of A.

Examples:

dgesv computes the solution of the linear equation Ax = b.

(%i1) A : matrix ([1, -2.5], [0.375, 5]);
[1 - 2.5]

(%o1) []
[0.375 5]

(%i2) b : matrix ([1.75], [-0.625]);
[1.75]

(%o2) []
[- 0.625]

(%i3) x : dgesv (A, b);
[1.210526315789474]

(%o3) []
[- 0.215789473684211]

(%i4) dlange (inf_norm, b - A.x);
(%o4) 0.0

b is a matrix with the same number of rows as A and any number of columns. x is
the same size as b.

(%i1) A : matrix ([1, -0.15], [1.82, 2]);
[1 - 0.15]

(%o1) []
[1.82 2]

(%i2) b : matrix ([3.7, 1, 8], [-2.3, 5, -3.9]);
[3.7 1 8]

(%o2) []
[- 2.3 5 - 3.9]

(%i3) x : dgesv (A, b);
[3.103827540695117 1.20985481742191 6.781786185657722]

(%o3) []
[-3.974483062032557 1.399032116146062 -8.121425428948527]

(%i4) dlange (inf_norm, b - A . x);
(%o4) 1.1102230246251565E-15

The elements of A and b must evaluate to real floating point numbers.

(%i1) A : matrix ([5, -%pi], [1b0, 11/17]);
[5 - %pi]
[]

(%o1) [11]
[1.0b0 --]
[17]

(%i2) b : matrix ([%e], [sin(1)]);
[%e]

(%o2) []

892 Maxima 5.35.1 Manual

[sin(1)]
(%i3) x : dgesv (A, b);

[0.690375643155986]
(%o3) []

[0.233510982552952]
(%i4) dlange (inf_norm, b - A . x);
(%o4) 2.220446049250313E-16

Functiondgesvd
dgesvd (A)
dgesvd (A, left p, right p)

Computes the singular value decomposition (SVD) of a matrix A, comprising the
singular values and, optionally, the left and right singular vectors. All elements of A
must be integer or floating point numbers. A might or might not be square (same
number of rows and columns).

Let m be the number of rows, and n the number of columns of A. The singular value
decomposition of A comprises three matrices, U, Sigma, and V^T, such that

A = U .Sigma.VT

where U is an m-by-m unitary matrix, Sigma is an m-by-n diagonal matrix, and V^T
is an n-by-n unitary matrix.

Let sigma[i] be a diagonal element of Sigma, that is, Sigma[i, i] = sigma[i]. The
elements sigma[i] are the so-called singular values of A; these are real and nonnegative,
and returned in descending order. The first min(m,n) columns of U and V are the
left and right singular vectors of A. Note that dgesvd returns the transpose of V, not
V itself.

dgesvd(A) computes only the singular values of A. dgesvd(A, left p, right p) com-
putes the singular values of A and the left singular vectors when left p = true and
the right singular vectors when right p = true.

A list of three items is returned. The first item is a list of the singular values. The
second item is false or the matrix of left singular vectors. The third item is false

or the matrix of right singular vectors.

Example:

(%i1) load (lapack)$
(%i2) fpprintprec : 6;
(%o2) 6
(%i3) M: matrix([1, 2, 3], [3.5, 0.5, 8], [-1, 2, -3], [4, 9, 7]);

[1 2 3]
[]
[3.5 0.5 8]

(%o3) []
[- 1 2 - 3]
[]
[4 9 7]

(%i4) dgesvd (M);
(%o4) [[14.4744, 6.38637, .452547], false, false]
(%i5) [sigma, U, VT] : dgesvd (M, true, true);

Chapter 62: lapack 893

(%o5) [[14.4744, 6.38637, .452547],
[- .256731 .00816168 .959029 - .119523]
[]
[- .526456 .672116 - .206236 - .478091]
[],
[.107997 - .532278 - .0708315 - 0.83666]
[]
[- .803287 - .514659 - .180867 .239046]
[- .374486 - .538209 - .755044]
[]
[.130623 - .836799 0.5317]]
[]
[- .917986 .100488 .383672]
(%i6) m : length (U);
(%o6) 4
(%i7) n : length (VT);
(%o7) 3
(%i8) Sigma:

genmatrix(lambda ([i, j], if i=j then sigma[i] else 0),
m, n);
[14.4744 0 0]
[]
[0 6.38637 0]

(%o8) []
[0 0 .452547]
[]
[0 0 0]

(%i9) U . Sigma . VT - M;
[1.11022E-15 0.0 1.77636E-15]
[]
[1.33227E-15 1.66533E-15 0.0]

(%o9) []
[- 4.44089E-16 - 8.88178E-16 4.44089E-16]
[]
[8.88178E-16 1.77636E-15 8.88178E-16]

(%i10) transpose (U) . U;
[1.0 5.55112E-17 2.498E-16 2.77556E-17]
[]
[5.55112E-17 1.0 5.55112E-17 4.16334E-17]

(%o10) []
[2.498E-16 5.55112E-17 1.0 - 2.08167E-16]
[]
[2.77556E-17 4.16334E-17 - 2.08167E-16 1.0]

(%i11) VT . transpose (VT);
[1.0 0.0 - 5.55112E-17]
[]

(%o11) [0.0 1.0 5.55112E-17]
[]
[- 5.55112E-17 5.55112E-17 1.0]

894 Maxima 5.35.1 Manual

Functiondlange (norm, A)
Functionzlange (norm, A)

Computes a norm or norm-like function of the matrix A.

max Compute max(abs(A(i, j))) where i and j range over the rows and
columns, respectively, of A. Note that this function is not a proper
matrix norm.

one_norm Compute the L[1] norm of A, that is, the maximum of the sum of the
absolute value of elements in each column.

inf_norm Compute the L[inf] norm of A, that is, the maximum of the sum of the
absolute value of elements in each row.

frobenius

Compute the Frobenius norm of A, that is, the square root of the sum of
squares of the matrix elements.

Functiondgemm
dgemm (A, B)
dgemm (A, B, options)

Compute the product of two matrices and optionally add the product to a third
matrix.

In the simplest form, dgemm(A, B) computes the product of the two real matrices,
A and B.

In the second form, dgemm computes the alpha∗A∗B +beta∗C where A, B, C are real
matrices of the appropriate sizes and alpha and beta are real numbers. Optionally,
A and/or B can be transposed before computing the product. The extra parameters
are specifed by optional keyword arguments: The keyword arguments are optional
and may be specified in any order. They all take the form key=val. The keyword
arguments are:

C The matrix C that should be added. The default is false, which means
no matrix is added.

alpha The product of A and B is multiplied by this value. The default is 1.

beta If a matrix C is given, this value multiplies C before it is added. The
default value is 0, which implies that C is not added, even if C is given.
Hence, be sure to specify a non-zero value for beta.

transpose_a

If true, the transpose of A is used instead of A for the product. The
default is false.

transpose_b

If true, the transpose of B is used instead of B for the product. The
default is false.

(%i1) load (lapack)$
(%i2) A : matrix([1,2,3],[4,5,6],[7,8,9]);

[1 2 3]

Chapter 62: lapack 895

[]
(%o2) [4 5 6]

[]
[7 8 9]

(%i3) B : matrix([-1,-2,-3],[-4,-5,-6],[-7,-8,-9]);
[- 1 - 2 - 3]
[]

(%o3) [- 4 - 5 - 6]
[]
[- 7 - 8 - 9]

(%i4) C : matrix([3,2,1],[6,5,4],[9,8,7]);
[3 2 1]
[]

(%o4) [6 5 4]
[]
[9 8 7]

(%i5) dgemm(A,B);
[- 30.0 - 36.0 - 42.0]
[]

(%o5) [- 66.0 - 81.0 - 96.0]
[]
[- 102.0 - 126.0 - 150.0]

(%i6) A . B;
[- 30 - 36 - 42]
[]

(%o6) [- 66 - 81 - 96]
[]
[- 102 - 126 - 150]

(%i7) dgemm(A,B,transpose_a=true);
[- 66.0 - 78.0 - 90.0]
[]

(%o7) [- 78.0 - 93.0 - 108.0]
[]
[- 90.0 - 108.0 - 126.0]

(%i8) transpose(A) . B;
[- 66 - 78 - 90]
[]

(%o8) [- 78 - 93 - 108]
[]
[- 90 - 108 - 126]

(%i9) dgemm(A,B,c=C,beta=1);
[- 27.0 - 34.0 - 41.0]
[]

(%o9) [- 60.0 - 76.0 - 92.0]
[]
[- 93.0 - 118.0 - 143.0]

(%i10) A . B + C;
[- 27 - 34 - 41]
[]

896 Maxima 5.35.1 Manual

(%o10) [- 60 - 76 - 92]
[]
[- 93 - 118 - 143]

(%i11) dgemm(A,B,c=C,beta=1, alpha=-1);
[33.0 38.0 43.0]
[]

(%o11) [72.0 86.0 100.0]
[]
[111.0 134.0 157.0]

(%i12) -A . B + C;
[33 38 43]
[]

(%o12) [72 86 100]
[]
[111 134 157]

Functionzgeev
zgeev (A)
zgeev (A, right p, left p)

Like dgeev, but the matrix A is complex.

Functionzheev
zheev (A)
zheev (A, eigvec p)

Like zheev, but the matrix A is assumed to be a square complex Hermitian matrix.
If eigvec p is true, then the eigenvectors of the matrix are also computed.

No check is made that the matrix A is, in fact, Hermitian.

A list of two items is returned, as in dgeev: a list of eigenvalues, and false or the
matrix of the eigenvectors.

Chapter 63: lbfgs 897

63 lbfgs

63.1 Introduction to lbfgs

lbfgs is an implementation of the L-BFGS algorithm [1] to solve unconstrained min-
imization problems via a limited-memory quasi-Newton (BFGS) algorithm. It is called a
limited-memory method because a low-rank approximation of the Hessian matrix inverse is
stored instead of the entire Hessian inverse. The program was originally written in Fortran
[2] by Jorge Nocedal, incorporating some functions originally written by Jorge J. Moré and
David J. Thuente, and translated into Lisp automatically via the program f2cl. The Max-
ima package lbfgs comprises the translated code plus an interface function which manages
some details.

References:

[1] D. Liu and J. Nocedal. "On the limited memory BFGS method for large scale
optimization". Mathematical Programming B 45:503–528 (1989)

[2] http://netlib.org/opt/lbfgs_um.shar

63.2 Functions and Variables for lbfgs

Functionlbfgs
lbfgs (FOM, X, X0, epsilon, iprint)
lbfgs ([FOM, grad] X, X0, epsilon, iprint)

Finds an approximate solution of the unconstrained minimization of the figure of
merit FOM over the list of variables X, starting from initial estimates X0, such that
norm(grad(FOM)) < epsilon ∗max(1, norm(X)).

grad, if present, is the gradient of FOM with respect to the variables X. grad may be
a list or a function that returns a list, with one element for each element of X. If not
present, the gradient is computed automatically by symbolic differentiation. If FOM
is a function, the gradient grad must be supplied by the user.

The algorithm applied is a limited-memory quasi-Newton (BFGS) algorithm [1]. It
is called a limited-memory method because a low-rank approximation of the Hessian
matrix inverse is stored instead of the entire Hessian inverse. Each iteration of the
algorithm is a line search, that is, a search along a ray in the variables X, with
the search direction computed from the approximate Hessian inverse. The FOM is
always decreased by a successful line search. Usually (but not always) the norm of
the gradient of FOM also decreases.

iprint controls progress messages printed by lbfgs.

iprint[1]

iprint[1] controls the frequency of progress messages.

iprint[1] < 0

No progress messages.

iprint[1] = 0

Messages at the first and last iterations.

898 Maxima 5.35.1 Manual

iprint[1] > 0

Print a message every iprint[1] iterations.

iprint[2]

iprint[2] controls the verbosity of progress messages.

iprint[2] = 0

Print out iteration count, number of evaluations of FOM,
value of FOM, norm of the gradient of FOM, and step length.

iprint[2] = 1

Same as iprint[2] = 0, plus X0 and the gradient of FOM
evaluated at X0.

iprint[2] = 2

Same as iprint[2] = 1, plus values of X at each iteration.

iprint[2] = 3

Same as iprint[2] = 2, plus the gradient of FOM at each
iteration.

The columns printed by lbfgs are the following.

I Number of iterations. It is incremented for each line search.

NFN Number of evaluations of the figure of merit.

FUNC Value of the figure of merit at the end of the most recent line search.

GNORM Norm of the gradient of the figure of merit at the end of the most recent
line search.

STEPLENGTH

An internal parameter of the search algorithm.

Additional information concerning details of the algorithm are found in the comments
of the original Fortran code [2].

See also lbfgs_nfeval_max and lbfgs_ncorrections.

References:

[1] D. Liu and J. Nocedal. "On the limited memory BFGS method for large scale
optimization". Mathematical Programming B 45:503–528 (1989)

[2] http://netlib.org/opt/lbfgs_um.shar

Examples:

The same FOM as computed by FGCOMPUTE in the program sdrive.f in the LBFGS
package from Netlib. Note that the variables in question are subscripted variables.
The FOM has an exact minimum equal to zero at u[k] = 1 for k = 1, ..., 8.

(%i1) load (lbfgs)$
(%i2) t1[j] := 1 - u[j];
(%o2) t1 := 1 - u

j j
(%i3) t2[j] := 10*(u[j + 1] - u[j]^2);

2

Chapter 63: lbfgs 899

(%o3) t2 := 10 (u - u)
j j + 1 j

(%i4) n : 8;
(%o4) 8
(%i5) FOM : sum (t1[2*j - 1]^2 + t2[2*j - 1]^2, j, 1, n/2);

2 2 2 2 2 2
(%o5) 100 (u - u) + (1 - u) + 100 (u - u) + (1 - u)

8 7 7 6 5 5
2 2 2 2 2 2

+ 100 (u - u) + (1 - u) + 100 (u - u) + (1 - u)
4 3 3 2 1 1

(%i6) lbfgs (FOM, ’[u[1],u[2],u[3],u[4],u[5],u[6],u[7],u[8]],
[-1.2, 1, -1.2, 1, -1.2, 1, -1.2, 1], 1e-3, [1, 0]);

N= 8 NUMBER OF CORRECTIONS=25

INITIAL VALUES
F= 9.680000000000000D+01 GNORM= 4.657353755084533D+02

I NFN FUNC GNORM STEPLENGTH

1 3 1.651479526340304D+01 4.324359291335977D+00 7.926153934390631D-04

2 4 1.650209316638371D+01 3.575788161060007D+00 1.000000000000000D+00

3 5 1.645461701312851D+01 6.230869903601577D+00 1.000000000000000D+00

4 6 1.636867301275588D+01 1.177589920974980D+01 1.000000000000000D+00

5 7 1.612153014409201D+01 2.292797147151288D+01 1.000000000000000D+00

6 8 1.569118407390628D+01 3.687447158775571D+01 1.000000000000000D+00

7 9 1.510361958398942D+01 4.501931728123680D+01 1.000000000000000D+00

8 10 1.391077875774294D+01 4.526061463810632D+01 1.000000000000000D+00

9 11 1.165625686278198D+01 2.748348965356917D+01 1.000000000000000D+00

10 12 9.859422687859137D+00 2.111494974231644D+01 1.000000000000000D+00

11 13 7.815442521732281D+00 6.110762325766556D+00 1.000000000000000D+00

12 15 7.346380905773160D+00 2.165281166714631D+01 1.285316401779533D-01

13 16 6.330460634066370D+00 1.401220851762050D+01 1.000000000000000D+00

14 17 5.238763939851439D+00 1.702473787613255D+01 1.000000000000000D+00

15 18 3.754016790406701D+00 7.981845727704576D+00 1.000000000000000D+00

16 20 3.001238402309352D+00 3.925482944716691D+00 2.333129631296807D-01

17 22 2.794390709718290D+00 8.243329982546473D+00 2.503577283782332D-01

18 23 2.563783562918759D+00 1.035413426521790D+01 1.000000000000000D+00

19 24 2.019429976377856D+00 1.065187312346769D+01 1.000000000000000D+00

20 25 1.428003167670903D+00 2.475962450826961D+00 1.000000000000000D+00

21 27 1.197874264861340D+00 8.441707983493810D+00 4.303451060808756D-01

22 28 9.023848941942773D-01 1.113189216635162D+01 1.000000000000000D+00

23 29 5.508226405863770D-01 2.380830600326308D+00 1.000000000000000D+00

24 31 3.902893258815567D-01 5.625595816584421D+00 4.834988416524465D-01

25 32 3.207542206990315D-01 1.149444645416472D+01 1.000000000000000D+00

26 33 1.874468266362791D-01 3.632482152880997D+00 1.000000000000000D+00

27 34 9.575763380706598D-02 4.816497446154354D+00 1.000000000000000D+00

900 Maxima 5.35.1 Manual

28 35 4.085145107543406D-02 2.087009350166495D+00 1.000000000000000D+00

29 36 1.931106001379290D-02 3.886818608498966D+00 1.000000000000000D+00

30 37 6.894000721499670D-03 3.198505796342214D+00 1.000000000000000D+00

31 38 1.443296033051864D-03 1.590265471025043D+00 1.000000000000000D+00

32 39 1.571766603154336D-04 3.098257063980634D-01 1.000000000000000D+00

33 40 1.288011776581970D-05 1.207784183577257D-02 1.000000000000000D+00

34 41 1.806140173752971D-06 4.587890233385193D-02 1.000000000000000D+00

35 42 1.769004645459358D-07 1.790537375052208D-02 1.000000000000000D+00

36 43 3.312164100763217D-10 6.782068426119681D-04 1.000000000000000D+00

THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
IFLAG = 0
(%o6) [u = 1.000005339816132, u = 1.000009942840108,

1 2
u = 1.000005339816132, u = 1.000009942840108,
3 4
u = 1.000005339816132, u = 1.000009942840108,
5 6
u = 1.000005339816132, u = 1.000009942840108]
7 8

A regression problem. The FOM is the mean square difference between the predicted
value F (X[i]) and the observed value Y [i]. The function F is a bounded monotone
function (a so-called "sigmoidal" function). In this example, lbfgs computes approx-
imate values for the parameters of F and plot2d displays a comparison of F with
the observed data.

(%i1) load (lbfgs)$
(%i2) FOM : ’((1/length(X))*sum((F(X[i]) - Y[i])^2, i, 1,

length(X)));
2

sum((F(X) - Y) , i, 1, length(X))
i i

(%o2) -----------------------------------
length(X)

(%i3) X : [1, 2, 3, 4, 5];
(%o3) [1, 2, 3, 4, 5]
(%i4) Y : [0, 0.5, 1, 1.25, 1.5];
(%o4) [0, 0.5, 1, 1.25, 1.5]
(%i5) F(x) := A/(1 + exp(-B*(x - C)));

A
(%o5) F(x) := ----------------------

1 + exp((- B) (x - C))
(%i6) ’’FOM;

A 2 A 2
(%o6) ((----------------- - 1.5) + (----------------- - 1.25)

- B (5 - C) - B (4 - C)
%e + 1 %e + 1

A 2 A 2
+ (----------------- - 1) + (----------------- - 0.5)

Chapter 63: lbfgs 901

- B (3 - C) - B (2 - C)
%e + 1 %e + 1

2
A

+ --------------------)/5
- B (1 - C) 2

(%e + 1)
(%i7) estimates : lbfgs (FOM, ’[A, B, C], [1, 1, 1], 1e-4, [1, 0]);

N= 3 NUMBER OF CORRECTIONS=25
INITIAL VALUES

F= 1.348738534246918D-01 GNORM= 2.000215531936760D-01

I NFN FUNC GNORM STEPLENGTH

1 3 1.177820636622582D-01 9.893138394953992D-02 8.554435968992371D-01

2 6 2.302653892214013D-02 1.180098521565904D-01 2.100000000000000D+01

3 8 1.496348495303004D-02 9.611201567691624D-02 5.257340567840710D-01

4 9 7.900460841091138D-03 1.325041647391314D-02 1.000000000000000D+00

5 10 7.314495451266914D-03 1.510670810312226D-02 1.000000000000000D+00

6 11 6.750147275936668D-03 1.914964958023037D-02 1.000000000000000D+00

7 12 5.850716021108202D-03 1.028089194579382D-02 1.000000000000000D+00

8 13 5.778664230657800D-03 3.676866074532179D-04 1.000000000000000D+00

9 14 5.777818823650780D-03 3.010740179797108D-04 1.000000000000000D+00

THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
IFLAG = 0
(%o7) [A = 1.461933911464101, B = 1.601593973254801,

C = 2.528933072164855]
(%i8) plot2d ([F(x), [discrete, X, Y]], [x, -1, 6]), ’’estimates;
(%o8)

Gradient of FOM is specified (instead of computing it automatically). Both the FOM
and its gradient are passed as functions to lbfgs.

(%i1) load (lbfgs)$
(%i2) F(a, b, c) := (a - 5)^2 + (b - 3)^4 + (c - 2)^6$
(%i3) define(F_grad(a, b, c),

map (lambda ([x], diff (F(a, b, c), x)), [a, b, c]))$
(%i4) estimates : lbfgs ([F, F_grad],

[a, b, c], [0, 0, 0], 1e-4, [1, 0]);

N= 3 NUMBER OF CORRECTIONS=25

INITIAL VALUES
F= 1.700000000000000D+02 GNORM= 2.205175729958953D+02

I NFN FUNC GNORM STEPLENGTH

902 Maxima 5.35.1 Manual

1 2 6.632967565917637D+01 6.498411132518770D+01 4.534785987412505D-03

2 3 4.368890936228036D+01 3.784147651974131D+01 1.000000000000000D+00

3 4 2.685298972775191D+01 1.640262125898520D+01 1.000000000000000D+00

4 5 1.909064767659852D+01 9.733664001790506D+00 1.000000000000000D+00

5 6 1.006493272061515D+01 6.344808151880209D+00 1.000000000000000D+00

6 7 1.215263596054292D+00 2.204727876126877D+00 1.000000000000000D+00

7 8 1.080252896385329D-02 1.431637116951845D-01 1.000000000000000D+00

8 9 8.407195124830860D-03 1.126344579730008D-01 1.000000000000000D+00

9 10 5.022091686198525D-03 7.750731829225275D-02 1.000000000000000D+00

10 11 2.277152808939775D-03 5.032810859286796D-02 1.000000000000000D+00

11 12 6.489384688303218D-04 1.932007150271009D-02 1.000000000000000D+00

12 13 2.075791943844547D-04 6.964319310814365D-03 1.000000000000000D+00

13 14 7.349472666162258D-05 4.017449067849554D-03 1.000000000000000D+00

14 15 2.293617477985238D-05 1.334590390856715D-03 1.000000000000000D+00

15 16 7.683645404048675D-06 6.011057038099202D-04 1.000000000000000D+00

THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
IFLAG = 0
(%o4) [a = 5.000086823042934, b = 3.052395429705181,

c = 1.927980629919583]

Variablelbfgs nfeval max
Default value: 100

lbfgs_nfeval_max is the maximum number of evaluations of the figure of merit
(FOM) in lbfgs. When lbfgs_nfeval_max is reached, lbfgs returns the result of
the last successful line search.

Variablelbfgs ncorrections
Default value: 25

lbfgs_ncorrections is the number of corrections applied to the approximate inverse
Hessian matrix which is maintained by lbfgs.

Chapter 64: lindstedt 903

64 lindstedt

64.1 Functions and Variables for lindstedt

FunctionLindstedt (eq,pvar,torder,ic)
This is a first pass at a Lindstedt code. It can solve problems with initial conditions
entered, which can be arbitrary constants, (just not %k1 and %k2) where the initial
conditions on the perturbation equations are z[i] = 0, z′[i] = 0 for i > 0. ic is the list
of initial conditions.

Problems occur when initial conditions are not given, as the constants in the perturba-
tion equations are the same as the zero order equation solution. Also, problems occur
when the initial conditions for the perturbation equations are not z[i] = 0, z′[i] = 0
for i > 0, such as the Van der Pol equation.

Example:

(%i1) load("makeOrders")$

(%i2) load("lindstedt")$

(%i3) Lindstedt(’diff(x,t,2)+x-(e*x^3)/6,e,2,[1,0]);
2
e (cos(5 T) - 24 cos(3 T) + 23 cos(T))

(%o3) [[[---------------------------------------
36864

e (cos(3 T) - cos(T))
- --------------------- + cos(T)],

192
2

7 e e
T = (- ---- - -- + 1) t]]

3072 16

To use this function write first load("makeOrders") and load("lindstedt").

904 Maxima 5.35.1 Manual

Chapter 65: linearalgebra 905

65 linearalgebra

65.1 Introduction to linearalgebra

linearalgebra is a collection of functions for linear algebra.

Example:

(%i1) M : matrix ([1, 2], [1, 2]);
[1 2]

(%o1) []
[1 2]

(%i2) nullspace (M);
[1]
[]

(%o2) span([1])
[- -]
[2]

(%i3) columnspace (M);
[1]

(%o3) span([])
[1]

(%i4) ptriangularize (M - z*ident(2), z);
[1 2 - z]

(%o4) []
[2]
[0 3 z - z]

(%i5) M : matrix ([1, 2, 3], [4, 5, 6], [7, 8, 9]) - z*ident(3);
[1 - z 2 3]
[]

(%o5) [4 5 - z 6]
[]
[7 8 9 - z]

(%i6) MM : ptriangularize (M, z);
[4 5 - z 6]
[]
[2]
[66 z 102 z 132]
[0 -- - -- + ----- + ---]

(%o6) [49 7 49 49]
[]
[3 2]
[49 z 245 z 147 z]
[0 0 ----- - ------ - -----]
[264 88 44]

(%i7) algebraic : true;
(%o7) true
(%i8) tellrat (MM [3, 3]);

3 2
(%o8) [z - 15 z - 18 z]

906 Maxima 5.35.1 Manual

(%i9) MM : ratsimp (MM);
[4 5 - z 6]
[]
[2]

(%o9) [66 7 z - 102 z - 132]
[0 -- - ------------------]
[49 49]
[]
[0 0 0]

(%i10) nullspace (MM);
[1]
[]
[2]
[z - 14 z - 16]
[--------------]

(%o10) span([8])
[]
[2]
[z - 18 z - 12]
[- --------------]
[12]

(%i11) M : matrix ([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12],
[13, 14, 15, 16]);

[1 2 3 4]
[]
[5 6 7 8]

(%o11) []
[9 10 11 12]
[]
[13 14 15 16]

(%i12) columnspace (M);
[1] [2]
[] []
[5] [6]

(%o12) span([], [])
[9] [10]
[] []
[13] [14]

(%i13) apply (’orthogonal_complement, args (nullspace (transpose (M))));
[0] [1]
[] []
[1] [0]

(%o13) span([], [])
[2] [- 1]
[] []
[3] [- 2]

Chapter 65: linearalgebra 907

65.2 Functions and Variables for linearalgebra

Functionaddmatrices (f, M 1, . . . , M n)
Using the function f as the addition function, return the sum of the matrices M 1,
. . . , M n. The function f must accept any number of arguments (a Maxima nary
function).

Examples:

(%i1) m1 : matrix([1,2],[3,4])$
(%i2) m2 : matrix([7,8],[9,10])$
(%i3) addmatrices(’max,m1,m2);
(%o3) matrix([7,8],[9,10])
(%i4) addmatrices(’max,m1,m2,5*m1);
(%o4) matrix([7,10],[15,20])

Functionblockmatrixp (M)
Return true if and only if M is a matrix and every entry of M is a matrix.

Functioncolumnop (M, i, j, theta)
If M is a matrix, return the matrix that results from doing the column operation C_i

<- C_i - theta * C_j. If M doesn’t have a row i or j, signal an error.

Functioncolumnswap (M, i, j)
If M is a matrix, swap columns i and j. If M doesn’t have a column i or j, signal an
error.

Functioncolumnspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ..., v_n} is a
basis for the column space of M. The span of the empty set is {0}. Thus, when the
column space has only one member, return span ().

Functioncopy (e)
Return a copy of the Maxima expression e. Although e can be any Maxima expression,
the copy function is the most useful when e is either a list or a matrix; consider:

(%i1) m : [1,[2,3]]$
(%i2) mm : m$
(%i3) mm[2][1] : x$
(%i4) m;
(%o4) [1,[x,3]]
(%i5) mm;
(%o5) [1,[x,3]]

Let’s try the same experiment, but this time let mm be a copy of m

908 Maxima 5.35.1 Manual

(%i6) m : [1,[2,3]]$
(%i7) mm : copy(m)$
(%i8) mm[2][1] : x$
(%i9) m;
(%o9) [1,[2,3]]
(%i10) mm;
(%o10) [1,[x,3]]

This time, the assignment to mm does not change the value of m.

Functioncholesky
cholesky (M)
cholesky (M, field)

Return the Cholesky factorization of the matrix selfadjoint (or hermitian) matrix M.
The second argument defaults to ’generalring.’ For a description of the possible values
for field, see lu_factor.

Functionctranspose (M)
Return the complex conjugate transpose of the matrix M. The function ctranspose

uses matrix_element_transpose to transpose each matrix element.

Functiondiag matrix (d 1, d 2, . . . , d n)
Return a diagonal matrix with diagonal entries d 1, d 2, . . . , d n. When the diagonal
entries are matrices, the zero entries of the returned matrix are zero matrices of the
appropriate size; for example:

(%i1) diag_matrix(diag_matrix(1,2),diag_matrix(3,4));

[[1 0] [0 0]]
[[] []]
[[0 2] [0 0]]

(%o1) []
[[0 0] [3 0]]
[[] []]
[[0 0] [0 4]]

(%i2) diag_matrix(p,q);

[p 0]
(%o2) []

[0 q]

Functiondotproduct (u, v)
Return the dotproduct of vectors u and v. This is the same as conjugate (transpose

(u)) . v . The arguments u and v must be column vectors.

Chapter 65: linearalgebra 909

Functioneigens by jacobi
eigens_by_jacobi (A)
eigens_by_jacobi (A, field type)

Computes the eigenvalues and eigenvectors of A by the method of Jacobi rotations.
A must be a symmetric matrix (but it need not be positive definite nor positive
semidefinite). field type indicates the computational field, either floatfield or
bigfloatfield. If field type is not specified, it defaults to floatfield.

The elements of A must be numbers or expressions which evaluate to numbers via
float or bfloat (depending on field type).

Examples:

(%i1) S: matrix([1/sqrt(2), 1/sqrt(2)],[-1/sqrt(2), 1/sqrt(2)]);
[1 1]
[------- -------]
[sqrt(2) sqrt(2)]

(%o1) []
[1 1]
[- ------- -------]
[sqrt(2) sqrt(2)]

(%i2) L : matrix ([sqrt(3), 0], [0, sqrt(5)]);
[sqrt(3) 0]

(%o2) []
[0 sqrt(5)]

(%i3) M : S . L . transpose (S);
[sqrt(5) sqrt(3) sqrt(5) sqrt(3)]
[------- + ------- ------- - -------]
[2 2 2 2]

(%o3) []
[sqrt(5) sqrt(3) sqrt(5) sqrt(3)]
[------- - ------- ------- + -------]
[2 2 2 2]

(%i4) eigens_by_jacobi (M);
The largest percent change was 0.1454972243679
The largest percent change was 0.0
number of sweeps: 2
number of rotations: 1
(%o4) [[1.732050807568877, 2.23606797749979],

[0.70710678118655 0.70710678118655]
[]]
[- 0.70710678118655 0.70710678118655]

(%i5) float ([[sqrt(3), sqrt(5)], S]);
(%o5) [[1.732050807568877, 2.23606797749979],

[0.70710678118655 0.70710678118655]
[]]
[- 0.70710678118655 0.70710678118655]

(%i6) eigens_by_jacobi (M, bigfloatfield);
The largest percent change was 1.454972243679028b-1
The largest percent change was 0.0b0
number of sweeps: 2

910 Maxima 5.35.1 Manual

number of rotations: 1
(%o6) [[1.732050807568877b0, 2.23606797749979b0],

[7.071067811865475b-1 7.071067811865475b-1]
[]]
[- 7.071067811865475b-1 7.071067811865475b-1]

Functionget lu factors (x)
When x = lu_factor (A), then get_lu_factors returns a list of the form [P, L,

U], where P is a permutation matrix, L is lower triangular with ones on the diagonal,
and U is upper triangular, and A = P L U .

Functionhankel
hankel (col)
hankel (col, row)

Return a Hankel matrix H. The first column of H is col; except for the first entry,
the last row of H is row. The default for row is the zero vector with the same length
as col.

Functionhessian (f, x)
Returns the Hessian matrix of f with respect to the list of variables x. The (i, j)-th
element of the Hessian matrix is diff(f, x[i], 1, x[j], 1).

Examples:

(%i1) hessian (x * sin (y), [x, y]);
[0 cos(y)]

(%o1) []
[cos(y) - x sin(y)]

(%i2) depends (F, [a, b]);
(%o2) [F(a, b)]
(%i3) hessian (F, [a, b]);

[2 2]
[d F d F]
[--- -----]
[2 da db]
[da]

(%o3) []
[2 2]
[d F d F]
[----- ---]
[da db 2]
[db]

Functionhilbert matrix (n)
Return the n by n Hilbert matrix. When n isn’t a positive integer, signal an error.

Chapter 65: linearalgebra 911

Functionidentfor
identfor (M)
identfor (M, fld)

Return an identity matrix that has the same shape as the matrix M. The diagonal
entries of the identity matrix are the multiplicative identity of the field fld; the default
for fld is generalring.

The first argument M should be a square matrix or a non-matrix. When M is a
matrix, each entry of M can be a square matrix – thus M can be a blocked Maxima
matrix. The matrix can be blocked to any (finite) depth.

See also zerofor

Functioninvert by lu (M, (rng generalring))
Invert a matrix M by using the LU factorization. The LU factorization is done using
the ring rng.

Functionjacobian (f, x)
Returns the Jacobian matrix of the list of functions f with respect to the list of
variables x. The (i, j)-th element of the Jacobian matrix is diff(f [i], x[j]).

Examples:

(%i1) jacobian ([sin (u - v), sin (u * v)], [u, v]);
[cos(v - u) - cos(v - u)]

(%o1) []
[v cos(u v) u cos(u v)]

(%i2) depends ([F, G], [y, z]);
(%o2) [F(y, z), G(y, z)]
(%i3) jacobian ([F, G], [y, z]);

[dF dF]
[-- --]
[dy dz]

(%o3) []
[dG dG]
[-- --]
[dy dz]

Functionkronecker product (A, B)
Return the Kronecker product of the matrices A and B.

Functionlistp
listp (e, p)
listp (e)

Given an optional argument p, return true if e is a Maxima list and p evaluates to
true for every list element. When listp is not given the optional argument, return
true if e is a Maxima list. In all other cases, return false.

912 Maxima 5.35.1 Manual

Functionlocate matrix entry (M, r 1, c 1, r 2, c 2, f, rel)
The first argument must be a matrix; the arguments r 1 through c 2 determine a
sub-matrix of M that consists of rows r 1 through r 2 and columns c 1 through c 2.

Find a entry in the sub-matrix M that satisfies some property. Three cases:

(1) rel = ’bool and f a predicate:

Scan the sub-matrix from left to right then top to bottom, and return the index of the
first entry that satisfies the predicate f. If no matrix entry satisfies f, return false.

(2) rel = ’max and f real-valued:

Scan the sub-matrix looking for an entry that maximizes f. Return the index of a
maximizing entry.

(3) rel = ’min and f real-valued:

Scan the sub-matrix looking for an entry that minimizes f. Return the index of a
minimizing entry.

Functionlu backsub (M, b)
When M = lu_factor (A, field), then lu_backsub (M, b) solves the linear system
A x = b.

Functionlu factor (M, field)
Return a list of the form [LU, perm, fld], or [LU, perm, fld, lower-cnd upper-
cnd], where

(1) The matrix LU contains the factorization of M in a packed form. Packed form
means three things: First, the rows of LU are permuted according to the list perm.
If, for example, perm is the list [3,2,1], the actual first row of the LU factorization
is the third row of the matrix LU. Second, the lower triangular factor of m is the
lower triangular part of LU with the diagonal entries replaced by all ones. Third, the
upper triangular factor of M is the upper triangular part of LU.

(2) When the field is either floatfield or complexfield, the numbers lower-cnd
and upper-cnd are lower and upper bounds for the infinity norm condition number
of M. For all fields, the condition number might not be estimated; for such fields,
lu_factor returns a two item list. Both the lower and upper bounds can differ from
their true values by arbitrarily large factors. (See also mat_cond.)

The argument M must be a square matrix.

The optional argument fld must be a symbol that determines a ring or field. The
pre-defined fields and rings are:

(a) generalring – the ring of Maxima expressions,

(b) floatfield – the field of floating point numbers of the type double,

(c) complexfield – the field of complex floating point numbers of the type double,

(d) crering – the ring of Maxima CRE expressions,

(e) rationalfield – the field of rational numbers,

(f) runningerror – track the all floating point rounding errors,

Chapter 65: linearalgebra 913

(g) noncommutingring – the ring of Maxima expressions where multiplication is the
non-commutative dot operator.

When the field is floatfield, complexfield, or runningerror, the algorithm uses
partial pivoting; for all other fields, rows are switched only when needed to avoid a
zero pivot.

Floating point addition arithmetic isn’t associative, so the meaning of ’field’ differs
from the mathematical definition.

A member of the field runningerror is a two member Maxima list of the form
[x,n],where x is a floating point number and n is an integer. The relative differ-
ence between the ’true’ value of x and x is approximately bounded by the machine
epsilon times n. The running error bound drops some terms that of the order the
square of the machine epsilon.

There is no user-interface for defining a new field. A user that is familiar with Common
Lisp should be able to define a new field. To do this, a user must define functions for
the arithmetic operations and functions for converting from the field representation
to Maxima and back. Additionally, for ordered fields (where partial pivoting will
be used), a user must define functions for the magnitude and for comparing field
members. After that all that remains is to define a Common Lisp structure mring.
The file mring has many examples.

To compute the factorization, the first task is to convert each matrix entry to a mem-
ber of the indicated field. When conversion isn’t possible, the factorization halts with
an error message. Members of the field needn’t be Maxima expressions. Members
of the complexfield, for example, are Common Lisp complex numbers. Thus af-
ter computing the factorization, the matrix entries must be converted to Maxima
expressions.

See also get_lu_factors.

Examples:

(%i1) w[i,j] := random (1.0) + %i * random (1.0);
(%o1) w := random(1.) + %i random(1.)

i, j
(%i2) showtime : true$
Evaluation took 0.00 seconds (0.00 elapsed)
(%i3) M : genmatrix (w, 100, 100)$
Evaluation took 7.40 seconds (8.23 elapsed)
(%i4) lu_factor (M, complexfield)$
Evaluation took 28.71 seconds (35.00 elapsed)
(%i5) lu_factor (M, generalring)$
Evaluation took 109.24 seconds (152.10 elapsed)
(%i6) showtime : false$

(%i7) M : matrix ([1 - z, 3], [3, 8 - z]);
[1 - z 3]

(%o7) []
[3 8 - z]

(%i8) lu_factor (M, generalring);
[1 - z 3]

914 Maxima 5.35.1 Manual

[]
(%o8) [[3 9], [1, 2], generalring]

[----- - z - ----- + 8]
[1 - z 1 - z]

(%i9) get_lu_factors (%);
[1 0] [1 - z 3]

[1 0] [] []
(%o9) [[], [3], [9]]

[0 1] [----- 1] [0 - z - ----- + 8]
[1 - z] [1 - z]

(%i10) %[1] . %[2] . %[3];
[1 - z 3]

(%o10) []
[3 8 - z]

Functionmat cond
mat_cond (M, 1)
mat_cond (M, inf)

Return the p-norm matrix condition number of the matrix m. The allowed values
for p are 1 and inf. This function uses the LU factorization to invert the matrix
m. Thus the running time for mat_cond is proportional to the cube of the matrix
size; lu_factor determines lower and upper bounds for the infinity norm condition
number in time proportional to the square of the matrix size.

Functionmat norm
mat_norm (M, 1)
mat_norm (M, inf)
mat_norm (M, frobenius)

Return the matrix p-norm of the matrix M. The allowed values for p are 1, inf,
and frobenius (the Frobenius matrix norm). The matrix M should be an unblocked
matrix.

Functionmatrixp
matrixp (e, p)
matrixp (e)

Given an optional argument p, return true if e is a matrix and p evaluates to true

for every matrix element. When matrixp is not given an optional argument, return
true if e is a matrix. In all other cases, return false.

See also blockmatrixp

Functionmatrix size (M)
Return a two member list that gives the number of rows and columns, respectively of
the matrix M.

Chapter 65: linearalgebra 915

Functionmat fullunblocker (M)
If M is a block matrix, unblock the matrix to all levels. If M is a matrix, return M ;
otherwise, signal an error.

Functionmat trace (M)
Return the trace of the matrix M. If M isn’t a matrix, return a noun form. When
M is a block matrix, mat_trace(M) returns the same value as does mat_trace(mat_
unblocker(m)).

Functionmat unblocker (M)
If M is a block matrix, unblock M one level. If M is a matrix, mat_unblocker (M)

returns M ; otherwise, signal an error.

Thus if each entry of M is matrix, mat_unblocker (M) returns an unblocked matrix,
but if each entry of M is a block matrix, mat_unblocker (M) returns a block matrix
with one less level of blocking.

If you use block matrices, most likely you’ll want to set matrix_element_mult to "."

and matrix_element_transpose to ’transpose. See also mat_fullunblocker.

Example:

(%i1) A : matrix ([1, 2], [3, 4]);
[1 2]

(%o1) []
[3 4]

(%i2) B : matrix ([7, 8], [9, 10]);
[7 8]

(%o2) []
[9 10]

(%i3) matrix ([A, B]);
[[1 2] [7 8]]

(%o3) [[] []]
[[3 4] [9 10]]

(%i4) mat_unblocker (%);
[1 2 7 8]

(%o4) []
[3 4 9 10]

Functionnullspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ..., v_n} is
a basis for the nullspace of M. The span of the empty set is {0}. Thus, when the
nullspace has only one member, return span ().

Functionnullity (M)
If M is a matrix, return the dimension of the nullspace of M.

916 Maxima 5.35.1 Manual

Functionorthogonal complement (v 1, . . . , v n)
Return span (u_1, ..., u_m), where the set {u_1, ..., u_m} is a basis for the or-
thogonal complement of the set (v_1, ..., v_n).

Each vector v 1 through v n must be a column vector.

Functionpolynomialp
polynomialp (p, L, coeffp, exponp)
polynomialp (p, L, coeffp)
polynomialp (p, L)

Return true if p is a polynomial in the variables in the list L. The predicate coeffp
must evaluate to true for each coefficient, and the predicate exponp must evaluate
to true for all exponents of the variables in L. If you want to use a non-default value
for exponp, you must supply coeffp with a value even if you want to use the default
for coeffp.

The command polynomialp (p, L, coeffp) is equivalent to polynomialp (p, L,
coeffp, ’nonnegintegerp) and the command polynomialp (p, L) is equivalent to
polynomialp (p, L, ’constantp, ’nonnegintegerp).

The polynomial needn’t be expanded:

(%i1) polynomialp ((x + 1)*(x + 2), [x]);
(%o1) true
(%i2) polynomialp ((x + 1)*(x + 2)^a, [x]);
(%o2) false

An example using non-default values for coeffp and exponp:

(%i1) polynomialp ((x + 1)*(x + 2)^(3/2), [x], numberp, numberp);
(%o1) true
(%i2) polynomialp ((x^(1/2) + 1)*(x + 2)^(3/2), [x], numberp,

numberp);
(%o2) true

Polynomials with two variables:

(%i1) polynomialp (x^2 + 5*x*y + y^2, [x]);
(%o1) false
(%i2) polynomialp (x^2 + 5*x*y + y^2, [x, y]);
(%o2) true

Functionpolytocompanion (p, x)
If p is a polynomial in x, return the companion matrix of p. For a monic polynomial
p of degree n, we have p = (-1)^n charpoly (polytocompanion (p, x)).

When p isn’t a polynomial in x, signal an error.

Functionptriangularize (M, v)
If M is a matrix with each entry a polynomial in v, return a matrix M2 such that

(1) M2 is upper triangular,

(2) M2 = E n ... E 1 M , where E 1 through E n are elementary matrices whose
entries are polynomials in v,

Chapter 65: linearalgebra 917

(3) |det (M)| = |det (M2)|,

Note: This function doesn’t check that every entry is a polynomial in v.

Functionrowop (M, i, j, theta)
If M is a matrix, return the matrix that results from doing the row operation R_i <-

R_i - theta * R_j. If M doesn’t have a row i or j, signal an error.

Functionrank (M)
Return the rank of that matrix M. The rank is the dimension of the column space.
Example:

(%i1) rank(matrix([1,2],[2,4]));
(%o1) 1
(%i2) rank(matrix([1,b],[c,d]));
Proviso: {d - b c # 0}
(%o2) 2

Functionrowswap (M, i, j)
If M is a matrix, swap rows i and j. If M doesn’t have a row i or j, signal an error.

Functiontoeplitz
toeplitz (col)
toeplitz (col, row)

Return a Toeplitz matrix T. The first first column of T is col; except for the first
entry, the first row of T is row. The default for row is complex conjugate of col.
Example:

(%i1) toeplitz([1,2,3],[x,y,z]);
[1 y z]
[]

(%o1) [2 1 y]
[]
[3 2 1]

(%i2) toeplitz([1,1+%i]);

[1 1 - %I]
(%o2) []

[%I + 1 1]

Functionvandermonde matrix ([x 1, ..., x n])
Return a n by n matrix whose i-th row is [1, x i, x i^2, ... x i^(n-1)].

Functionzerofor
zerofor (M)
zerofor (M, fld)

Return a zero matrix that has the same shape as the matrix M. Every entry of the
zero matrix is the additive identity of the field fld; the default for fld is generalring.

918 Maxima 5.35.1 Manual

The first argument M should be a square matrix or a non-matrix. When M is a
matrix, each entry of M can be a square matrix – thus M can be a blocked Maxima
matrix. The matrix can be blocked to any (finite) depth.

See also identfor

Functionzeromatrixp (M)
If M is not a block matrix, return true if is (equal (e, 0)) is true for each element
e of the matrix M. If M is a block matrix, return true if zeromatrixp evaluates to
true for each element of e.

Chapter 66: lsquares 919

66 lsquares

66.1 Introduction to lsquares

lsquares is a collection of functions to implement the method of least squares to estimate
parameters for a model from numerical data.

66.2 Functions and Variables for lsquares

Functionlsquares estimates
lsquares_estimates (D, x, e, a)
lsquares_estimates (D, x, e, a, initial = L, tol = t)

Estimate parameters a to best fit the equation e in the variables x and a to the data
D, as determined by the method of least squares. lsquares_estimates first seeks an
exact solution, and if that fails, then seeks an approximate solution.

The return value is a list of lists of equations of the form [a = ..., b = ..., c =

...]. Each element of the list is a distinct, equivalent minimum of the mean square
error.

The data D must be a matrix. Each row is one datum (which may be called a ‘record’
or ‘case’ in some contexts), and each column contains the values of one variable
across all data. The list of variables x gives a name for each column of D, even the
columns which do not enter the analysis. The list of parameters a gives the names
of the parameters for which estimates are sought. The equation e is an expression or
equation in the variables x and a; if e is not an equation, it is treated the same as e
= 0.

Additional arguments to lsquares_estimates are specified as equations and passed
on verbatim to the function lbfgs which is called to find estimates by a numerical
method when an exact result is not found.

If some exact solution can be found (via solve), the data D may contain non-numeric
values. However, if no exact solution is found, each element of D must have a nu-
meric value. This includes numeric constants such as %pi and %e as well as literal
numbers (integers, rationals, ordinary floats, and bigfloats). Numerical calculations
are carried out with ordinary floating-point arithmetic, so all other kinds of numbers
are converted to ordinary floats for calculations.

load(lsquares) loads this function.

See also lsquares_estimates_exact, lsquares_estimates_approximate,
lsquares_mse, lsquares_residuals, and lsquares_residual_mse.

Examples:

A problem for which an exact solution is found.

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);

920 Maxima 5.35.1 Manual

[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) lsquares_estimates (
M, [z,x,y], (z+D)^2 = A*x+B*y+C, [A,B,C,D]);

59 27 10921 107
(%o3) [[A = - --, B = - --, C = -----, D = - ---]]

16 16 1024 32

A problem for which no exact solution is found, so lsquares_estimates resorts to
numerical approximation.

(%i1) load (lsquares)$
(%i2) M : matrix ([1, 1], [2, 7/4], [3, 11/4], [4, 13/4]);

[1 1]
[]
[7]
[2 -]
[4]
[]

(%o2) [11]
[3 --]
[4]
[]
[13]
[4 --]
[4]

(%i3) lsquares_estimates (
M, [x,y], y=a*x^b+c, [a,b,c], initial=[3,3,3], iprint=[-1,0]);

(%o3) [[a = 1.387365874920637, b = .7110956639593767,
c = - .4142705622439105]]

Functionlsquares estimates exact (MSE, a)
Estimate parameters a to minimize the mean square error MSE, by constructing a
system of equations and attempting to solve them symbolically via solve. The mean
square error is an expression in the parameters a, such as that returned by lsquares_

mse.

The return value is a list of lists of equations of the form [a = ..., b = ..., c =

...]. The return value may contain zero, one, or two or more elements. If two or

Chapter 66: lsquares 921

more elements are returned, each represents a distinct, equivalent minimum of the
mean square error.

See also lsquares_estimates, lsquares_estimates_approximate, lsquares_mse,
lsquares_residuals, and lsquares_residual_mse.

Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) mse : lsquares_mse (M, [z, x, y], (z + D)^2 = A*x + B*y + C);
5
====
\ 2 2
> ((D + M) - C - M B - M A)
/ i, 1 i, 3 i, 2
====
i = 1

(%o3) ---
5

(%i4) lsquares_estimates_exact (mse, [A, B, C, D]);
59 27 10921 107

(%o4) [[A = - --, B = - --, C = -----, D = - ---]]
16 16 1024 32

Functionlsquares estimates approximate (MSE, a, initial = L, tol = t)
Estimate parameters a to minimize the mean square error MSE, via the numerical
minimization function lbfgs. The mean square error is an expression in the param-
eters a, such as that returned by lsquares_mse.

The solution returned by lsquares_estimates_approximate is a local (perhaps
global) minimum of the mean square error. For consistency with lsquares_

estimates_exact, the return value is a nested list which contains one element,
namely a list of equations of the form [a = ..., b = ..., c = ...].

Additional arguments to lsquares_estimates_approximate are specified as equa-
tions and passed on verbatim to the function lbfgs.

922 Maxima 5.35.1 Manual

MSE must evaluate to a number when the parameters are assigned numeric values.
This requires that the data from which MSE was constructed comprise only numeric
constants such as %pi and %e and literal numbers (integers, rationals, ordinary floats,
and bigfloats). Numerical calculations are carried out with ordinary floating-point
arithmetic, so all other kinds of numbers are converted to ordinary floats for calcula-
tions.

load(lsquares) loads this function.

See also lsquares_estimates, lsquares_estimates_exact, lsquares_mse,
lsquares_residuals, and lsquares_residual_mse.

Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) mse : lsquares_mse (M, [z, x, y], (z + D)^2 = A*x + B*y + C);
5
====
\ 2 2
> ((D + M) - C - M B - M A)
/ i, 1 i, 3 i, 2
====
i = 1

(%o3) ---
5

(%i4) lsquares_estimates_approximate (
mse, [A, B, C, D], iprint = [-1, 0]);

(%o4) [[A = - 3.67850494740174, B = - 1.683070351177813,
C = 10.63469950148635, D = - 3.340357993175206]]

Functionlsquares mse (D, x, e)
Returns the mean square error (MSE), a summation expression, for the equation e in
the variables x, with data D.

The MSE is defined as:

Chapter 66: lsquares 923

1

n

n∑
i=1

[lhs (ei)− rhs (ei)]
2
,

where n is the number of data and e[i] is the equation e evaluated with the variables
in x assigned values from the i-th datum, D[i].

load(lsquares) loads this function.

Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) mse : lsquares_mse (M, [z, x, y], (z + D)^2 = A*x + B*y + C);
5
====
\ 2 2
> ((D + M) - C - M B - M A)
/ i, 1 i, 3 i, 2
====
i = 1

(%o3) ---
5

(%i4) diff (mse, D);
5
====
\ 2

4 > (D + M) ((D + M) - C - M B - M A)
/ i, 1 i, 1 i, 3 i, 2
====
i = 1

(%o4) --
5

(%i5) ’’mse, nouns;

924 Maxima 5.35.1 Manual

2 2 9 2 2
(%o5) (((D + 3) - C - 2 B - 2 A) + ((D + -) - C - B - 2 A)

4
2 2 3 2 2

+ ((D + 2) - C - B - 2 A) + ((D + -) - C - 2 B - A)
2

2 2
+ ((D + 1) - C - B - A))/5

Functionlsquares residuals (D, x, e, a)
Returns the residuals for the equation e with specified parameters a and data D.

D is a matrix, x is a list of variables, e is an equation or general expression; if not an
equation, e is treated as if it were e = 0. a is a list of equations which specify values
for any free parameters in e aside from x.

The residuals are defined as:

lhs (ei)− rhs (ei) ,

where e[i] is the equation e evaluated with the variables in x assigned values from
the i-th datum, D[i], and assigning any remaining free variables from a.

load(lsquares) loads this function.

Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) a : lsquares_estimates (
M, [z,x,y], (z+D)^2 = A*x+B*y+C, [A,B,C,D]);

59 27 10921 107
(%o3) [[A = - --, B = - --, C = -----, D = - ---]]

16 16 1024 32
(%i4) lsquares_residuals (

M, [z,x,y], (z+D)^2 = A*x+B*y+C, first(a));
13 13 13 13 13

(%o4) [--, - --, - --, --, --]
64 64 32 64 64

Chapter 66: lsquares 925

Functionlsquares residual mse (D, x, e, a)
Returns the residual mean square error (MSE) for the equation e with specified pa-
rameters a and data D.

The residual MSE is defined as:

1

n

n∑
i=1

[lhs (ei)− rhs (ei)]
2
,

where e[i] is the equation e evaluated with the variables in x assigned values from
the i-th datum, D[i], and assigning any remaining free variables from a.

load(lsquares) loads this function.

Example:

(%i1) load (lsquares)$
(%i2) M : matrix (

[1,1,1], [3/2,1,2], [9/4,2,1], [3,2,2], [2,2,1]);
[1 1 1]
[]
[3]
[- 1 2]
[2]
[]

(%o2) [9]
[- 2 1]
[4]
[]
[3 2 2]
[]
[2 2 1]

(%i3) a : lsquares_estimates (
M, [z,x,y], (z+D)^2 = A*x+B*y+C, [A,B,C,D]);

59 27 10921 107
(%o3) [[A = - --, B = - --, C = -----, D = - ---]]

16 16 1024 32
(%i4) lsquares_residual_mse (

M, [z,x,y], (z + D)^2 = A*x + B*y + C, first (a));
169

(%o4) ----
2560

Functionplsquares
plsquares (Mat,VarList,depvars)
plsquares (Mat,VarList,depvars,maxexpon)
plsquares (Mat,VarList,depvars,maxexpon,maxdegree)

Multivariable polynomial adjustment of a data table by the "least squares" method.
Mat is a matrix containing the data, VarList is a list of variable names (one for each
Mat column, but use "-" instead of varnames to ignore Mat columns), depvars is the

926 Maxima 5.35.1 Manual

name of a dependent variable or a list with one or more names of dependent variables
(which names should be in VarList), maxexpon is the optional maximum exponent
for each independent variable (1 by default), and maxdegree is the optional maximum
polynomial degree (maxexpon by default); note that the sum of exponents of each
term must be equal or smaller than maxdegree, and if maxdgree = 0 then no limit is
applied.

If depvars is the name of a dependent variable (not in a list), plsquares returns
the adjusted polynomial. If depvars is a list of one or more dependent variables,
plsquares returns a list with the adjusted polynomial(s). The Coefficients of De-
termination are displayed in order to inform about the goodness of fit, which ranges
from 0 (no correlation) to 1 (exact correlation). These values are also stored in the
global variable DETCOEF (a list if depvars is a list).

A simple example of multivariable linear adjustment:

(%i1) load("plsquares")$

(%i2) plsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),
[x,y,z],z);

Determination Coefficient for z = .9897039897039897
11 y - 9 x - 14

(%o2) z = ---------------
3

The same example without degree restrictions:

(%i3) plsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),
[x,y,z],z,1,0);

Determination Coefficient for z = 1.0
x y + 23 y - 29 x - 19

(%o3) z = ----------------------
6

How many diagonals does a N-sides polygon have? What polynomial degree should
be used?

(%i4) plsquares(matrix([3,0],[4,2],[5,5],[6,9],[7,14],[8,20]),
[N,diagonals],diagonals,5);

Determination Coefficient for diagonals = 1.0
2
N - 3 N

(%o4) diagonals = --------
2

(%i5) ev(%, N=9); /* Testing for a 9 sides polygon */
(%o5) diagonals = 27

How many ways do we have to put two queens without they are threatened into a n
x n chessboard?

(%i6) plsquares(matrix([0,0],[1,0],[2,0],[3,8],[4,44]),
[n,positions],[positions],4);

Determination Coefficient for [positions] = [1.0]

Chapter 66: lsquares 927

4 3 2
3 n - 10 n + 9 n - 2 n

(%o6) [positions = -------------------------]
6

(%i7) ev(%[1], n=8); /* Testing for a (8 x 8) chessboard */
(%o7) positions = 1288

An example with six dependent variables:

(%i8) mtrx:matrix([0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,0],
[1,0,0,1,1,1,0,0],[1,1,1,1,0,0,0,1])$

(%i8) plsquares(mtrx,[a,b,_And,_Or,_Xor,_Nand,_Nor,_Nxor],
[_And,_Or,_Xor,_Nand,_Nor,_Nxor],1,0);

Determination Coefficient for
[_And, _Or, _Xor, _Nand, _Nor, _Nxor] =
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
(%o2) [_And = a b, _Or = - a b + b + a,
_Xor = - 2 a b + b + a, _Nand = 1 - a b,
_Nor = a b - b - a + 1, _Nxor = 2 a b - b - a + 1]

To use this function write first load("lsquares").

928 Maxima 5.35.1 Manual

Chapter 67: minpack 929

67 minpack

67.1 Introduction to minpack

Minpack is a Common Lisp translation (via f2cl) of the Fortran library MINPACK, as
obtained from Netlib.

67.2 Functions and Variables for minpack

Functionminpack lsquares (flist, varlist, guess [, tolerance, jacobian])
Compute the point that minimizes the sum of the squares of the functions in the list
flist. The variables are in the list varlist. An initial guess of the optimum point must
be provided in guess.

The optional keyword arguments, tolerance and jacobian provide some control over
the algorithm. tolerance is the estimated relative error desired in the sum of squares.
jacobian can be used to specify the Jacobian. If jacobian is not given or is true

(the default), the Jacobian is computed from flist. If jacobian is false, a numerical
approximation is used.

minpack_lsquares returns a list. The first item is the estimated solution; the second
is the sum of squares, and the third indicates the success of the algorithm. The
possible values are

0 improper input parameters.

1 algorithm estimates that the relative error in the sum of squares is at
most tolerance.

2 algorithm estimates that the relative error between x and the solution is
at most tolerance.

3 conditions for info = 1 and info = 2 both hold.

4 fvec is orthogonal to the columns of the jacobian to machine precision.

5 number of calls to fcn with iflag = 1 has reached 100*(n+1).

6 tol is too small. no further reduction in the sum of squares is possible.

7 tol is too small. no further improvement in the approximate solution x is
possible.

/* Problem 6: Powell singular function */
(%i1) powell(x1,x2,x3,x4) :=

[x1+10*x2, sqrt(5)*(x3-x4), (x2-2*x3)^2,
sqrt(10)*(x1-x4)^2]$

(%i2) minpack_lsquares(powell(x1,x2,x3,x4), [x1,x2,x3,x4],
[3,-1,0,1]);

(%o2) [[1.652117596168394e-17, - 1.652117596168393e-18,
2.643388153869468e-18, 2.643388153869468e-18],
6.109327859207777e-34, 4]

930 Maxima 5.35.1 Manual

/* Same problem but use numerical approximation to Jacobian */
(%i3) minpack_lsquares(powell(x1,x2,x3,x4), [x1,x2,x3,x4],

[3,-1,0,1], jacobian = false);
(%o3) [[5.060282149485331e-11, - 5.060282149491206e-12,

2.179447843547218e-11, 2.179447843547218e-11],
3.534491794847031e-21, 5]

Functionminpack solve (flist, varlist, guess [, tolerance, jacobian])
Solve a system of n equations in n unknowns. The n equations are given in the list
flist, and the unknowns are in varlist. An initial guess of the solution must be provided
in guess.

The optional keyword arguments, tolerance and jacobian provide some control over
the algorithm. tolerance is the estimated relative error desired in the sum of squares.
jacobian can be used to specify the Jacobian. If jacobian is not given or is true

(the default), the Jacobian is computed from flist. If jacobian is false, a numerical
approximation is used.

minpack_solve returns a list. The first item is the estimated solution; the second is
the sum of squares, and the third indicates the success of the algorithm. The possible
values are

0 improper input parameters.

1 algorithm estimates that the relative error in the solution is at most
tolerance.

2 number of calls to fcn with iflag = 1 has reached 100*(n+1).

3 tol is too small. no further reduction in the sum of squares is possible.

4 Iteration is not making good progress.

Chapter 68: makeOrders 931

68 makeOrders

68.1 Functions and Variables for makeOrders

FunctionmakeOrders (indvarlist,orderlist)
Returns a list of all powers for a polynomial up to and including the arguments.

(%i1) load("makeOrders")$

(%i2) makeOrders([a,b],[2,3]);
(%o2) [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1],

[1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3]]
(%i3) expand((1+a+a^2)*(1+b+b^2+b^3));

2 3 3 3 2 2 2 2 2
(%o3) a b + a b + b + a b + a b + b + a b + a b

2
+ b + a + a + 1

where [0, 1] is associated with the term b and [2, 3] with a2b3.

To use this function write first load("makeOrders").

932 Maxima 5.35.1 Manual

Chapter 69: mnewton 933

69 mnewton

69.1 Introduction to mnewton

mnewton is an implementation of Newton’s method for solving nonlinear equations in
one or more variables.

69.2 Functions and Variables for mnewton

Option variablenewtonepsilon
Default value: 10.0^(-fpprec/2)

Precision to determine when the mnewton function has converged towards the solution.
If newtonepsilon is a bigfloat, then mnewton computations are done with bigfloats.
See also mnewton.

Option variablenewtonmaxiter
Default value: 50

Maximum number of iterations to stop the mnewton function if it does not converge
or if it converges too slowly.

See also mnewton.

Functionmnewton (FuncList,VarList,GuessList)
Multiple nonlinear functions solution using the Newton method. FuncList is the list
of functions to solve, VarList is the list of variable names, and GuessList is the list of
initial approximations.

The solution is returned in the same format that solve() returns. If the solution is
not found, [] is returned.

This function is controlled by global variables newtonepsilon and newtonmaxiter.

(%i1) load("mnewton")$

(%i2) mnewton([x1+3*log(x1)-x2^2, 2*x1^2-x1*x2-5*x1+1],
[x1, x2], [5, 5]);

(%o2) [[x1 = 3.756834008012769, x2 = 2.779849592817897]]
(%i3) mnewton([2*a^a-5],[a],[1]);
(%o3) [[a = 1.70927556786144]]
(%i4) mnewton([2*3^u-v/u-5, u+2^v-4], [u, v], [2, 2]);
(%o4) [[u = 1.066618389595407, v = 1.552564766841786]]

The variable newtonepsilon controls the precision of the approximations. It also
controls if computations are performed with floats or bigfloats.

(%i1) load(mnewton)$

(%i2) (fpprec : 25, newtonepsilon : bfloat(10^(-fpprec+5)))$

934 Maxima 5.35.1 Manual

(%i3) mnewton([2*3^u-v/u-5, u+2^v-4], [u, v], [2, 2]);
(%o3) [[u = 1.066618389595406772591173b0,

v = 1.552564766841786450100418b0]]

To use this function write first load("mnewton"). See also newtonepsilon and
newtonmaxiter.

Chapter 70: numericalio 935

70 numericalio

70.1 Introduction to numericalio

numericalio is a collection of functions to read and write files and streams. Functions
for plain-text input and output can read and write numbers (integer, float, or bigfloat),
symbols, and strings. Functions for binary input and output can read and write only
floating-point numbers.

If there already exists a list, matrix, or array object to store input data, numericalio
input functions can write data into that object. Otherwise, numericalio can guess, to
some degree, the structure of an object to store the data, and return that object.

70.1.1 Plain-text input and output

In plain-text input and output, it is assumed that each item to read or write is an
atom: an integer, float, bigfloat, string, or symbol, and not a rational or complex number
or any other kind of nonatomic expression. The numericalio functions may attempt to do
something sensible faced with nonatomic expressions, but the results are not specified here
and subject to change.

Atoms in both input and output files have the same format as in Maxima batch files
or the interactive console. In particular, strings are enclosed in double quotes, backslash
\ prevents any special interpretation of the next character, and the question mark ? is
recognized at the beginning of a symbol to mean a Lisp symbol (as opposed to a Maxima
symbol). No continuation character (to join broken lines) is recognized.

70.1.2 Separator flag values for input

The functions for plain-text input and output take an optional argument, separator flag,
that tells what character separates data.

For plain-text input, these values of separator flag are recognized: comma for comma
separated values, pipe for values separated by the vertical bar character |, semicolon for
values separated by semicolon ;, and space for values separated by space or tab characters.
If the file name ends in .csv and separator flag is not specified, comma is assumed. If the
file name ends in something other than .csv and separator_flag is not specified, space
is assumed.

In plain-text input, multiple successive space and tab characters count as a single sepa-
rator. However, multiple comma, pipe, or semicolon characters are significant. Successive
comma, pipe, or semicolon characters (with or without intervening spaces or tabs) are con-
sidered to have false between the separators. For example, 1234,,Foo is treated the same
as 1234,false,Foo.

70.1.3 Separator flag values for output

For plain-text output, tab, for values separated by the tab character, is recognized as a
value of separator flag, as well as comma, pipe, semicolon, and space.

In plain-text output, false atoms are written as such; a list [1234, false, Foo] is
written 1234,false,Foo, and there is no attempt to collapse the output to 1234,,Foo.

936 Maxima 5.35.1 Manual

70.1.4 Binary floating-point input and output

numericalio functions can read and write 8-byte IEEE 754 floating-point numbers.
These numbers can be stored either least significant byte first or most significant byte
first, according to the global flag set by assume_external_byte_order. If not specified,
numericalio assumes the external byte order is most-significant byte first.

Other kinds of numbers are coerced to 8-byte floats; numericalio cannot read or write
binary non-numeric data.

Some Lisp implementations do not recognize IEEE 754 special values (positive and
negative infinity, not-a-number values, denormalized values). The effect of reading such
values with numericalio is undefined.

numericalio includes functions to open a stream for reading or writing a stream of
bytes.

70.2 Functions and Variables for plain-text input and
output

Functionread matrix
read_matrix (S)
read_matrix (S, M)
read_matrix (S, separator flag)
read_matrix (S, M, separator flag)

read_matrix(S) reads the source S and returns its entire content as a matrix. The
size of the matrix is inferred from the input data; each line of the file becomes one
row of the matrix. If some lines have different lengths, read_matrix complains.

read_matrix(S, M) read the source S into the matrix M, until M is full or the source
is exhausted. Input data are read into the matrix in row-major order; the input need
not have the same number of rows and columns as M.

The source S may be a file name or a stream.

The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread array
read_array (S, A)
read_array (S, A, separator flag)

Reads the source S into the array A, until A is full or the source is exhausted. Input
data are read into the array in row-major order; the input need not conform to the
dimensions of A.

The source S may be a file name or a stream.

The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Chapter 70: numericalio 937

Functionread hashed array
read_hashed_array (S, A)
read_hashed_array (S, A, separator flag)

Reads the source S and returns its entire content as a hashed array. The source S
may be a file name or a stream.

read_hashed_array treats the first item on each line as a hash key, and associates
the remainder of the line (as a list) with the key. For example, the line 567 12 17

32 55 is equivalent to A[567]: [12, 17, 32, 55]$. Lines need not have the same
numbers of elements.

The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread nested list
read_nested_list (S)
read_nested_list (S, separator flag)

Reads the source S and returns its entire content as a nested list. The source S may
be a file name or a stream.

read_nested_list returns a list which has a sublist for each line of input. Lines
need not have the same numbers of elements. Empty lines are not ignored: an empty
line yields an empty sublist.

The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionread list
read_list (S)
read_list (S, L)
read_list (S, separator flag)
read_list (S, L, separator flag)

read_list(S) reads the source S and returns its entire content as a flat list.

read_list(S, L) reads the source S into the list L, until L is full or the source is
exhausted.

The source S may be a file name or a stream.

The recognized values of separator flag are comma, pipe, semicolon, and space. If
separator flag is not specified, the file is assumed space-delimited.

Functionwrite data
write_data (X, D)
write_data (X, D, separator flag)

Writes the object X to the destination D.

write_data writes a matrix in row-major order, with one line per row.

write_data writes an array created by array or make_array in row-major order,
with a new line at the end of every slab. Higher-dimensional slabs are separated by
additional new lines.

write_data writes a hashed array with each key followed by its associated list on one
line.

938 Maxima 5.35.1 Manual

write_data writes a nested list with each sublist on one line.

write_data writes a flat list all on one line.

The destination D may be a file name or a stream. When the destination is a file
name, the global variable file_output_append governs whether the output file is
appended or truncated. When the destination is a stream, no special action is taken
by write_data after all the data are written; in particular, the stream remains open.

The recognized values of separator flag are comma, pipe, semicolon, space, and tab.
If separator flag is not specified, the file is assumed space-delimited.

70.3 Functions and Variables for binary input and output

Functionassume external byte order (byte order flag)
Tells numericalio the byte order for reading and writing binary data. Two values
of byte order flag are recognized: lsb which indicates least-significant byte first, also
called little-endian byte order; and msb which indicates most-significant byte first,
also called big-endian byte order.

If not specified, numericalio assumes the external byte order is most-significant byte
first.

Functionopenr binary (file name)
Returns an input stream of 8-bit unsigned bytes to read the file named by file name.

Functionopenw binary (file name)
Returns an output stream of 8-bit unsigned bytes to write the file named by file name.

Functionopena binary (file name)
Returns an output stream of 8-bit unsigned bytes to append the file named by
file name.

Functionread binary matrix (S, M)
Reads binary 8-byte floating point numbers from the source S into the matrix M until
M is full, or the source is exhausted. Elements of M are read in row-major order.

The source S may be a file name or a stream.

The byte order in elements of the source is specified by assume_external_byte_

order.

Functionread binary array (S, A)
Reads binary 8-byte floating point numbers from the source S into the array A until
A is full, or the source is exhausted. A must be an array created by array or make_

array. Elements of A are read in row-major order.

The source S may be a file name or a stream.

The byte order in elements of the source is specified by assume_external_byte_

order.

Chapter 70: numericalio 939

Functionread binary list
read_binary_list (S)
read_binary_list (S, L)

read_binary_list(S) reads the entire content of the source S as a sequence of binary
8-byte floating point numbers, and returns it as a list. The source S may be a file
name or a stream.

read_binary_list(S, L) reads 8-byte binary floating point numbers from the source
S until the list L is full, or the source is exhausted.

The byte order in elements of the source is specified by assume_external_byte_

order.

Functionwrite binary data (X, D)
Writes the object X, comprising binary 8-byte IEEE 754 floating-point numbers, to
the destination D. Other kinds of numbers are coerced to 8-byte floats. write_

binary_data cannot write non-numeric data.

The object X may be a list, a nested list, a matrix, or an array created by array or
make_array; X cannot be an undeclared array or any other type of object. write_

binary_data writes nested lists, matrices, and arrays in row-major order.

The destination D may be a file name or a stream. When the destination is a file name,
the global variable file_output_append governs whether the output file is appended
or truncated. When the destination is a stream, no special action is taken by write_

binary_data after all the data are written; in particular, the stream remains open.

The byte order in elements of the destination is specified by assume_external_byte_

order.

940 Maxima 5.35.1 Manual

Chapter 71: opsubst 941

71 opsubst

71.1 Functions and Variables for opsubst

Functionopsubst
opsubst (f,g,e)
opsubst (g=f,e)
opsubst ([g1=f1,g2=f2,..., gn=fn],e)

The function opsubst is similar to the function subst, except that opsubst only
makes substitutions for the operators in an expression. In general, When f is an
operator in the expression e, substitute g for f in the expression e.

To determine the operator, opsubst sets inflag to true. This means opsubst sub-
stitutes for the internal, not the displayed, operator in the expression.

Examples:

(%i1) load (opsubst)$

(%i2) opsubst(f,g,g(g(x)));
(%o2) f(f(x))
(%i3) opsubst(f,g,g(g));
(%o3) f(g)
(%i4) opsubst(f,g[x],g[x](z));
(%o4) f(z)
(%i5) opsubst(g[x],f, f(z));
(%o5) g (z)

x
(%i6) opsubst(tan, sin, sin(sin));
(%o6) tan(sin)
(%i7) opsubst([f=g,g=h],f(x));
(%o7) h(x)

Internally, Maxima does not use the unary negation, division, or the subtraction
operators; thus:

(%i8) opsubst("+","-",a-b);
(%o8) a - b
(%i9) opsubst("f","-",-a);
(%o9) - a
(%i10) opsubst("^^","/",a/b);

a
(%o10) -

b

The internal representation of -a*b is *(-1,a,b); thus

(%i11) opsubst("[","*", -a*b);
(%o11) [- 1, a, b]

When either operator isn’t a Maxima symbol, generally some other function will signal
an error:

942 Maxima 5.35.1 Manual

(%i12) opsubst(a+b,f, f(x));

Improper name or value in functional position:
b + a
-- an error. Quitting. To debug this try debugmode(true);

However, subscripted operators are allowed:

(%i13) opsubst(g[5],f, f(x));
(%o13) g (x)

5

To use this function write first load("opsubst").

Chapter 72: orthopoly 943

72 orthopoly

72.1 Introduction to orthogonal polynomials

orthopoly is a package for symbolic and numerical evaluation of several kinds of or-
thogonal polynomials, including Chebyshev, Laguerre, Hermite, Jacobi, Legendre, and ul-
traspherical (Gegenbauer) polynomials. Additionally, orthopoly includes support for the
spherical Bessel, spherical Hankel, and spherical harmonic functions.

For the most part, orthopoly follows the conventions of Abramowitz and Stegun Hand-
book of Mathematical Functions, Chapter 22 (10th printing, December 1972); additionally,
we use Gradshteyn and Ryzhik, Table of Integrals, Series, and Products (1980 corrected
and enlarged edition), and Eugen Merzbacher Quantum Mechanics (2nd edition, 1970).

Barton Willis of the University of Nebraska at Kearney (UNK) wrote the orthopoly

package and its documentation. The package is released under the GNU General Public
License (GPL).

72.1.1 Getting Started with orthopoly

load (orthopoly) loads the orthopoly package.

To find the third-order Legendre polynomial,

(%i1) legendre_p (3, x);
3 2

5 (1 - x) 15 (1 - x)
(%o1) - ---------- + ----------- - 6 (1 - x) + 1

2 2

To express this as a sum of powers of x, apply ratsimp or rat to the result.

(%i2) [ratsimp (%), rat (%)];
3 3

5 x - 3 x 5 x - 3 x
(%o2)/R/ [----------, ----------]

2 2

Alternatively, make the second argument to legendre_p (its “main” variable) a canonical
rational expression (CRE).

(%i1) legendre_p (3, rat (x));
3

5 x - 3 x
(%o1)/R/ ----------

2

For floating point evaluation, orthopoly uses a running error analysis to estimate an
upper bound for the error. For example,

(%i1) jacobi_p (150, 2, 3, 0.2);
(%o1) interval(- 0.062017037936715, 1.533267919277521E-11)

Intervals have the form interval (c, r), where c is the center and r is the radius of the
interval. Since Maxima does not support arithmetic on intervals, in some situations, such

944 Maxima 5.35.1 Manual

as graphics, you want to suppress the error and output only the center of the interval. To
do this, set the option variable orthopoly_returns_intervals to false.

(%i1) orthopoly_returns_intervals : false;
(%o1) false
(%i2) jacobi_p (150, 2, 3, 0.2);
(%o2) - 0.062017037936715

Refer to the section see [Floating point Evaluation], page 947 for more information.

Most functions in orthopoly have a gradef property; thus

(%i1) diff (hermite (n, x), x);
(%o1) 2 n H (x)

n - 1
(%i2) diff (gen_laguerre (n, a, x), x);

(a) (a)
n L (x) - (n + a) L (x) unit_step(n)

n n - 1
(%o2) --

x

The unit step function in the second example prevents an error that would otherwise
arise by evaluating with n equal to 0.

(%i3) ev (%, n = 0);
(%o3) 0

The gradef property only applies to the “main” variable; derivatives with respect other
arguments usually result in an error message; for example

(%i1) diff (hermite (n, x), x);
(%o1) 2 n H (x)

n - 1
(%i2) diff (hermite (n, x), n);

Maxima doesn’t know the derivative of hermite with respect the first
argument
-- an error. Quitting. To debug this try debugmode(true);

Generally, functions in orthopoly map over lists and matrices. For the mapping to
fully evaluate, the option variables doallmxops and listarith must both be true (the
defaults). To illustrate the mapping over matrices, consider

(%i1) hermite (2, x);
2

(%o1) - 2 (1 - 2 x)
(%i2) m : matrix ([0, x], [y, 0]);

[0 x]
(%o2) []

[y 0]
(%i3) hermite (2, m);

[2]
[- 2 - 2 (1 - 2 x)]

(%o3) []
[2]

Chapter 72: orthopoly 945

[- 2 (1 - 2 y) - 2]

In the second example, the i, j element of the value is hermite (2, m[i,j]); this is
not the same as computing -2 + 4 m . m, as seen in the next example.

(%i4) -2 * matrix ([1, 0], [0, 1]) + 4 * m . m;
[4 x y - 2 0]

(%o4) []
[0 4 x y - 2]

If you evaluate a function at a point outside its domain, generally orthopoly returns
the function unevaluated. For example,

(%i1) legendre_p (2/3, x);
(%o1) P (x)

2/3

orthopoly supports translation into TeX; it also does two-dimensional output on a
terminal.

(%i1) spherical_harmonic (l, m, theta, phi);
m

(%o1) Y (theta, phi)
l

(%i2) tex (%);
$$Y_{l}^{m}\left(\vartheta,\varphi\right)$$
(%o2) false
(%i3) jacobi_p (n, a, a - b, x/2);

(a, a - b) x
(%o3) P (-)

n 2
(%i4) tex (%);
$$P_{n}^{\left(a,a-b\right)}\left({{x}\over{2}}\right)$$
(%o4) false

72.1.2 Limitations

When an expression involves several orthogonal polynomials with symbolic orders, it’s
possible that the expression actually vanishes, yet Maxima is unable to simplify it to zero.
If you divide by such a quantity, you’ll be in trouble. For example, the following expression
vanishes for integers n greater than 1, yet Maxima is unable to simplify it to zero.

(%i1) (2*n - 1) * legendre_p (n - 1, x) * x - n * legendre_p (n, x)
+ (1 - n) * legendre_p (n - 2, x);

(%o1) (2 n - 1) P (x) x - n P (x) + (1 - n) P (x)
n - 1 n n - 2

For a specific n, we can reduce the expression to zero.

(%i2) ev (% ,n = 10, ratsimp);
(%o2) 0

Generally, the polynomial form of an orthogonal polynomial is ill-suited for floating point
evaluation. Here’s an example.

(%i1) p : jacobi_p (100, 2, 3, x)$

946 Maxima 5.35.1 Manual

(%i2) subst (0.2, x, p);
(%o2) 3.4442767023833592E+35
(%i3) jacobi_p (100, 2, 3, 0.2);
(%o3) interval(0.18413609135169, 6.8990300925815987E-12)
(%i4) float(jacobi_p (100, 2, 3, 2/10));
(%o4) 0.18413609135169

The true value is about 0.184; this calculation suffers from extreme subtractive cancel-
lation error. Expanding the polynomial and then evaluating, gives a better result.

(%i5) p : expand(p)$
(%i6) subst (0.2, x, p);
(%o6) 0.18413609766122982

This isn’t a general rule; expanding the polynomial does not always result in an expres-
sion that is better suited for numerical evaluation. By far, the best way to do numerical
evaluation is to make one or more of the function arguments floating point numbers. By
doing that, specialized floating point algorithms are used for evaluation.

Maxima’s float function is somewhat indiscriminate; if you apply float to an expres-
sion involving an orthogonal polynomial with a symbolic degree or order parameter, these
parameters may be converted into floats; after that, the expression will not evaluate fully.
Consider

(%i1) assoc_legendre_p (n, 1, x);
1

(%o1) P (x)
n

(%i2) float (%);
1.0

(%o2) P (x)
n

(%i3) ev (%, n=2, x=0.9);
1.0

(%o3) P (0.9)
2

The expression in (%o3) will not evaluate to a float; orthopoly doesn’t recognize floating
point values where it requires an integer. Similarly, numerical evaluation of the pochhammer
function for orders that exceed pochhammer_max_index can be troublesome; consider

(%i1) x : pochhammer (1, 10), pochhammer_max_index : 5;
(%o1) (1)

10

Applying float doesn’t evaluate x to a float

(%i2) float (x);
(%o2) (1.0)

10.0

To evaluate x to a float, you’ll need to bind pochhammer_max_index to 11 or greater
and apply float to x.

(%i3) float (x), pochhammer_max_index : 11;
(%o3) 3628800.0

Chapter 72: orthopoly 947

The default value of pochhammer_max_index is 100; change its value after loading
orthopoly.

Finally, be aware that reference books vary on the definitions of the orthogonal polyno-
mials; we’ve generally used the conventions of conventions of Abramowitz and Stegun.

Before you suspect a bug in orthopoly, check some special cases to determine if your
definitions match those used by orthopoly. Definitions often differ by a normalization; oc-
casionally, authors use “shifted” versions of the functions that makes the family orthogonal
on an interval other than (−1, 1). To define, for example, a Legendre polynomial that is
orthogonal on (0, 1), define

(%i1) shifted_legendre_p (n, x) := legendre_p (n, 2*x - 1)$

(%i2) shifted_legendre_p (2, rat (x));
2

(%o2)/R/ 6 x - 6 x + 1
(%i3) legendre_p (2, rat (x));

2
3 x - 1

(%o3)/R/ --------
2

72.1.3 Floating point Evaluation

Most functions in orthopoly use a running error analysis to estimate the error in float-
ing point evaluation; the exceptions are the spherical Bessel functions and the associated
Legendre polynomials of the second kind. For numerical evaluation, the spherical Bessel
functions call SLATEC functions. No specialized method is used for numerical evaluation
of the associated Legendre polynomials of the second kind.

The running error analysis ignores errors that are second or higher order in the machine
epsilon (also known as unit roundoff). It also ignores a few other errors. It’s possible
(although unlikely) that the actual error exceeds the estimate.

Intervals have the form interval (c, r), where c is the center of the interval and r is
its radius. The center of an interval can be a complex number, and the radius is always a
positive real number.

Here is an example.

(%i1) fpprec : 50$

(%i2) y0 : jacobi_p (100, 2, 3, 0.2);
(%o2) interval(0.1841360913516871, 6.8990300925815987E-12)
(%i3) y1 : bfloat (jacobi_p (100, 2, 3, 1/5));
(%o3) 1.8413609135168563091370224958913493690868904463668b-1

Let’s test that the actual error is smaller than the error estimate

(%i4) is (abs (part (y0, 1) - y1) < part (y0, 2));
(%o4) true

Indeed, for this example the error estimate is an upper bound for the true error.

Maxima does not support arithmetic on intervals.

948 Maxima 5.35.1 Manual

(%i1) legendre_p (7, 0.1) + legendre_p (8, 0.1);
(%o1) interval(0.18032072148437508, 3.1477135311021797E-15)

+ interval(- 0.19949294375000004, 3.3769353084291579E-15)

A user could define arithmetic operators that do interval math. To define interval addi-
tion, we can define

(%i1) infix ("@+")$

(%i2) "@+"(x,y) := interval (part (x, 1) + part (y, 1), part (x, 2)
+ part (y, 2))$

(%i3) legendre_p (7, 0.1) @+ legendre_p (8, 0.1);
(%o3) interval(- 0.019172222265624955, 6.5246488395313372E-15)

The special floating point routines get called when the arguments are complex. For
example,

(%i1) legendre_p (10, 2 + 3.0*%i);
(%o1) interval(- 3.876378825E+7 %i - 6.0787748E+7,

1.2089173052721777E-6)

Let’s compare this to the true value.

(%i1) float (expand (legendre_p (10, 2 + 3*%i)));
(%o1) - 3.876378825E+7 %i - 6.0787748E+7

Additionally, when the arguments are big floats, the special floating point routines get
called; however, the big floats are converted into double floats and the final result is a
double.

(%i1) ultraspherical (150, 0.5b0, 0.9b0);
(%o1) interval(- 0.043009481257265, 3.3750051301228864E-14)

72.1.4 Graphics and orthopoly

To plot expressions that involve the orthogonal polynomials, you must do two things:

1. Set the option variable orthopoly_returns_intervals to false,

2. Quote any calls to orthopoly functions.

If function calls aren’t quoted, Maxima evaluates them to polynomials before plotting;
consequently, the specialized floating point code doesn’t get called. Here is an example of
how to plot an expression that involves a Legendre polynomial.

(%i1) plot2d (’(legendre_p (5, x)), [x, 0, 1]),
orthopoly_returns_intervals : false;

Chapter 72: orthopoly 949

(%o1)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

-63*(1-x)5/8+315*(1-x)4/8-70*(1-x)3+105*(1-x)2/2-15*(1-x)+1

The entire expression legendre_p (5, x) is quoted; this is different than just quoting
the function name using ’legendre_p (5, x).

72.1.5 Miscellaneous Functions

The orthopoly package defines the Pochhammer symbol and a unit step function.
orthopoly uses the Kronecker delta function and the unit step function in gradef state-
ments.

To convert Pochhammer symbols into quotients of gamma functions, use makegamma.

(%i1) makegamma (pochhammer (x, n));
gamma(x + n)

(%o1) ------------
gamma(x)

(%i2) makegamma (pochhammer (1/2, 1/2));
1

(%o2) ---------
sqrt(%pi)

Derivatives of the Pochhammer symbol are given in terms of the psi function.

(%i1) diff (pochhammer (x, n), x);
(%o1) (x) (psi (x + n) - psi (x))

n 0 0
(%i2) diff (pochhammer (x, n), n);
(%o2) (x) psi (x + n)

n 0

You need to be careful with the expression in (%o1); the difference of the psi func-
tions has polynomials when x = -1, -2, .., -n. These polynomials cancel with factors in
pochhammer (x, n) making the derivative a degree n - 1 polynomial when n is a positive
integer.

The Pochhammer symbol is defined for negative orders through its representation as a
quotient of gamma functions. Consider

950 Maxima 5.35.1 Manual

(%i1) q : makegamma (pochhammer (x, n));
gamma(x + n)

(%o1) ------------
gamma(x)

(%i2) sublis ([x=11/3, n= -6], q);
729

(%o2) - ----
2240

Alternatively, we can get this result directly.

(%i1) pochhammer (11/3, -6);
729

(%o1) - ----
2240

The unit step function is left-continuous; thus

(%i1) [unit_step (-1/10), unit_step (0), unit_step (1/10)];
(%o1) [0, 0, 1]

If you need a unit step function that is neither left or right continuous at zero, define
your own using signum; for example,

(%i1) xunit_step (x) := (1 + signum (x))/2$

(%i2) [xunit_step (-1/10), xunit_step (0), xunit_step (1/10)];
1

(%o2) [0, -, 1]
2

Do not redefine unit_step itself; some code in orthopoly requires that the unit step
function be left-continuous.

72.1.6 Algorithms

Generally, orthopoly does symbolic evaluation by using a hypergeometic representation
of the orthogonal polynomials. The hypergeometic functions are evaluated using the (un-
documented) functions hypergeo11 and hypergeo21. The exceptions are the half-integer
Bessel functions and the associated Legendre function of the second kind. The half-integer
Bessel functions are evaluated using an explicit representation, and the associated Legendre
function of the second kind is evaluated using recursion.

For floating point evaluation, we again convert most functions into a hypergeometic form;
we evaluate the hypergeometic functions using forward recursion. Again, the exceptions are
the half-integer Bessel functions and the associated Legendre function of the second kind.
Numerically, the half-integer Bessel functions are evaluated using the SLATEC code.

72.2 Functions and Variables for orthogonal polynomials

Functionassoc legendre p (n, m, x)
The associated Legendre function of the first kind of degree n and order m.

Reference: Abramowitz and Stegun, equations 22.5.37, page 779, 8.6.6 (second equa-
tion), page 334, and 8.2.5, page 333.

Chapter 72: orthopoly 951

Functionassoc legendre q (n, m, x)
The associated Legendre function of the second kind of degree n and order m.

Reference: Abramowitz and Stegun, equation 8.5.3 and 8.1.8.

Functionchebyshev t (n, x)
The Chebyshev polynomial of the first kind of degree n.

Reference: Abramowitz and Stegun, equation 22.5.47, page 779.

Functionchebyshev u (n, x)
The Chebyshev polynomial of the second kind of degree n.

Reference: Abramowitz and Stegun, equation 22.5.48, page 779.

Functiongen laguerre (n, a, x)
The generalized Laguerre polynomial of degree n.

Reference: Abramowitz and Stegun, equation 22.5.54, page 780.

Functionhermite (n, x)
The Hermite polynomial of degree n.

Reference: Abramowitz and Stegun, equation 22.5.55, page 780.

Functionintervalp (e)
Return true if the input is an interval and return false if it isn’t.

Functionjacobi p (n, a, b, x)
The Jacobi polynomial.

The Jacobi polynomials are actually defined for all a and b; however, the Jacobi
polynomial weight (1 - x)^a (1 + x)^b isn’t integrable for a <= -1 or b <= -1.

Reference: Abramowitz and Stegun, equation 22.5.42, page 779.

Functionlaguerre (n, x)
The Laguerre polynomial of degree n.

Reference: Abramowitz and Stegun, equations 22.5.16 and 22.5.54, page 780.

Functionlegendre p (n, x)
The Legendre polynomial of the first kind of degree n.

Reference: Abramowitz and Stegun, equations 22.5.50 and 22.5.51, page 779.

Functionlegendre q (n, x)
The Legendre function of the second kind of degree n.

Reference: Abramowitz and Stegun, equations 8.5.3 and 8.1.8.

952 Maxima 5.35.1 Manual

Functionorthopoly recur (f, args)
Returns a recursion relation for the orthogonal function family f with arguments args.
The recursion is with respect to the polynomial degree.

(%i1) orthopoly_recur (legendre_p, [n, x]);
(2 n + 1) P (x) x - n P (x)

n n - 1
(%o1) P (x) = -------------------------------

n + 1 n + 1

The second argument to orthopoly_recur must be a list with the correct number of
arguments for the function f ; if it isn’t, Maxima signals an error.

(%i1) orthopoly_recur (jacobi_p, [n, x]);

Function jacobi_p needs 4 arguments, instead it received 2
-- an error. Quitting. To debug this try debugmode(true);

Additionally, when f isn’t the name of one of the families of orthogonal polynomials,
an error is signalled.

(%i1) orthopoly_recur (foo, [n, x]);

A recursion relation for foo isn’t known to Maxima
-- an error. Quitting. To debug this try debugmode(true);

Variableorthopoly returns intervals
Default value: true

When orthopoly_returns_intervals is true, floating point results are returned in
the form interval (c, r), where c is the center of an interval and r is its radius. The
center can be a complex number; in that case, the interval is a disk in the complex
plane.

Functionorthopoly weight (f, args)
Returns a three element list; the first element is the formula of the weight for the
orthogonal polynomial family f with arguments given by the list args; the second and
third elements give the lower and upper endpoints of the interval of orthogonality.
For example,

(%i1) w : orthopoly_weight (hermite, [n, x]);
2

- x
(%o1) [%e , - inf, inf]
(%i2) integrate(w[1]*hermite(3, x)*hermite(2, x), x, w[2], w[3]);
(%o2) 0

The main variable of f must be a symbol; if it isn’t, Maxima signals an error.

Functionpochhammer (x, n)
The Pochhammer symbol. For nonnegative integers n with n <= pochhammer_max_

index, the expression pochhammer (x, n) evaluates to the product x (x + 1) (x +

2) ... (x + n - 1) when n > 0 and to 1 when n = 0. For negative n, pochhammer (x,
n) is defined as (-1)^n / pochhammer (1 - x, -n). Thus

Chapter 72: orthopoly 953

(%i1) pochhammer (x, 3);
(%o1) x (x + 1) (x + 2)
(%i2) pochhammer (x, -3);

1
(%o2) - -----------------------

(1 - x) (2 - x) (3 - x)

To convert a Pochhammer symbol into a quotient of gamma functions, (see
Abramowitz and Stegun, equation 6.1.22) use makegamma; for example

(%i1) makegamma (pochhammer (x, n));
gamma(x + n)

(%o1) ------------
gamma(x)

When n exceeds pochhammer_max_index or when n is symbolic, pochhammer returns
a noun form.

(%i1) pochhammer (x, n);
(%o1) (x)

n

Variablepochhammer max index
Default value: 100

pochhammer (n, x) expands to a product if and only if n <= pochhammer_max_index.

Examples:

(%i1) pochhammer (x, 3), pochhammer_max_index : 3;
(%o1) x (x + 1) (x + 2)
(%i2) pochhammer (x, 4), pochhammer_max_index : 3;
(%o2) (x)

4

Reference: Abramowitz and Stegun, equation 6.1.16, page 256.

Functionspherical bessel j (n, x)
The spherical Bessel function of the first kind.

Reference: Abramowitz and Stegun, equations 10.1.8, page 437 and 10.1.15, page 439.

Functionspherical bessel y (n, x)
The spherical Bessel function of the second kind.

Reference: Abramowitz and Stegun, equations 10.1.9, page 437 and 10.1.15, page 439.

Functionspherical hankel1 (n, x)
The spherical Hankel function of the first kind.

Reference: Abramowitz and Stegun, equation 10.1.36, page 439.

Functionspherical hankel2 (n, x)
The spherical Hankel function of the second kind.

Reference: Abramowitz and Stegun, equation 10.1.17, page 439.

954 Maxima 5.35.1 Manual

Functionspherical harmonic (n, m, x, y)
The spherical harmonic function.

Reference: Merzbacher 9.64.

Functionunit step (x)
The left-continuous unit step function; thus unit_step (x) vanishes for x <= 0 and
equals 1 for x > 0.

If you want a unit step function that takes on the value 1/2 at zero, use (1 + signum

(x))/2.

Functionultraspherical (n, a, x)
The ultraspherical polynomial (also known as the Gegenbauer polynomial).

Reference: Abramowitz and Stegun, equation 22.5.46, page 779.

Chapter 73: romberg 955

73 romberg

73.1 Functions and Variables for romberg

Functionromberg
romberg (expr, x, a, b)
romberg (F, a, b)

Computes a numerical integration by Romberg’s method.

romberg(expr, x, a, b) returns an estimate of the integral integrate(expr, x, a,
b). expr must be an expression which evaluates to a floating point value when x is
bound to a floating point value.

romberg(F, a, b) returns an estimate of the integral integrate(F(x), x, a, b)
where x represents the unnamed, sole argument of F; the actual argument is not
named x. F must be a Maxima or Lisp function which returns a floating point value
when the argument is a floating point value. F may name a translated or compiled
Maxima function.

The accuracy of romberg is governed by the global variables rombergabs and
rombergtol. romberg terminates successfully when the absolute difference between
successive approximations is less than rombergabs, or the relative difference in
successive approximations is less than rombergtol. Thus when rombergabs is 0.0
(the default) only the relative error test has any effect on romberg.

romberg halves the stepsize at most rombergit times before it gives up; the maxi-
mum number of function evaluations is therefore 2^rombergit. If the error criterion
established by rombergabs and rombergtol is not satisfied, romberg prints an error
message. romberg always makes at least rombergmin iterations; this is a heuristic
intended to prevent spurious termination when the integrand is oscillatory.

romberg repeatedly evaluates the integrand after binding the variable of integration
to a specific value (and not before). This evaluation policy makes it possible to
nest calls to romberg, to compute multidimensional integrals. However, the error
calculations do not take the errors of nested integrations into account, so errors may
be underestimated. Also, methods devised especially for multidimensional problems
may yield the same accuracy with fewer function evaluations.

load(romberg) loads this function.

See also QUADPACK, a collection of numerical integration functions.

Examples:

A 1-dimensional integration.

(%i1) load (romberg);
(%o1) /usr/share/maxima/5.11.0/share/numeric/romberg.lisp
(%i2) f(x) := 1/((x - 1)^2 + 1/100) + 1/((x - 2)^2 + 1/1000)

+ 1/((x - 3)^2 + 1/200);
1 1 1

(%o2) f(x) := -------------- + --------------- + --------------
2 1 2 1 2 1

956 Maxima 5.35.1 Manual

(x - 1) + --- (x - 2) + ---- (x - 3) + ---
100 1000 200

(%i3) rombergtol : 1e-6;
(%o3) 9.9999999999999995E-7
(%i4) rombergit : 15;
(%o4) 15
(%i5) estimate : romberg (f(x), x, -5, 5);
(%o5) 173.6730736617464
(%i6) exact : integrate (f(x), x, -5, 5);
(%o6) 10 sqrt(10) atan(70 sqrt(10))
+ 10 sqrt(10) atan(30 sqrt(10)) + 10 sqrt(2) atan(80 sqrt(2))
+ 10 sqrt(2) atan(20 sqrt(2)) + 10 atan(60) + 10 atan(40)
(%i7) abs (estimate - exact) / exact, numer;
(%o7) 7.5527060865060088E-11

A 2-dimensional integration, implemented by nested calls to romberg.

(%i1) load (romberg);
(%o1) /usr/share/maxima/5.11.0/share/numeric/romberg.lisp
(%i2) g(x, y) := x*y / (x + y);

x y
(%o2) g(x, y) := -----

x + y
(%i3) rombergtol : 1e-6;
(%o3) 9.9999999999999995E-7
(%i4) estimate : romberg (romberg (g(x, y), y, 0, x/2), x, 1, 3);
(%o4) 0.81930239628356
(%i5) assume (x > 0);
(%o5) [x > 0]
(%i6) integrate (integrate (g(x, y), y, 0, x/2), x, 1, 3);

3
2 log(-) - 1

9 2 9
(%o6) - 9 log(-) + 9 log(3) + ------------ + -

2 6 2
(%i7) exact : radcan (%);

26 log(3) - 26 log(2) - 13
(%o7) - --------------------------

3
(%i8) abs (estimate - exact) / exact, numer;
(%o8) 1.3711979871851024E-10

Option variablerombergabs
Default value: 0.0

The accuracy of romberg is governed by the global variables rombergabs and
rombergtol. romberg terminates successfully when the absolute difference between
successive approximations is less than rombergabs, or the relative difference in
successive approximations is less than rombergtol. Thus when rombergabs is 0.0
(the default) only the relative error test has any effect on romberg.

See also rombergit and rombergmin.

Chapter 73: romberg 957

Option variablerombergit
Default value: 11

romberg halves the stepsize at most rombergit times before it gives up; the max-
imum number of function evaluations is therefore 2^rombergit. romberg always
makes at least rombergmin iterations; this is a heuristic intended to prevent spurious
termination when the integrand is oscillatory.

See also rombergabs and rombergtol.

Option variablerombergmin
Default value: 0

romberg always makes at least rombergmin iterations; this is a heuristic intended to
prevent spurious termination when the integrand is oscillatory.

See also rombergit, rombergabs, and rombergtol.

Option variablerombergtol
Default value: 1e-4

The accuracy of romberg is governed by the global variables rombergabs and
rombergtol. romberg terminates successfully when the absolute difference between
successive approximations is less than rombergabs, or the relative difference in
successive approximations is less than rombergtol. Thus when rombergabs is 0.0
(the default) only the relative error test has any effect on romberg.

See also rombergit and rombergmin.

958 Maxima 5.35.1 Manual

Chapter 74: simplex 959

74 simplex

74.1 Introduction to simplex

simplex is a package for linear optimization using the simplex algorithm.

Example:

(%i1) load("simplex")$
(%i2) minimize_lp(x+y, [3*x+2*y>2, x+4*y>3]);

9 7 1
(%o2) [--, [y = --, x = -]]

10 10 5

74.1.1 Tests for simplex

There are some tests in the directory share/simplex/Tests.

74.1.1.1 klee minty

The function klee_minty produces input for linear_program, for which exponential
time for solving is required without scaling.

Example:

load(klee_minty)$
apply(linear_program, klee_minty(6));

A better approach:

epsilon_sx : 0$
scale_sx : true$
apply(linear_program, klee_minty(10));

74.1.1.2 NETLIB

Some smaller problems from netlib (http://www.netlib.org/lp/data/) test suite are
converted to a format, readable by Maxima. Problems are adlittle, afiro, kb2 and sc50a.
Each problem has three input files in CSV format for matrix A and vectors b and c.

Example:

A : read_matrix("adlittle_A.csv", ’csv)$
b : read_list("adlittle_b.csv", ’csv)$
c : read_list("adlittle_c.csv", ’csv)$
linear_program(A, b, c)$
%[2]
=> 225494.963126615

Results:

PROBLEM MINIMUM SCALING
adlittle 225494.963126615 no
afiro - 464.7531428571429 no
kb2 - 1749.900129055996 yes
sc50a - 64.5750770585645 no

960 Maxima 5.35.1 Manual

74.2 Functions and Variables for simplex

Option variableepsilon lp
Default value: 10^-8

Epsilon used for numerical computations in linear_program.

See also: linear_program.

Functionlinear program (A, b, c)
linear_program is an implementation of the simplex algorithm. linear_program(A,
b, c) computes a vector x for which c.x is minimum possible among vectors for which
A.x = b and x >= 0. Argument A is a matrix and arguments b and c are lists.

linear_program returns a list which contains the minimizing vector x and the min-
imum value c.x. If the problem is not bounded, it returns "Problem not bounded!"
and if the problem is not feasible, it returns "Problem not feasible!".

To use this function first load the simplex package with load(simplex);.

Example:

(%i2) A: matrix([1,1,-1,0], [2,-3,0,-1], [4,-5,0,0])$
(%i3) b: [1,1,6]$
(%i4) c: [1,-2,0,0]$
(%i5) linear_program(A, b, c);

13 19 3
(%o5) [[--, 4, --, 0], - -]

2 2 2

See also: minimize_lp, scale_lp, and epsilon_lp.

Functionmaximize lp (obj, cond, [pos])
Maximizes linear objective function obj subject to some linear constraints cond. See
minimize_lp for detailed description of arguments and return value.

See also: minimize_lp.

Functionminimize lp (obj, cond, [pos])
Minimizes a linear objective function obj subject to some linear constraints cond.
cond a list of linear equations or inequalities. In strict inequalities > is replaced by
>= and < by <=. The optional argument pos is a list of decision variables which are
assumed to be positive.

If the minimum exists, minimize_lp returns a list which contains the minimum value
of the objective function and a list of decision variable values for which the mini-
mum is attained. If the problem is not bounded, minimize_lp returns "Problem not
bounded!" and if the problem is not feasible, it returns "Problem not feasible!".

The decision variables are not assumed to be nonegative by default. If all decision
variables are nonegative, set nonegative_lp to true. If only some of decision vari-
ables are positive, list them in the optional argument pos (note that this is more
efficient than adding constraints).

Chapter 74: simplex 961

minimize_lp uses the simplex algorithm which is implemented in maxima linear_

program function.

To use this function first load the simplex package with load(simplex);.

Examples:

(%i1) minimize_lp(x+y, [3*x+y=0, x+2*y>2]);
4 6 2

(%o1) [-, [y = -, x = - -]]
5 5 5

(%i2) minimize_lp(x+y, [3*x+y>0, x+2*y>2]), nonegative_lp=true;
(%o2) [1, [y = 1, x = 0]]
(%i3) minimize_lp(x+y, [3*x+y=0, x+2*y>2]), nonegative_lp=true;
(%o3) Problem not feasible!
(%i4) minimize_lp(x+y, [3*x+y>0]);
(%o4) Problem not bounded!

See also: maximize_lp, nonegative_lp, epsilon_lp.

Option variablenonegative lp
Default value: false

If nonegative_lp is true all decision variables to minimize_lp and maximize_lp are
assumed to be positive.

See also: minimize_lp.

Option variablescale lp
Default value: false

When scale_lp is true, linear_program scales its input so that the maximum
absolute value in each row or column is 1.

Variablepivot count sx
After linear_program returns, pivot_count_sx is the number of pivots in last com-
putation.

Variablepivot max sx
pivot_max_sx is the maximum number of pivots allowed by linear_program.

962 Maxima 5.35.1 Manual

Chapter 75: simplification 963

75 simplification

75.1 Introduction to simplification

The directory maxima/share/simplification contains several scripts which implement
simplification rules and functions, and also some functions not related to simplification.

75.2 Package absimp

The absimp package contains pattern-matching rules that extend the built-in simplifi-
cation rules for the abs and signum functions. absimp respects relations established with
the built-in assume function and by declarations such as modedeclare (m, even, n, odd)

for even or odd integers.

absimp defines unitramp and unitstep functions in terms of abs and signum.

load (absimp) loads this package. demo (absimp) shows a demonstration of this pack-
age.

Examples:

(%i1) load (absimp)$
(%i2) (abs (x))^2;

2
(%o2) x
(%i3) diff (abs (x), x);

x
(%o3) ------

abs(x)
(%i4) cosh (abs (x));
(%o4) cosh(x)

75.3 Package facexp

The facexp package contains several related functions that provide the user with the
ability to structure expressions by controlled expansion. This capability is especially useful
when the expression contains variables that have physical meaning, because it is often true
that the most economical form of such an expression can be obtained by fully expanding
the expression with respect to those variables, and then factoring their coefficients. While
it is true that this procedure is not difficult to carry out using standard Maxima functions,
additional fine-tuning may also be desirable, and these finishing touches can be more difficult
to apply.

The function facsum and its related forms provide a convenient means for controlling
the structure of expressions in this way. Another function, collectterms, can be used
to add two or more expressions that have already been simplified to this form, without
resimplifying the whole expression again. This function may be useful when the expressions
are very large.

load (facexp) loads this package. demo (facexp) shows a demonstration of this pack-
age.

964 Maxima 5.35.1 Manual

Functionfacsum (expr, arg 1, ..., arg n)
Returns a form of expr which depends on the arguments arg 1, ..., arg n. The argu-
ments can be any form suitable for ratvars, or they can be lists of such forms. If the
arguments are not lists, then the form returned is fully expanded with respect to the
arguments, and the coefficients of the arguments are factored. These coefficients are
free of the arguments, except perhaps in a non-rational sense.

If any of the arguments are lists, then all such lists are combined into a single list,
and instead of calling factor on the coefficients of the arguments, facsum calls itself
on these coefficients, using this newly constructed single list as the new argument list
for this recursive call. This process can be repeated to arbitrary depth by nesting the
desired elements in lists.

It is possible that one may wish to facsum with respect to more complicated subex-
pressions, such as log (x + y). Such arguments are also permissible.

Occasionally the user may wish to obtain any of the above forms for expressions which
are specified only by their leading operators. For example, one may wish to facsum

with respect to all log’s. In this situation, one may include among the arguments
either the specific log’s which are to be treated in this way, or alternatively, either
the expression operator (log) or ’operator (log). If one wished to facsum the
expression expr with respect to the operators op 1, ..., op n, one would evaluate
facsum (expr, operator (op 1, ..., op n)). The operator form may also appear
inside list arguments.

In addition, the setting of the switches facsum_combine and nextlayerfactor may
affect the result of facsum.

Global variablenextlayerfactor
Default value: false

When nextlayerfactor is true, recursive calls of facsum are applied to the factors
of the factored form of the coefficients of the arguments.

When false, facsum is applied to each coefficient as a whole whenever recusive calls
to facsum occur.

Inclusion of the atom nextlayerfactor in the argument list of facsum has the ef-
fect of nextlayerfactor: true, but for the next level of the expression only. Since
nextlayerfactor is always bound to either true or false, it must be presented
single-quoted whenever it appears in the argument list of facsum.

Global variablefacsum combine
Default value: true

facsum_combine controls the form of the final result returned by facsum when its
argument is a quotient of polynomials. If facsum_combine is false then the form will
be returned as a fully expanded sum as described above, but if true, then the expres-
sion returned is a ratio of polynomials, with each polynomial in the form described
above.

The true setting of this switch is useful when one wants to facsum both the numerator
and denominator of a rational expression, but does not want the denominator to be
multiplied through the terms of the numerator.

Chapter 75: simplification 965

Functionfactorfacsum (expr, arg 1, ... arg n)
Returns a form of expr which is obtained by calling facsum on the factors of expr
with arg 1, ... arg n as arguments. If any of the factors of expr is raised to a power,
both the factor and the exponent will be processed in this way.

Functioncollectterms (expr, arg 1, . . . , arg n)
If several expressions have been simplified with the following functions facsum,
factorfacsum, factenexpand, facexpten or factorfacexpten, and they are
to be added together, it may be desirable to combine them using the function
collecterms. collecterms can take as arguments all of the arguments that can be
given to these other associated functions with the exception of nextlayerfactor,
which has no effect on collectterms. The advantage of collectterms is that it
returns a form similar to facsum, but since it is adding forms that have already
been processed by facsum, it does not need to repeat that effort. This capability is
especially useful when the expressions to be summed are very large.

75.4 Package functs

Functionrempart (expr, n)
Removes part n from the expression expr.

If n is a list of the form [l, m] then parts l thru m are removed.

To use this function write first load(functs).

Functionwronskian ([f 1, ..., f n], x)
Returns the Wronskian matrix of the list of expressions [f 1, ..., f n] in the variable x.
The determinant of the Wronskian matrix is the Wronskian determinant of the list
of expressions.

To use wronskian, first load(functs). Example:

(%i1) load(functs)$
(%i2) wronskian([f(x), g(x)],x);
(%o2) matrix([f(x),g(x)],[’diff(f(x),x,1),’diff(g(x),x,1)])

Functiontracematrix (M)
Returns the trace (sum of the diagonal elements) of matrix M.

To use this function write first load(functs).

Functionrational (z)
Multiplies numerator and denominator of z by the complex conjugate of denominator,
thus rationalizing the denominator. Returns canonical rational expression (CRE)
form if given one, else returns general form.

To use this function write first load(functs).

966 Maxima 5.35.1 Manual

Functionnonzeroandfreeof (x, expr)
Returns true if expr is nonzero and freeof (x, expr) returns true. Returns false
otherwise.

To use this function write first load(functs).

Functionlinear (expr, x)
When expr is an expression of the form a*x + b where a is nonzero, and a and b are
free of x, linear returns a list of three equations, one for each of the three formal
variables b, a, and x. Otherwise, linear returns false.

load(antid) loads this function.

Example:

(%i1) load (antid);
(%o1) /usr/share/maxima/5.29.1/share/integration/antid.mac
(%i2) linear ((1 - w)*(1 - x)*z, z);
(%o2) [bargumentb = 0, aargumenta = (w - 1) x - w + 1, xargumentx = z]
(%i3) linear (cos(u - v) + cos(u + v), u);
(%o3) false

Functiongcdivide (p, q)
When the option variable takegcd is true which is the default, gcdivide divides the
polynomials p and q by their greatest common divisor and returns the ratio of the
results. gcdivde calls the function ezgcd to divide the polynomials by the greatest
common divisor.

When takegcd is false, gcdivide returns the ratio p/q.

To use this function write first load(functs).

See also ezgcd, gcd, gcdex, and poly_gcd.

Example:

(%i1) load(functs)$

(%i2) p1:6*x^3+19*x^2+19*x+6;
3 2

(%o2) 6 x + 19 x + 19 x + 6
(%i3) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;

5 4 3 2
(%o3) 6 x + 13 x + 12 x + 13 x + 6 x
(%i4) gcdivide(p1, p2);

x + 1
(%o4) ------

3
x + x

(%i5) takegcd:false;
(%o5) false
(%i6) gcdivide(p1, p2);

3 2
6 x + 19 x + 19 x + 6

Chapter 75: simplification 967

(%o6) ----------------------------------
5 4 3 2

6 x + 13 x + 12 x + 13 x + 6 x
(%i7) ratsimp(%);

x + 1
(%o7) ------

3
x + x

Functionarithmetic (a, d, n)
Returns the n-th term of the arithmetic series a, a + d, a + 2*d, ..., a + (n -

1)*d.

To use this function write first load(functs).

Functiongeometric (a, r, n)
Returns the n-th term of the geometric series a, a*r, a*r^2, ..., a*r^(n - 1).

To use this function write first load(functs).

Functionharmonic (a, b, c, n)
Returns the n-th term of the harmonic series a/b, a/(b + c), a/(b + 2*c), ...,

a/(b + (n - 1)*c).

To use this function write first load(functs).

Functionarithsum (a, d, n)
Returns the sum of the arithmetic series from 1 to n.

To use this function write first load(functs).

Functiongeosum (a, r, n)
Returns the sum of the geometric series from 1 to n. If n is infinity (inf) then a sum
is finite only if the absolute value of r is less than 1.

To use this function write first load(functs).

Functiongaussprob (x)
Returns the Gaussian probability function %e^(-x^2/2) / sqrt(2*%pi).

To use this function write first load(functs).

Functiongd (x)
Returns the Gudermannian function 2*atan(%e^x)-%pi/2.

To use this function write first load(functs).

Functionagd (x)
Returns the inverse Gudermannian function log (tan (%pi/4 + x/2)).

To use this function write first load(functs).

968 Maxima 5.35.1 Manual

Functionvers (x)
Returns the versed sine 1 - cos (x).

To use this function write first load(functs).

Functioncovers (x)
Returns the coversed sine 1 - sin (x).

To use this function write first load(functs).

Functionexsec (x)
Returns the exsecant sec (x) - 1.

To use this function write first load(functs).

Functionhav (x)
Returns the haversine (1 - cos(x))/2.

To use this function write first load(functs).

Functioncombination (n, r)
Returns the number of combinations of n objects taken r at a time.

To use this function write first load(functs).

Functionpermutation (n, r)
Returns the number of permutations of r objects selected from a set of n objects.

To use this function write first load(functs).

75.5 Package ineq

The ineq package contains simplification rules for inequalities.

Example session:

(%i1) load(ineq)$
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
Warning: Putting rules on ’+’ or ’*’ is inefficient, and may not work.
(%i2) a>=4; /* a sample inequality */
(%o2) a >= 4
(%i3) (b>c)+%; /* add a second, strict inequality */
(%o3) b + a > c + 4
(%i4) 7*(x<y); /* multiply by a positive number */
(%o4) 7 x < 7 y
(%i5) -2*(x>=3*z); /* multiply by a negative number */
(%o5) - 2 x <= - 6 z

Chapter 75: simplification 969

(%i6) (1+a^2)*(1/(1+a^2)<=1); /* Maxima knows that 1+a^2 > 0 */
2

(%o6) 1 <= a + 1
(%i7) assume(x>0)$ x*(2<3); /* assuming x>0 */
(%o7) 2 x < 3 x
(%i8) a>=b; /* another inequality */
(%o8) a >= b
(%i9) 3+%; /* add something */
(%o9) a + 3 >= b + 3
(%i10) %-3; /* subtract it out */
(%o10) a >= b
(%i11) a>=c-b; /* yet another inequality */
(%o11) a >= c - b
(%i12) b+%; /* add b to both sides */
(%o12) b + a >= c
(%i13) %-c; /* subtract c from both sides */
(%o13) - c + b + a >= 0
(%i14) -%; /* multiply by -1 */
(%o14) c - b - a <= 0
(%i15) (z-1)^2>-2*z; /* determining truth of assertion */

2
(%o15) (z - 1) > - 2 z
(%i16) expand(%)+2*z; /* expand this and add 2*z to both sides */

2
(%o16) z + 1 > 0
(%i17) %,pred;
(%o17) true

Be careful about using parentheses around the inequalities: when the user types in (A

> B) + (C = 5) the result is A + C > B + 5, but A > B + C = 5 is a syntax error, and (A > B +

C) = 5 is something else entirely.

Do disprule (all) to see a complete listing of the rule definitions.

The user will be queried if Maxima is unable to decide the sign of a quantity multiplying
an inequality.

The most common mis-feature is illustrated by:

(%i1) eq: a > b;
(%o1) a > b
(%i2) 2*eq;
(%o2) 2 (a > b)
(%i3) % - eq;
(%o3) a > b

Another problem is 0 times an inequality; the default to have this turn into 0 has been
left alone. However, if you type X*some inequality and Maxima asks about the sign of
X and you respond zero (or z), the program returns X*some inequality and not use the
information that X is 0. You should do ev (%, x: 0) in such a case, as the database will
only be used for comparison purposes in decisions, and not for the purpose of evaluating X.

The user may note a slower response when this package is loaded, as the simplifier is
forced to examine more rules than without the package, so you might wish to remove the

970 Maxima 5.35.1 Manual

rules after making use of them. Do kill (rules) to eliminate all of the rules (including
any that you might have defined); or you may be more selective by killing only some of
them; or use remrule on a specific rule.

Note that if you load this package after defining your own rules you will clobber your
rules that have the same name. The rules in this package are: *rule1, ..., *rule8, +rule1,
..., +rule18, and you must enclose the rulename in quotes to refer to it, as in remrule

("+", "+rule1") to specifically remove the first rule on "+" or disprule ("*rule2") to
display the definition of the second multiplicative rule.

75.6 Package rducon

Functionreduce consts (expr)
Replaces constant subexpressions of expr with constructed constant atoms, saving the
definition of all these constructed constants in the list of equations const_eqns, and
returning the modified expr. Those parts of expr are constant which return true when
operated on by the function constantp. Hence, before invoking reduce_consts, one
should do

declare ([objects to be given the constant property], constant)$

to set up a database of the constant quantities occurring in your expressions.

If you are planning to generate Fortran output after these symbolic calculations, one
of the first code sections should be the calculation of all constants. To generate this
code segment, do

map (’fortran, const_eqns)$

Variables besides const_eqns which affect reduce_consts are:

const_prefix (default value: xx) is the string of characters used to prefix all symbols
generated by reduce_consts to represent constant subexpressions.

const_counter (default value: 1) is the integer index used to generate unique symbols
to represent each constant subexpression found by reduce_consts.

load (rducon) loads this function. demo (rducon) shows a demonstration of this
function.

75.7 Package scifac

Functiongcfac (expr)
gcfac is a factoring function that attempts to apply the same heuristics which scien-
tists apply in trying to make expressions simpler. gcfac is limited to monomial-type
factoring. For a sum, gcfac does the following:

1. Factors over the integers.

2. Factors out the largest powers of terms occurring as coefficients, regardless of the
complexity of the terms.

3. Uses (1) and (2) in factoring adjacent pairs of terms.

4. Repeatedly and recursively applies these techniques until the expression no longer
changes.

Chapter 75: simplification 971

Item (3) does not necessarily do an optimal job of pairwise factoring because of the
combinatorially-difficult nature of finding which of all possible rearrangements of the
pairs yields the most compact pair-factored result.

load (scifac) loads this function. demo (scifac) shows a demonstration of this
function.

75.8 Package sqdnst

Functionsqrtdenest (expr)
Denests sqrt of simple, numerical, binomial surds, where possible. E.g.

(%i1) load (sqdnst)$
(%i2) sqrt(sqrt(3)/2+1)/sqrt(11*sqrt(2)-12);

sqrt(3)
sqrt(------- + 1)

2
(%o2) ---------------------

sqrt(11 sqrt(2) - 12)
(%i3) sqrtdenest(%);

sqrt(3) 1
------- + -

2 2
(%o3) -------------

1/4 3/4
3 2 - 2

Sometimes it helps to apply sqrtdenest more than once, on such as (19601-13860

sqrt(2))^(7/4).

load (sqdnst) loads this function.

972 Maxima 5.35.1 Manual

Chapter 76: solve rec 973

76 solve rec

76.1 Introduction to solve rec

solve_rec is a package for solving linear recurrences with polynomial coefficients.

A demo is available with demo(solve_rec);.

Example:

(%i1) load("solve_rec")$
(%i2) solve_rec((n+4)*s[n+2] + s[n+1] - (n+1)*s[n], s[n]);

n
%k (2 n + 3) (- 1) %k

1 2
(%o2) s = -------------------- + ---------------

n (n + 1) (n + 2) (n + 1) (n + 2)

76.2 Functions and Variables for solve rec

Functionreduce order (rec, sol, var)
Reduces the order of linear recurrence rec when a particular solution sol is known.
The reduced reccurence can be used to get other solutions.

Example:

(%i3) rec: x[n+2] = x[n+1] + x[n]/n;
x
n

(%o3) x = x + --
n + 2 n + 1 n

(%i4) solve_rec(rec, x[n]);
WARNING: found some hypergeometrical solutions!
(%o4) x = %k n

n 1

(%i5) reduce_order(rec, n, x[n]);
(%t5) x = n %z

n n

n - 1
====
\

(%t6) %z = > %u
n / %j

====
%j = 0

(%o6) (- n - 2) %u - %u
n + 1 n

974 Maxima 5.35.1 Manual

(%i6) solve_rec((n+2)*%u[n+1] + %u[n], %u[n]);
n

%k (- 1)
1

(%o6) %u = ----------
n (n + 1)!

So the general solution is

n - 1
==== j
\ (- 1)

%k n > -------- + %k n
2 / (j + 1)! 1

====
j = 0

Option variablesimplify products
Default value: true

If simplify_products is true, solve_rec will try to simplify products in result.

See also: solve_rec.

Functionsimplify sum (expr)
Tries to simplify all sums appearing in expr to a closed form.

To use this function first load the simplify_sum package with load(simplify_sum).

Example:

(%i1) load("simplify_sum")$
(%i2) sum(binomial(n+k,k)/2^k,k,1,n)+sum(binomial(2*n,2*k),k,1,n);

n n
==== ====
\ binomial(n + k, k) \

(%o2) > ------------------ + > binomial(2 n, 2 k)
/ k /
==== 2 ====
k = 1 k = 1

(%i3) simplify_sum(%);

2 n - 1 n
(%o3) 2 + 2 - 2

Functionsolve rec (eqn, var, [init])
Solves for hypergeometrical solutions to linear recurrence eqn with polynomials coef-
ficient in variable var. Optional arguments init are initial conditions.

solve_rec can solve linear recurrences with constant coefficients, finds hypergeomet-
rical solutions to homogeneous linear recurrences with polynomial coefficients, rational
solutions to linear recurrences with polynomial coefficients and can solve Ricatti type
recurrences.

Chapter 76: solve rec 975

Note that the running time of the algorithm used to find hypergeometrical solutions
is exponential in the degree of the leading and trailing coefficient.

To use this function first load the solve_rec package with load(solve_rec);.

Example of linear recurrence with constant coefficients:

(%i2) solve_rec(a[n]=a[n-1]+a[n-2]+n/2^n, a[n]);
n n

(sqrt(5) - 1) %k (- 1)
1 n

(%o2) a = ------------------------- - ----
n n n

2 5 2
n

(sqrt(5) + 1) %k
2 2

+ ------------------ - ----
n n
2 5 2

Example of linear recurrence with polynomial coefficients:

(%i7) 2*x*(x+1)*y[x] - (x^2+3*x-2)*y[x+1] + (x-1)*y[x+2];
2

(%o7) (x - 1) y - (x + 3 x - 2) y + 2 x (x + 1) y
x + 2 x + 1 x

(%i8) solve_rec(%, y[x], y[1]=1, y[3]=3);
x

3 2 x!
(%o9) y = ---- - --

x 4 2

Example of Ricatti type recurrence:

(%i2) x*y[x+1]*y[x] - y[x+1]/(x+2) + y[x]/(x-1) = 0;
y y
x + 1 x

(%o2) x y y - ------ + ----- = 0
x x + 1 x + 2 x - 1

(%i3) solve_rec(%, y[x], y[3]=5)$
(%i4) ratsimp(minfactorial(factcomb(%)));

3
30 x - 30 x

(%o4) y = - ---
x 6 5 4 3 2

5 x - 3 x - 25 x + 15 x + 20 x - 12 x - 1584

See also: solve_rec_rat, simplify_products, and product_use_gamma.

Functionsolve rec rat (eqn, var, [init])
Solves for rational solutions to linear recurrences. See solve rec for description of
arguments.

To use this function first load the solve_rec package with load(solve_rec);.

Example:

976 Maxima 5.35.1 Manual

(%i1) (x+4)*a[x+3] + (x+3)*a[x+2] - x*a[x+1] + (x^2-1)*a[x];
(%o1) (x + 4) a + (x + 3) a - x a

x + 3 x + 2 x + 1
2

+ (x - 1) a
x

(%i2) solve_rec_rat(% = (x+2)/(x+1), a[x]);
1

(%o2) a = ---------------
x (x - 1) (x + 1)

See also: solve_rec.

Option variableproduct use gamma
Default value: true

When simplifying products, solve_rec introduces gamma function into the expres-
sion if product_use_gamma is true.

See also: simplify_products, solve_rec.

Functionsummand to rec
summand_to_rec (summand, k, n)
summand_to_rec (summand, [k, lo, hi], n)

Returns the recurrence sattisfied by the sum

hi
====
\
> summand
/
====

k = lo

where summand is hypergeometrical in k and n. If lo and hi are omited, they are
assumed to be lo = -inf and hi = inf.

To use this function first load the simplify_sum package with load(simplify_sum).

Example:

(%i1) load("simplify_sum")$
(%i2) summand: binom(n,k);
(%o2) binomial(n, k)

(%i3) summand_to_rec(summand,k,n);
(%o3) 2 sm - sm = 0

n n + 1

(%i7) summand: binom(n, k)/(k+1);
binomial(n, k)

(%o7) --------------
k + 1

(%i8) summand_to_rec(summand, [k, 0, n], n);
(%o8) 2 (n + 1) sm - (n + 2) sm = - 1

n n + 1

Chapter 77: stats 977

77 stats

77.1 Introduction to stats

Package stats contains a set of classical statistical inference and hypothesis testing
procedures.

All these functions return an inference_result Maxima object which contains the
necessary results for population inferences and decision making.

Global variable stats_numer controls whether results are given in floating point or
symbolic and rational format; its default value is true and results are returned in floating
point format.

Package descriptive contains some utilities to manipulate data structures (lists and
matrices); for example, to extract subsamples. It also contains some examples on how to use
package numericalio to read data from plain text files. See descriptive and numericalio

for more details.

Package stats loads packages descriptive, distrib and inference_result.

For comments, bugs or suggestions, please contact the author at

’mario AT edu DOT xunta DOT es’.

77.2 Functions and Variables for inference result

Functioninference result (title, values, numbers)
Constructs an inference_result object of the type returned by the stats functions.
Argument title is a string with the name of the procedure; values is a list with
elements of the form symbol = value and numbers is a list with positive integer
numbers ranging from one to length(values), indicating which values will be shown
by default.

Example:

This is a simple example showing results concerning a rectangle. The title of this
object is the string "Rectangle", it stores five results, named ’base, ’height,
’diagonal, ’area, and ’perimeter, but only the first, second, fifth, and fourth
will be displayed. The ’diagonal is stored in this object, but it is not displayed; to
access its value, make use of function take_inference.

(%i1) load(inference_result)$
(%i2) b: 3$ h: 2$
(%i3) inference_result("Rectangle",

[’base=b,
’height=h,
’diagonal=sqrt(b^2+h^2),
’area=b*h,
’perimeter=2*(b+h)],
[1,2,5,4]);
| Rectangle

978 Maxima 5.35.1 Manual

|
| base = 3
|

(%o3) | height = 2
|
| perimeter = 10
|
| area = 6

(%i4) take_inference(’diagonal,%);
(%o4) sqrt(13)

See also take_inference.

Functioninferencep (obj)
Returns true or false, depending on whether obj is an inference_result object
or not.

Functionitems inference (obj)
Returns a list with the names of the items stored in obj, which must be an inference_

result object.

Example:

The inference_result object stores two values, named ’pi and ’e, but only the
second is displayed. The items_inference function returns the names of all items,
no matter they are displayed or not.

(%i1) load(inference_result)$
(%i2) inference_result("Hi", [’pi=%pi,’e=%e],[2]);

| Hi
(%o2) |

| e = %e
(%i3) items_inference(%);
(%o3) [pi, e]

Functiontake inference
take_inference (n, obj)
take_inference (name, obj)
take_inference (list, obj)

Returns the n-th value stored in obj if n is a positive integer, or the item named
name if this is the name of an item. If the first argument is a list of numbers and/or
symbols, function take_inference returns a list with the corresponding results.

Example:

Given an inference_result object, function take_inference is called in order to
extract some information stored in it.

(%i1) load(inference_result)$
(%i2) b: 3$ h: 2$
(%i3) sol: inference_result("Rectangle",

[’base=b,
’height=h,

Chapter 77: stats 979

’diagonal=sqrt(b^2+h^2),
’area=b*h,
’perimeter=2*(b+h)],
[1,2,5,4]);

| Rectangle
|
| base = 3
|

(%o3) | height = 2
|
| perimeter = 10
|
| area = 6

(%i4) take_inference(’base,sol);
(%o4) 3
(%i5) take_inference(5,sol);
(%o5) 10
(%i6) take_inference([1,’diagonal],sol);
(%o6) [3, sqrt(13)]
(%i7) take_inference(items_inference(sol),sol);
(%o7) [3, 2, sqrt(13), 6, 10]

See also inference_result and take_inference.

77.3 Functions and Variables for stats

Option variablestats numer
Default value: true

If stats_numer is true, inference statistical functions return their results in floating
point numbers. If it is false, results are given in symbolic and rational format.

Functiontest mean
test_mean (x)
test_mean (x, options ...)

This is the mean t-test. Argument x is a list or a column matrix containing a one
dimensional sample. It also performs an asymptotic test based on the Central Limit
Theorem if option ’asymptotic is true.

Options:

• ’mean, default 0, is the mean value to be checked.

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

• ’dev, default ’unknown, this is the value of the standard deviation when it is
known; valid values are: ’unknown or a positive expression.

• ’conflevel, default 95/100, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

980 Maxima 5.35.1 Manual

• ’asymptotic, default false, indicates whether it performs an exact t-test or an
asymptotic one based on the Central Limit Theorem; valid values are true and
false.

The output of function test_mean is an inference_result Maxima object showing
the following results:

1. ’mean_estimate: the sample mean.

2. ’conf_level: confidence level selected by the user.

3. ’conf_interval: confidence interval for the population mean.

4. ’method: inference procedure.

5. ’hypotheses: null and alternative hypotheses to be tested.

6. ’statistic: value of the sample statistic used for testing the null hypothesis.

7. ’distribution: distribution of the sample statistic, together with its parame-
ter(s).

8. ’p_value: p-value of the test.

Examples:

Performs an exact t-test with unknown variance. The null hypothesis is H0 : mean =
50 against the one sided alternative H1 : mean < 50; according to the results, the
p-value is too great, there are no evidence for rejecting H0.

(%i1) load("stats")$
(%i2) data: [78,64,35,45,45,75,43,74,42,42]$
(%i3) test_mean(data,’conflevel=0.9,’alternative=’less,’mean=50);

| MEAN TEST
|
| mean_estimate = 54.3
|
| conf_level = 0.9
|
| conf_interval = [minf, 61.51314273502712]
|

(%o3) | method = Exact t-test. Unknown variance.
|
| hypotheses = H0: mean = 50 , H1: mean < 50
|
| statistic = .8244705235071678
|
| distribution = [student_t, 9]
|
| p_value = .7845100411786889

This time Maxima performs an asymptotic test, based on the Central Limit Theorem.
The null hypothesis is H0 : equal(mean, 50) against the two sided alternative H1 :
notequal(mean, 50); according to the results, the p-value is very small, H0 should
be rejected in favor of the alternative H1. Note that, as indicated by the Method

component, this procedure should be applied to large samples.

(%i1) load("stats")$

Chapter 77: stats 981

(%i2) test_mean([36,118,52,87,35,256,56,178,57,57,89,34,25,98,35,
98,41,45,198,54,79,63,35,45,44,75,42,75,45,45,
45,51,123,54,151],
’asymptotic=true,’mean=50);

| MEAN TEST
|
| mean_estimate = 74.88571428571429
|
| conf_level = 0.95
|
| conf_interval = [57.72848600856194, 92.04294256286663]
|

(%o2) | method = Large sample z-test. Unknown variance.
|
| hypotheses = H0: mean = 50 , H1: mean # 50
|
| statistic = 2.842831192874313
|
| distribution = [normal, 0, 1]
|
| p_value = .004471474652002261

Functiontest means difference
test_means_difference (x1, x2)
test_means_difference (x1, x2, options ...)

This is the difference of means t-test for two samples. Arguments x1 and x2 are lists
or column matrices containing two independent samples. In case of different unknown
variances (see options ’dev1, ’dev2 and ’varequal bellow), the degrees of freedom
are computed by means of the Welch approximation. It also performs an asymptotic
test based on the Central Limit Theorem if option ’asymptotic is set to true.

Options:

•
• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:

’twosided, ’greater and ’less.

• ’dev1, default ’unknown, this is the value of the standard deviation of the x1
sample when it is known; valid values are: ’unknown or a positive expression.

• ’dev2, default ’unknown, this is the value of the standard deviation of the x2
sample when it is known; valid values are: ’unknown or a positive expression.

• ’varequal, default false, whether variances should be considered to be equal
or not; this option takes effect only when ’dev1 and/or ’dev2 are ’unknown.

• ’conflevel, default 95/100, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

• ’asymptotic, default false, indicates whether it performs an exact t-test or an
asymptotic one based on the Central Limit Theorem; valid values are true and
false.

982 Maxima 5.35.1 Manual

The output of function test_means_difference is an inference_result Maxima
object showing the following results:

1. ’diff_estimate: the difference of means estimate.

2. ’conf_level: confidence level selected by the user.

3. ’conf_interval: confidence interval for the difference of means.

4. ’method: inference procedure.

5. ’hypotheses: null and alternative hypotheses to be tested.

6. ’statistic: value of the sample statistic used for testing the null hypothesis.

7. ’distribution: distribution of the sample statistic, together with its parame-
ter(s).

8. ’p_value: p-value of the test.

Examples:

The equality of means is tested with two small samples x and y, against the alternative
H1 : m1 > m2, being m1 and m2 the populations means; variances are unknown and
supposed to be different.

(%i1) load("stats")$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: [1.2,6.9,38.7,20.4,17.2]$
(%i4) test_means_difference(x,y,’alternative=’greater);

| DIFFERENCE OF MEANS TEST
|
| diff_estimate = 20.31999999999999
|
| conf_level = 0.95
|
| conf_interval = [- .04597417812882298, inf]
|

(%o4) | method = Exact t-test. Welch approx.
|
| hypotheses = H0: mean1 = mean2 , H1: mean1 > mean2
|
| statistic = 1.838004300728477
|
| distribution = [student_t, 8.62758740184604]
|
| p_value = .05032746527991905

The same test as before, but now variances are supposed to be equal.

(%i1) load("stats")$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: matrix([1.2],[6.9],[38.7],[20.4],[17.2])$
(%i4) test_means_difference(x,y,’alternative=’greater,

’varequal=true);
| DIFFERENCE OF MEANS TEST
|
| diff_estimate = 20.31999999999999

Chapter 77: stats 983

|
| conf_level = 0.95
|
| conf_interval = [- .7722627696897568, inf]
|

(%o4) | method = Exact t-test. Unknown equal variances
|
| hypotheses = H0: mean1 = mean2 , H1: mean1 > mean2
|
| statistic = 1.765996124515009
|
| distribution = [student_t, 9]
|
| p_value = .05560320992529344

Functiontest variance
test_variance (x)
test_variance (x, options, ...)

This is the variance chi^2-test. Argument x is a list or a column matrix containing a
one dimensional sample taken from a normal population.

Options:

• ’mean, default ’unknown, is the population’s mean, when it is known.

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

• ’variance, default 1, this is the variance value (positive) to be checked.

• ’conflevel, default 95/100, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

The output of function test_variance is an inference_result Maxima object show-
ing the following results:

1. ’var_estimate: the sample variance.

2. ’conf_level: confidence level selected by the user.

3. ’conf_interval: confidence interval for the population variance.

4. ’method: inference procedure.

5. ’hypotheses: null and alternative hypotheses to be tested.

6. ’statistic: value of the sample statistic used for testing the null hypothesis.

7. ’distribution: distribution of the sample statistic, together with its parameter.

8. ’p_value: p-value of the test.

Examples:

It is tested whether the variance of a population with unknown mean is equal to or
greater than 200.

(%i1) load("stats")$
(%i2) x: [203,229,215,220,223,233,208,228,209]$
(%i3) test_variance(x,’alternative=’greater,’variance=200);

984 Maxima 5.35.1 Manual

| VARIANCE TEST
|
| var_estimate = 110.75
|
| conf_level = 0.95
|
| conf_interval = [57.13433376937479, inf]
|

(%o3) | method = Variance Chi-square test. Unknown mean.
|
| hypotheses = H0: var = 200 , H1: var > 200
|
| statistic = 4.43
|
| distribution = [chi2, 8]
|
| p_value = .8163948512777689

Functiontest variance ratio
test_variance_ratio (x1, x2)
test_variance_ratio (x1, x2, options ...)

This is the variance ratio F-test for two normal populations. Arguments x1 and x2
are lists or column matrices containing two independent samples.

Options:

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

• ’mean1, default ’unknown, when it is known, this is the mean of the population
from which x1 was taken.

• ’mean2, default ’unknown, when it is known, this is the mean of the population
from which x2 was taken.

• ’conflevel, default 95/100, confidence level for the confidence interval of the
ratio; it must be an expression which takes a value in (0,1).

The output of function test_variance_ratio is an inference_result Maxima ob-
ject showing the following results:

1. ’ratio_estimate: the sample variance ratio.

2. ’conf_level: confidence level selected by the user.

3. ’conf_interval: confidence interval for the variance ratio.

4. ’method: inference procedure.

5. ’hypotheses: null and alternative hypotheses to be tested.

6. ’statistic: value of the sample statistic used for testing the null hypothesis.

7. ’distribution: distribution of the sample statistic, together with its parame-
ters.

8. ’p_value: p-value of the test.

Chapter 77: stats 985

Examples:

The equality of the variances of two normal populations is checked against the alter-
native that the first is greater than the second.

(%i1) load("stats")$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: [1.2,6.9,38.7,20.4,17.2]$
(%i4) test_variance_ratio(x,y,’alternative=’greater);

| VARIANCE RATIO TEST
|
| ratio_estimate = 2.316933391522034
|
| conf_level = 0.95
|
| conf_interval = [.3703504689507268, inf]
|

(%o4) | method = Variance ratio F-test. Unknown means.
|
| hypotheses = H0: var1 = var2 , H1: var1 > var2
|
| statistic = 2.316933391522034
|
| distribution = [f, 5, 4]
|
| p_value = .2179269692254457

Functiontest proportion
test_proportion (x, n)
test_proportion (x, n, options ...)

Inferences on a proportion. Argument x is the number of successes in n trials in a
Bernoulli experiment with unknown probability.

Options:

• ’proportion, default 1/2, is the value of the proportion to be checked.

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

• ’conflevel, default 95/100, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

• ’asymptotic, default false, indicates whether it performs an exact test based
on the binomial distribution, or an asymptotic one based on the Central Limit
Theorem; valid values are true and false.

• ’correct, default true, indicates whether Yates correction is applied or not.

The output of function test_proportion is an inference_result Maxima object
showing the following results:

1. ’sample_proportion: the sample proportion.

2. ’conf_level: confidence level selected by the user.

3. ’conf_interval: Wilson confidence interval for the proportion.

986 Maxima 5.35.1 Manual

4. ’method: inference procedure.

5. ’hypotheses: null and alternative hypotheses to be tested.

6. ’statistic: value of the sample statistic used for testing the null hypothesis.

7. ’distribution: distribution of the sample statistic, together with its parame-
ters.

8. ’p_value: p-value of the test.

Examples:

Performs an exact test. The null hypothesis is H0 : p = 1/2 against the one sided
alternative H1 : p < 1/2.

(%i1) load("stats")$
(%i2) test_proportion(45, 103, alternative = less);

| PROPORTION TEST
|
| sample_proportion = .4368932038834951
|
| conf_level = 0.95
|
| conf_interval = [0, 0.522714149150231]
|

(%o2) | method = Exact binomial test.
|
| hypotheses = H0: p = 0.5 , H1: p < 0.5
|
| statistic = 45
|
| distribution = [binomial, 103, 0.5]
|
| p_value = .1184509388901454

A two sided asymptotic test. Confidence level is 99/100.

(%i1) load("stats")$
(%i2) fpprintprec:7$
(%i3) test_proportion(45, 103,

conflevel = 99/100, asymptotic=true);
| PROPORTION TEST
|
| sample_proportion = .43689
|
| conf_level = 0.99
|
| conf_interval = [.31422, .56749]
|

(%o3) | method = Asympthotic test with Yates correction.
|
| hypotheses = H0: p = 0.5 , H1: p # 0.5
|
| statistic = .43689
|

Chapter 77: stats 987

| distribution = [normal, 0.5, .048872]
|
| p_value = .19662

Functiontest proportions difference
test_proportions_difference (x1, n1, x2, n2)
test_proportions_difference (x1, n1, x2, n2, options . . .)

Inferences on the difference of two proportions. Argument x1 is the number of suc-
cesses in n1 trials in a Bernoulli experiment in the first population, and x2 and n2
are the corresponding values in the second population. Samples are independent and
the test is asymptotic.

Options:

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided (p1 # p2), ’greater (p1 > p2) and ’less (p1 < p2).

• ’conflevel, default 95/100, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

• ’correct, default true, indicates whether Yates correction is applied or not.

The output of function test_proportions_difference is an inference_result

Maxima object showing the following results:

1. ’proportions: list with the two sample proportions.

2. ’conf_level: confidence level selected by the user.

3. ’conf_interval: Confidence interval for the difference of proportions p1 - p2.

4. ’method: inference procedure and warning message in case of any of the samples
sizes is less than 10.

5. ’hypotheses: null and alternative hypotheses to be tested.

6. ’statistic: value of the sample statistic used for testing the null hypothesis.

7. ’distribution: distribution of the sample statistic, together with its parame-
ters.

8. ’p_value: p-value of the test.

Examples:

A machine produced 10 defective articles in a batch of 250. After some maintenance
work, it produces 4 defective in a batch of 150. In order to know if the machine has
improved, we test the null hypothesis H0:p1=p2, against the alternative H0:p1>p2,
where p1 and p2 are the probabilities for one produced article to be defective before
and after maintenance. According to the p value, there is not enough evidence to
accept the alternative.

(%i1) load("stats")$
(%i2) fpprintprec:7$
(%i3) test_proportions_difference(10, 250, 4, 150,

alternative = greater);
| DIFFERENCE OF PROPORTIONS TEST
|
| proportions = [0.04, .02666667]

988 Maxima 5.35.1 Manual

|
| conf_level = 0.95
|
| conf_interval = [- .02172761, 1]
|

(%o3) | method = Asymptotic test. Yates correction.
|
| hypotheses = H0: p1 = p2 , H1: p1 > p2
|
| statistic = .01333333
|
| distribution = [normal, 0, .01898069]
|
| p_value = .2411936

Exact standard deviation of the asymptotic normal distribution when the data are
unknown.

(%i1) load("stats")$
(%i2) stats_numer: false$
(%i3) sol: test_proportions_difference(x1,n1,x2,n2)$
(%i4) last(take_inference(’distribution,sol));

1 1 x2 + x1
(-- + --) (x2 + x1) (1 - -------)
n2 n1 n2 + n1

(%o4) sqrt(---------------------------------)
n2 + n1

Functiontest sign
test_sign (x)
test_sign (x, options . . .)

This is the non parametric sign test for the median of a continuous population. Ar-
gument x is a list or a column matrix containing a one dimensional sample.

Options:

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

• ’median, default 0, is the median value to be checked.

The output of function test_sign is an inference_result Maxima object showing
the following results:

1. ’med_estimate: the sample median.

2. ’method: inference procedure.

3. ’hypotheses: null and alternative hypotheses to be tested.

4. ’statistic: value of the sample statistic used for testing the null hypothesis.

5. ’distribution: distribution of the sample statistic, together with its parame-
ter(s).

6. ’p_value: p-value of the test.

Chapter 77: stats 989

Examples:

Checks whether the population from which the sample was taken has median 6,
against the alternative H1 : median > 6.

(%i1) load("stats")$
(%i2) x: [2,0.1,7,1.8,4,2.3,5.6,7.4,5.1,6.1,6]$
(%i3) test_sign(x,’median=6,’alternative=’greater);

| SIGN TEST
|
| med_estimate = 5.1
|
| method = Non parametric sign test.
|

(%o3) | hypotheses = H0: median = 6 , H1: median > 6
|
| statistic = 7
|
| distribution = [binomial, 10, 0.5]
|
| p_value = .05468749999999989

Functiontest signed rank
test_signed_rank (x)
test_signed_rank (x, options . . .)

This is the Wilcoxon signed rank test to make inferences about the median of a
continuous population. Argument x is a list or a column matrix containing a one
dimensional sample. Performs normal approximation if the sample size is greater
than 20, or if there are zeroes or ties.

See also pdf_rank_test and cdf_rank_test.

Options:

• ’median, default 0, is the median value to be checked.

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

The output of function test_signed_rank is an inference_result Maxima object
with the following results:

1. ’med_estimate: the sample median.

2. ’method: inference procedure.

3. ’hypotheses: null and alternative hypotheses to be tested.

4. ’statistic: value of the sample statistic used for testing the null hypothesis.

5. ’distribution: distribution of the sample statistic, together with its parame-
ter(s).

6. ’p_value: p-value of the test.

Examples:

Checks the null hypothesis H0 : median = 15 against the alternative H1 : median >
15. This is an exact test, since there are no ties.

990 Maxima 5.35.1 Manual

(%i1) load("stats")$
(%i2) x: [17.1,15.9,13.7,13.4,15.5,17.6]$
(%i3) test_signed_rank(x,median=15,alternative=greater);

| SIGNED RANK TEST
|
| med_estimate = 15.7
|
| method = Exact test
|

(%o3) | hypotheses = H0: med = 15 , H1: med > 15
|
| statistic = 14
|
| distribution = [signed_rank, 6]
|
| p_value = 0.28125

Checks the null hypothesis H0 : equal(median, 2.5) against the alternative H1 :
notequal(median, 2.5). This is an approximated test, since there are ties.

(%i1) load("stats")$
(%i2) y:[1.9,2.3,2.6,1.9,1.6,3.3,4.2,4,2.4,2.9,1.5,3,2.9,4.2,3.1]$
(%i3) test_signed_rank(y,median=2.5);

| SIGNED RANK TEST
|
| med_estimate = 2.9
|
| method = Asymptotic test. Ties
|

(%o3) | hypotheses = H0: med = 2.5 , H1: med # 2.5
|
| statistic = 76.5
|
| distribution = [normal, 60.5, 17.58195097251724]
|
| p_value = .3628097734643669

Functiontest rank sum
test_rank_sum (x1, x2)
test_rank_sum (x1, x2, option)

This is the Wilcoxon-Mann-Whitney test for comparing the medians of two continuous
populations. The first two arguments x1 and x2 are lists or column matrices with
the data of two independent samples. Performs normal approximation if any of the
sample sizes is greater than 10, or if there are ties.

Option:

• ’alternative, default ’twosided, is the alternative hypothesis; valid values are:
’twosided, ’greater and ’less.

The output of function test_rank_sum is an inference_result Maxima object with
the following results:

Chapter 77: stats 991

1. ’method: inference procedure.

2. ’hypotheses: null and alternative hypotheses to be tested.

3. ’statistic: value of the sample statistic used for testing the null hypothesis.

4. ’distribution: distribution of the sample statistic, together with its parame-
ters.

5. ’p_value: p-value of the test.

Examples:

Checks whether populations have similar medians. Samples sizes are small and an
exact test is made.

(%i1) load("stats")$
(%i2) x:[12,15,17,38,42,10,23,35,28]$
(%i3) y:[21,18,25,14,52,65,40,43]$
(%i4) test_rank_sum(x,y);

| RANK SUM TEST
|
| method = Exact test
|
| hypotheses = H0: med1 = med2 , H1: med1 # med2

(%o4) |
| statistic = 22
|
| distribution = [rank_sum, 9, 8]
|
| p_value = .1995886466474702

Now, with greater samples and ties, the procedure makes normal approximation. The
alternative hypothesis is H1 : median1 < median2.

(%i1) load("stats")$
(%i2) x: [39,42,35,13,10,23,15,20,17,27]$
(%i3) y: [20,52,66,19,41,32,44,25,14,39,43,35,19,56,27,15]$
(%i4) test_rank_sum(x,y,’alternative=’less);

| RANK SUM TEST
|
| method = Asymptotic test. Ties
|
| hypotheses = H0: med1 = med2 , H1: med1 < med2

(%o4) |
| statistic = 48.5
|
| distribution = [normal, 79.5, 18.95419580097078]
|
| p_value = .05096985666598441

Functiontest normality (x)
Shapiro-Wilk test for normality. Argument x is a list of numbers, and sample size must
be greater than 2 and less or equal than 5000, otherwise, function test_normality

signals an error message.

992 Maxima 5.35.1 Manual

Reference:

[1] Algorithm AS R94, Applied Statistics (1995), vol.44, no.4, 547-551

The output of function test_normality is an inference_result Maxima object
with the following results:

1. ’statistic: value of the W statistic.

2. ’p_value: p-value under normal assumption.

Examples:

Checks for the normality of a population, based on a sample of size 9.

(%i1) load("stats")$
(%i2) x:[12,15,17,38,42,10,23,35,28]$
(%i3) test_normality(x);

| SHAPIRO - WILK TEST
|

(%o3) | statistic = .9251055695162436
|
| p_value = .4361763918860381

Functionlinear regression
linear_regression (x)
linear_regression (x option)

Multivariate linear regression, yi = b0 + b1∗x1i+ b2∗x2i+ ...+ bk ∗xki+ui, where ui
are N(0, sigma) independent random variables. Argument x must be a matrix with
more than one column. The last column is considered as the responses (yi).

Option:

• ’conflevel, default 95/100, confidence level for the confidence intervals; it must
be an expression which takes a value in (0,1).

The output of function linear_regression is an inference_result Maxima object
with the following results:

1. ’b_estimation: regression coefficients estimates.

2. ’b_covariances: covariance matrix of the regression coefficients estimates.

3. b_conf_int: confidence intervals of the regression coefficients.

4. b_statistics: statistics for testing coefficient.

5. b_p_values: p-values for coefficient tests.

6. b_distribution: probability distribution for coefficient tests.

7. v_estimation: unbiased variance estimator.

8. v_conf_int: variance confidence interval.

9. v_distribution: probability distribution for variance test.

10. residuals: residuals.

11. adc: adjusted determination coefficient.

12. aic: Akaike’s information criterion.

13. bic: Bayes’s information criterion.

Chapter 77: stats 993

Only items 1, 4, 5, 6, 7, 8, 9 and 11 above, in this order, are shown by default.
The rest remain hidden until the user makes use of functions items_inference and
take_inference.

Example:

Fitting a linear model to a trivariate sample. The last column is considered as the
responses (yi).

(%i2) load("stats")$
(%i3) X:matrix(

[58,111,64],[84,131,78],[78,158,83],
[81,147,88],[82,121,89],[102,165,99],
[85,174,101],[102,169,102])$

(%i4) fpprintprec: 4$
(%i5) res: linear_regression(X);

| LINEAR REGRESSION MODEL
|
| b_estimation = [9.054, .5203, .2397]
|
| b_statistics = [.6051, 2.246, 1.74]
|
| b_p_values = [.5715, .07466, .1423]
|

(%o5) | b_distribution = [student_t, 5]
|
| v_estimation = 35.27
|
| v_conf_int = [13.74, 212.2]
|
| v_distribution = [chi2, 5]
|
| adc = .7922

(%i6) items_inference(res);
(%o6) [b_estimation, b_covariances, b_conf_int, b_statistics,
b_p_values, b_distribution, v_estimation, v_conf_int,
v_distribution, residuals, adc, aic, bic]
(%i7) take_inference(’b_covariances, res);

[223.9 - 1.12 - .8532]
[]

(%o7) [- 1.12 .05367 - .02305]
[]
[- .8532 - .02305 .01898]

(%i8) take_inference(’bic, res);
(%o8) 30.98
(%i9) load("draw")$
(%i10) draw2d(

points_joined = true,
grid = true,
points(take_inference(’residuals, res)))$

994 Maxima 5.35.1 Manual

77.4 Functions and Variables for special distributions

Functionpdf signed rank (x, n)
Probability density function of the exact distribution of the signed rank statistic.
Argument x is a real number and n a positive integer.

See also test_signed_rank.

Functioncdf signed rank (x, n)
Cumulative density function of the exact distribution of the signed rank statistic.
Argument x is a real number and n a positive integer.

See also test_signed_rank.

Functionpdf rank sum (x, n, m)
Probability density function of the exact distribution of the rank sum statistic. Ar-
gument x is a real number and n and m are both positive integers.

See also test_rank_sum.

Functioncdf rank sum (x, n, m)
Cumulative density function of the exact distribution of the rank sum statistic. Ar-
gument x is a real number and n and m are both positive integers.

See also test_rank_sum.

Chapter 78: stirling 995

78 stirling

78.1 Functions and Variables for stirling

Functionstirling
stirling (z,n)
stirling (z,n,pred)

Replace gamma(x) with the O(1/x(2n− 1)) Stirling formula. when n isn’t a nonneg-
ative integer, signal an error. With the optional third argument pred, the Stirling
formula is applied only when pred is true.

Reference: Abramowitz & Stegun, " Handbook of mathematical functions", 6.1.40.

Examples:

(%i1) load (stirling)$

(%i2) stirling(gamma(%alpha+x)/gamma(x),1);
1/2 - x x + %alpha - 1/2

(%o2) x (x + %alpha)
1 1

--------------- - ---- - %alpha
12 (x + %alpha) 12 x

%e
(%i3) taylor(%,x,inf,1);

%alpha 2 %alpha
%alpha x %alpha - x %alpha

(%o3)/T/ x + -------------------------------- + . . .
2 x

(%i4) map(’factor,%);
%alpha - 1

%alpha (%alpha - 1) %alpha x
(%o4) x + -------------------------------

2

The function stirling knows the difference between the variable ’gamma’ and the
function gamma:

(%i5) stirling(gamma + gamma(x),0);
x - 1/2 - x

(%o5) gamma + sqrt(2) sqrt(%pi) x %e
(%i6) stirling(gamma(y) + gamma(x),0);

y - 1/2 - y
(%o6) sqrt(2) sqrt(%pi) y %e

x - 1/2 - x
+ sqrt(2) sqrt(%pi) x %e

To apply the Stirling formula only to terms that involve the variable k, use an optional
third argument; for example

(%i7) makegamma(pochhammer(a,k)/pochhammer(b,k));
(%o7) (gamma(b)*gamma(k+a))/(gamma(a)*gamma(k+b))

996 Maxima 5.35.1 Manual

(%i8) stirling(%,1, lambda([s], not(freeof(k,s))));
(%o8) (%e^(b-a)*gamma(b)*(k+a)^(k+a-1/2)*(k+b)^(-k-b+1/2))/gamma(a)

The terms gamma(a) and gamma(b) are free of k, so the Stirling formula was not
applied to these two terms.

To use this function write first load("stirling").

Chapter 79: stringproc 997

79 stringproc

79.1 Introduction to string processing

stringproc.lisp enlarges Maximas capabilities of working with strings and adds some
useful functions for file in/output.

For questions and bugs please mail to volkervannek at gmail dot com .

In Maxima a string is easily constructed by typing "text". stringp tests for strings.

(%i1) m: "text";
(%o1) text
(%i2) stringp(m);
(%o2) true

Characters are represented as strings of length 1. These are not Lisp characters. Tests
can be done with charp (respectively lcharp and conversion from Lisp to Maxima charac-
ters with cunlisp).

(%i1) c: "e";
(%o1) e
(%i2) [charp(c),lcharp(c)];
(%o2) [true, false]
(%i3) supcase(c);
(%o3) E
(%i4) charp(%);
(%o4) true

All functions in stringproc.lisp that return characters, return Maxima-characters.
Due to the fact, that the introduced characters are strings of length 1, you can use a lot of
string functions also for characters. As seen, supcase is one example.

It is important to know, that the first character in a Maxima-string is at position 1. This
is designed due to the fact that the first element in a Maxima-list is at position 1 too. See
definitions of charat and charlist for examples.

In applications string-functions are often used when working with files. You will find
some useful stream- and print-functions in stringproc.lisp. The following example shows
some of the here introduced functions at work.

Example:

openw returns an output stream to a file, printf then allows formatted writing to this
file. See printf for details.

(%i1) s: openw("E:/file.txt");
(%o1) #<output stream E:/file.txt>
(%i2) for n:0 thru 10 do printf(s, "~d ", fib(n));
(%o2) done
(%i3) printf(s, "~%~d ~f ~a ~a ~f ~e ~a~%",

42,1.234,sqrt(2),%pi,1.0e-2,1.0e-2,1.0b-2);
(%o3) false
(%i4) close(s);
(%o4) true

998 Maxima 5.35.1 Manual

After closing the stream you can open it again, this time with input direction. readline
returns the entire line as one string. The stringproc package now offers a lot of functions
for manipulating strings. Tokenizing can be done by split or tokens.

(%i5) s: openr("E:/file.txt");
(%o5) #<input stream E:/file.txt>
(%i6) readline(s);
(%o6) 0 1 1 2 3 5 8 13 21 34 55
(%i7) line: readline(s);
(%o7) 42 1.234 sqrt(2) %pi 0.01 1.0E-2 1.0b-2
(%i8) list: tokens(line);
(%o8) [42, 1.234, sqrt(2), %pi, 0.01, 1.0E-2, 1.0b-2]
(%i9) map(parse_string, list);
(%o9) [42, 1.234, sqrt(2), %pi, 0.01, 0.01, 1.0b-2]
(%i10) float(%);
(%o10) [42.0, 1.234, 1.414213562373095, 3.141592653589793, 0.01,

0.01, 0.01]
(%i11) readline(s);
(%o11) false
(%i12) close(s)$

readline returns false when the end of file occurs.

79.2 Functions and Variables for input and output

Example:

(%i1) s: openw("E:/file.txt");
(%o1) #<output stream E:/file.txt>
(%i2) control:
"~2tAn atom: ~20t~a~%~2tand a list: ~20t~{~r ~}~%~2t\
and an integer: ~20t~d~%"$
(%i3) printf(s,control, ’true,[1,2,3],42)$
(%o3) false
(%i4) close(s);
(%o4) true
(%i5) s: openr("E:/file.txt");
(%o5) #<input stream E:/file.txt>
(%i6) while stringp(tmp:readline(s)) do print(tmp)$
An atom: true
and a list: one two three
and an integer: 42

(%i7) close(s)$

Functionclose (stream)
Closes stream and returns true if stream had been open.

Functionflength (stream)
Returns the number of elements in stream where stream has to be a stream from or
to a file.

Chapter 79: stringproc 999

Functionfposition
fposition (stream)
fposition (stream, pos)

Returns the current position in stream, if pos is not used. If pos is used, fposition
sets the position in stream. stream has to be a stream from or to a file and pos has
to be a positive number where the first element in stream is in position 1.

Functionfreshline
freshline ()
freshline (stream)

Writes a new line (to stream), if the position is not at the beginning of a line. See
also newline.

Functionget output stream string (stream)
Returns a string containing all the characters currently present in stream which must
be an open string-output stream. The returned characters are removed from stream.

Example: See [make string output stream], page 999 .

Functionmake string input stream
make_string_input_stream (string)
make_string_input_stream (string, start)
make_string_input_stream (string, start, end)

Returns an input stream which contains parts of string and an end of file. Without
optional arguments the stream contains the entire string and is positioned in front of
the first character. start and end define the substring contained in the stream. The
first character is available at position 1.

(%i1) istream : make_string_input_stream("text", 1, 4);
(%o1) #<string-input stream from "text">
(%i2) (while (c : readchar(istream)) # false do sprint(c), newline())$
t e x
(%i3) close(istream)$

Functionmake string output stream ()
Returns an output stream that accepts characters. Characters currently present in
this stream can be retrieved by [get output stream string], page 999.

(%i1) ostream : make_string_output_stream();
(%o1) #<string-output stream 09622ea0>
(%i2) printf(ostream, "foo")$

(%i3) printf(ostream, "bar")$

(%i4) string : get_output_stream_string(ostream);
(%o4) foobar
(%i5) printf(ostream, "baz")$

1000 Maxima 5.35.1 Manual

(%i6) string : get_output_stream_string(ostream);
(%o6) baz
(%i7) close(ostream)$

Functionnewline
newline ()
newline (stream)

Writes a new line (to stream). See sprint for an example of using newline(). Note
that there are some cases, where newline() does not work as expected.

Functionopena (file)
Returns an output stream to file. If an existing file is opened, opena appends elements
at the end of file.

Functionopenr (file)
Returns an input stream to file. If file does not exist, it will be created.

Functionopenw (file)
Returns an output stream to file. If file does not exist, it will be created. If an
existing file is opened, openw destructively modifies file.

Functionprintf
printf (dest, string)
printf (dest, string, expr 1, ..., expr n)

Produces formatted output by outputting the characters of control-string string and
observing that a tilde introduces a directive. The character after the tilde, possibly
preceded by prefix parameters and modifiers, specifies what kind of formatting is
desired. Most directives use one or more elements of the arguments expr 1, ..., expr n
to create their output.

If dest is a stream or true, then printf returns false. Otherwise, printf returns a
string containing the output.

printf provides the Common Lisp function format in Maxima. The following exam-
ple illustrates the general relation between these two functions.

(%i1) printf(true, "R~dD~d~%", 2, 2);
R2D2
(%o1) false
(%i2) :lisp (format t "R~dD~d~%" 2 2)
R2D2
NIL

The following description is limited to a rough sketch of the possibilities of printf.
The Lisp function format is described in detail in many reference books. Of good
help is e.g. the free available online-manual "Common Lisp the Language" by Guy
L. Steele. See chapter 22.3.3 there.

~% new line
~& fresh line
~t tab

Chapter 79: stringproc 1001

~$ monetary
~d decimal integer
~b binary integer
~o octal integer
~x hexadecimal integer
~br base-b integer
~r spell an integer
~p plural
~f floating point
~e scientific notation
~g ~f or ~e, depending upon magnitude
~h bigfloat
~a uses Maxima function string
~s like ~a, but output enclosed in "double quotes"
~~ ~
~< justification, ~> terminates
~(case conversion, ~) terminates
~[selection, ~] terminates
~{ iteration, ~} terminates

The directive ~h for bigfloat is no Lisp-standard and is therefore illustrated below.

Note that the directive ~* is not supported.

If dest is a stream or true, then printf returns false. Otherwise, printf returns a
string containing the output.

(%i1) printf(false, "~a ~a ~4f ~a ~@r",
"String",sym,bound,sqrt(12),144), bound = 1.234;

(%o1) String sym 1.23 2*sqrt(3) CXLIV
(%i2) printf(false,"~{~a ~}",["one",2,"THREE"]);
(%o2) one 2 THREE
(%i3) printf(true,"~{~{~9,1f ~}~%~}",mat),

mat = args(matrix([1.1,2,3.33],[4,5,6],[7,8.88,9]))$
1.1 2.0 3.3
4.0 5.0 6.0
7.0 8.9 9.0

(%i4) control: "~:(~r~) bird~p ~[is~;are~] singing."$
(%i5) printf(false,control, n,n,if n=1 then 1 else 2), n=2;
(%o5) Two birds are singing.

The directive ~h has been introduced to handle bigfloats.

~w,d,e,x,o,p@H
w : width
d : decimal digits behind floating point
e : minimal exponent digits
x : preferred exponent
o : overflow character
p : padding character
@ : display sign for positive numbers

(%i1) fpprec : 1000$
(%i2) printf(true, "|~h|~%", 2.b0^-64)$

1002 Maxima 5.35.1 Manual

|0.0000000000000000000542101086242752217003726400434970855712890625|
(%i3) fpprec : 26$
(%i4) printf(true, "|~h|~%", sqrt(2))$
|1.4142135623730950488016887|
(%i5) fpprec : 24$
(%i6) printf(true, "|~h|~%", sqrt(2))$
|1.41421356237309504880169|
(%i7) printf(true, "|~28h|~%", sqrt(2))$
| 1.41421356237309504880169|
(%i8) printf(true, "|~28,,,,,’*h|~%", sqrt(2))$
|***1.41421356237309504880169|
(%i9) printf(true, "|~,18h|~%", sqrt(2))$
|1.414213562373095049|
(%i10) printf(true, "|~,,,-3h|~%", sqrt(2))$
|1414.21356237309504880169b-3|
(%i11) printf(true, "|~,,2,-3h|~%", sqrt(2))$
|1414.21356237309504880169b-03|
(%i12) printf(true, "|~20h|~%", sqrt(2))$
|1.41421356237309504880169|
(%i13) printf(true, "|~20,,,,’+h|~%", sqrt(2))$
|++++++++++++++++++++|

Functionreadchar (stream)
Removes and returns the first character in stream. If the end of file is encountered
readchar returns false.

Example: See [make string input stream], page 999.

Functionreadline (stream)
Returns a string containing the characters from the current position in stream up to
the end of the line or false if the end of the file is encountered.

Functionsprint (expr 1, . . . , expr n)
Evaluates and displays its arguments one after the other ‘on a line’ starting at the
leftmost position. The numbers are printed with the ’-’ right next to the number, and
it disregards line length. newline(), which will be autoloaded from stringproc.lisp

might be useful, if you whish to place intermediate line breaking.

Example:

(%i1) for n:0 thru 19 do sprint(fib(n))$
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
(%i2) for n:0 thru 22 do (

sprint(fib(n)), if mod(n,10)=9 then newline())$
0 1 1 2 3 5 8 13 21 34
55 89 144 233 377 610 987 1597 2584 4181
6765 10946 17711

Chapter 79: stringproc 1003

79.3 Functions and Variables for characters

Functionalphacharp (char)
Returns true if char is an alphabetic character.

Functionalphanumericp (char)
Returns true if char is an alphabetic character or a digit.

Functionascii (int)
Returns the character corresponding to the ASCII number int. (-1 < int < 256)

(%i1) for n from 0 thru 255 do (
tmp: ascii(n), if alphacharp(tmp) then sprint(tmp),

if n=96 then newline())$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

Functioncequal (char 1, char 2)
Returns true if char 1 and char 2 are the same.

Functioncequalignore (char 1, char 2)
Like cequal but ignores case.

Functioncgreaterp (char 1, char 2)
Returns true if the ASCII number of char 1 is greater than the number of char 2.

Functioncgreaterpignore (char 1, char 2)
Like cgreaterp but ignores case.

Functioncharp (obj)
Returns true if obj is a Maxima-character. See introduction for example.

Functioncint (char)
Returns the ASCII number of char.

Functionclessp (char 1, char 2)
Returns true if the ASCII number of char 1 is less than the number of char 2.

Functionclesspignore (char 1, char 2)
Like clessp but ignores case.

Functionconstituent (char)
Returns true if char is a graphic character and not the space character. A graphic
character is a character one can see, plus the space character. (constituent is defined
by Paul Graham, ANSI Common Lisp, 1996, page 67.)

1004 Maxima 5.35.1 Manual

(%i1) for n from 0 thru 255 do (
tmp: ascii(n), if constituent(tmp) then sprint(tmp))$
! " # % ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B
C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _ ‘ a b c
d e f g h i j k l m n o p q r s t u v w x y z { | } ~

Functioncunlisp (lisp char)
Converts a Lisp-character into a Maxima-character. (You won’t need it.)

Functiondigitcharp (char)
Returns true if char is a digit.

Functionlcharp (obj)
Returns true if obj is a Lisp-character. (You won’t need it.)

Functionlowercasep (char)
Returns true if char is a lowercase character.

Variablenewline
The newline character.

Variablespace
The space character.

Variabletab
The tab character.

Functionuppercasep (char)
Returns true if char is an uppercase character.

79.4 Functions and Variables for strings

Functionbase64 (string)
Returns the base64-representation of string as a string.

Example:

(%i1) base64 : base64("foo bar baz");
(%o1) Zm9vIGJhciBiYXo=
(%i2) string : base64_decode(base64);
(%o2) foo bar baz

Functionbase64 decode (base64-string)
Decodes the string base64-string coded in base64 back to the original string.

Example: See [base64], page 1004.

Chapter 79: stringproc 1005

Functioncharat (string, n)
Returns the n-th character of string. The first character in string is returned with n
= 1.

(%i1) charat("Lisp",1);
(%o1) L

Functioncharlist (string)
Returns the list of all characters in string.

(%i1) charlist("Lisp");
(%o1) [L, i, s, p]
(%i2) %[1];
(%o2) L

Functioneval string (str)
Parse the string str as a Maxima expression and evaluate it. The string str may or
may not have a terminator (dollar sign $ or semicolon ;). Only the first expression
is parsed and evaluated, if there is more than one.

Complain if str is not a string.

Examples:

(%i1) eval_string ("foo: 42; bar: foo^2 + baz");
(%o1) 42
(%i2) eval_string ("(foo: 42, bar: foo^2 + baz)");
(%o2) baz + 1764

See also parse_string.

Functionmd5sum (string)
Returns the md5 checksum of a string. The return value is a string to guarantee 32
hex characters. To parse the returned value into an integer please set the input base
to 16 and prefix the string by zero.

Example:

(%i1) string : md5sum("foo bar baz");
(%o1) ab07acbb1e496801937adfa772424bf7
(%i2) ibase : obase : 16.$

(%i3) integer : parse_string(sconcat(0, string));
(%o3) 0ab07acbb1e496801937adfa772424bf7

Functionparse string (str)
Parse the string str as a Maxima expression (do not evaluate it). The string str may
or may not have a terminator (dollar sign $ or semicolon ;). Only the first expression
is parsed, if there is more than one.

Complain if str is not a string.

Examples:

1006 Maxima 5.35.1 Manual

(%i1) parse_string ("foo: 42; bar: foo^2 + baz");
(%o1) foo : 42
(%i2) parse_string ("(foo: 42, bar: foo^2 + baz)");

2
(%o2) (foo : 42, bar : foo + baz)

See also eval_string.

Functionscopy (string)
Returns a copy of string as a new string.

Functionsdowncase
sdowncase (string)
sdowncase (string, start)
sdowncase (string, start, end)

Like supcase, but uppercase characters are converted to lowercase.

Functionsequal (string 1, string 2)
Returns true if string 1 and string 2 are the same length and contain the same
characters.

Functionsequalignore (string 1, string 2)
Like sequal but ignores case.

Functionsexplode (string)
sexplode is an alias for function charlist.

Functionsha1sum (string)
Returns the sha1 fingerprint of a string. The return value is a string to guarantee 48
hex characters. To parse the returned value into an integer please set the input base
to 16 and prefix the string by zero.

Example:

(%i1) string : sha1sum("foo bar baz");
(%o1) c7567e8b39e2428e38bf9c9226ac68de4c67dc39
(%i2) ibase : obase : 16.$

(%i3) integer : parse_string(sconcat(0, string));
(%o3) 0c7567e8b39e2428e38bf9c9226ac68de4c67dc39

Functionsimplode
simplode (list)
simplode (list, delim)

simplode takes a list of expressions and concatenates them into a string. If no
delimiter delim is specified, simplode uses no delimiter. delim can be any string.

Chapter 79: stringproc 1007

(%i1) simplode(["xx[",3,"]:",expand((x+y)^3)]);
(%o1) xx[3]:y^3+3*x*y^2+3*x^2*y+x^3
(%i2) simplode(sexplode("stars")," * ");
(%o2) s * t * a * r * s
(%i3) simplode(["One","more","coffee."]," ");
(%o3) One more coffee.

Functionsinsert (seq, string, pos)
Returns a string that is a concatenation of substring (string, 1, pos - 1), the string
seq and substring (string, pos). Note that the first character in string is in position
1.

(%i1) s: "A submarine."$
(%i2) concat(substring(s,1,3),"yellow ",substring(s,3));
(%o2) A yellow submarine.
(%i3) sinsert("hollow ",s,3);
(%o3) A hollow submarine.

Functionsinvertcase
sinvertcase (string)
sinvertcase (string, start)
sinvertcase (string, start, end)

Returns string except that each character from position start to end is inverted. If
end is not given, all characters from start to the end of string are replaced.

(%i1) sinvertcase("sInvertCase");
(%o1) SiNVERTcASE

Functionslength (string)
Returns the number of characters in string.

Functionsmake (num, char)
Returns a new string with a number of num characters char.

(%i1) smake(3,"w");
(%o1) www

Functionsmismatch
smismatch (string 1, string 2)
smismatch (string 1, string 2, test)

Returns the position of the first character of string 1 at which string 1 and string 2
differ or false. Default test function for matching is sequal. If smismatch should
ignore case, use sequalignore as test.

(%i1) smismatch("seven","seventh");
(%o1) 6

Functionsplit
split (string)
split (string, delim)

split (string, delim, multiple)

1008 Maxima 5.35.1 Manual

Returns the list of all tokens in string. Each token is an unparsed string. split uses
delim as delimiter. If delim is not given, the space character is the default delimiter.
multiple is a boolean variable with true by default. Multiple delimiters are read as
one. This is useful if tabs are saved as multiple space characters. If multiple is set to
false, each delimiter is noted.

(%i1) split("1.2 2.3 3.4 4.5");
(%o1) [1.2, 2.3, 3.4, 4.5]
(%i2) split("first;;third;fourth",";",false);
(%o2) [first, , third, fourth]

Functionsposition (char, string)
Returns the position of the first character in string which matches char. The first
character in string is in position 1. For matching characters ignoring case see ssearch.

Functionsremove
sremove (seq, string)
sremove (seq, string, test)

sremove (seq, string, test, start)
sremove (seq, string, test, start, end)

Returns a string like string but without all substrings matching seq. Default test
function for matching is sequal. If sremove should ignore case while searching for
seq, use sequalignore as test. Use start and end to limit searching. Note that the
first character in string is in position 1.

(%i1) sremove("n’t","I don’t like coffee.");
(%o1) I do like coffee.
(%i2) sremove ("DO ",%,’sequalignore);
(%o2) I like coffee.

Functionsremovefirst
sremovefirst (seq, string)
sremovefirst (seq, string, test)
sremovefirst (seq, string, test, start)
sremovefirst (seq, string, test, start, end)

Like sremove except that only the first substring that matches seq is removed.

Functionsreverse (string)
Returns a string with all the characters of string in reverse order.

Functionssearch
ssearch (seq, string)
ssearch (seq, string, test)
ssearch (seq, string, test, start)
ssearch (seq, string, test, start, end)

Returns the position of the first substring of string that matches the string seq.
Default test function for matching is sequal. If ssearch should ignore case, use

Chapter 79: stringproc 1009

sequalignore as test. Use start and end to limit searching. Note that the first
character in string is in position 1.

(%i1) ssearch("~s","~{~S ~}~%",’sequalignore);
(%o1) 4

Functionssort
ssort (string)
ssort (string, test)

Returns a string that contains all characters from string in an order such there are no
two successive characters c and d such that test (c, d) is false and test (d, c) is
true. Default test function for sorting is clessp. The set of test functions is {clessp,
clesspignore, cgreaterp, cgreaterpignore, cequal, cequalignore}.

(%i1) ssort("I don’t like Mondays.");
(%o1) ’.IMaddeiklnnoosty
(%i2) ssort("I don’t like Mondays.",’cgreaterpignore);
(%o2) ytsoonnMlkIiedda.’

Functionssubst
ssubst (new, old, string)
ssubst (new, old, string, test)
ssubst (new, old, string, test, start)
ssubst (new, old, string, test, start, end)

Returns a string like string except that all substrings matching old are replaced
by new. old and new need not to be of the same length. Default test function
for matching is sequal. If ssubst should ignore case while searching for old, use
sequalignore as test. Use start and end to limit searching. Note that the first
character in string is in position 1.

(%i1) ssubst("like","hate","I hate Thai food. I hate green tea.");
(%o1) I like Thai food. I like green tea.
(%i2) ssubst("Indian","thai",%,’sequalignore,8,12);
(%o2) I like Indian food. I like green tea.

Functionssubstfirst
ssubstfirst (new, old, string)
ssubstfirst (new, old, string, test)
ssubstfirst (new, old, string, test, start)
ssubstfirst (new, old, string, test, start, end)

Like subst except that only the first substring that matches old is replaced.

Functionstrim (seq,string)
Returns a string like string, but with all characters that appear in seq removed from
both ends.

(%i1) "/* comment */"$
(%i2) strim(" /*",%);
(%o2) comment
(%i3) slength(%);
(%o3) 7

1010 Maxima 5.35.1 Manual

Functionstriml (seq, string)
Like strim except that only the left end of string is trimmed.

Functionstrimr (seq, string)
Like strim except that only the right end of string is trimmed.

Functionstringp (obj)
Returns true if obj is a string. See introduction for example.

Functionsubstring
substring (string, start)
substring (string, start, end)

Returns the substring of string beginning at position start and ending at position
end. The character at position end is not included. If end is not given, the substring
contains the rest of the string. Note that the first character in string is in position 1.

(%i1) substring("substring",4);
(%o1) string
(%i2) substring(%,4,6);
(%o2) in

Functionsupcase
supcase (string)
supcase (string, start)
supcase (string, start, end)

Returns string except that lowercase characters from position start to end are replaced
by the corresponding uppercase ones. If end is not given, all lowercase characters from
start to the end of string are replaced.

(%i1) supcase("english",1,2);
(%o1) English

Functiontokens
tokens (string)
tokens (string, test)

Returns a list of tokens, which have been extracted from string. The tokens are sub-
strings whose characters satisfy a certain test function. If test is not given, constituent
is used as the default test. {constituent, alphacharp, digitcharp, lowercasep,

uppercasep, charp, characterp, alphanumericp} is the set of test functions. (The
Lisp-version of tokens is written by Paul Graham. ANSI Common Lisp, 1996, page
67.)

(%i1) tokens("24 October 2005");
(%o1) [24, October, 2005]
(%i2) tokens("05-10-24",’digitcharp);
(%o2) [05, 10, 24]
(%i3) map(parse_string,%);
(%o3) [5, 10, 24]

Chapter 80: to poly solve 1011

80 to poly solve

80.1 Functions and Variables for to poly solve

The packages to_poly and to_poly_solve are experimental; the specifications of the
functions in these packages might change or the some of the functions in these packages
might be merged into other Maxima functions.

Barton Willis (Professor of Mathematics, University of Nebraska at Kearney) wrote the
to_poly and to_poly_solve packages and the English language user documentation for
these packages.

Operator%and
The operator %and is a simplifying nonshort-circuited logical conjunction. Maxima
simplifies an %and expression to either true, false, or a logically equivalent, but sim-
plified, expression. The operator %and is associative, commutative, and idempotent.
Thus when %and returns a noun form, the arguments of %and form a non-redundant
sorted list; for example

(%i1) a %and (a %and b);
(%o1) a %and b

If one argument to a conjunction is the explicit the negation of another argument,
%and returns false:

(%i2) a %and (not a);
(%o2) false

If any member of the conjunction is false, the conjunction simplifies to false even if
other members are manifestly non-boolean; for example

(%i3) 42 %and false;
(%o3) false

Any argument of an %and expression that is an inequation (that is, an inequality or
equation), is simplified using the Fourier elimination package. The Fourier elimination
simplifier has a pre-processor that converts some, but not all, nonlinear inequations
into linear inequations; for example the Fourier elimination code simplifies abs(x) +

1 > 0 to true, so

(%i4) (x < 1) %and (abs(x) + 1 > 0);
(%o4) x < 1

Notes

• The option variable prederror does not alter the simplification %and expressions.

• To avoid operator precedence errors, compound expressions involving the opera-
tors %and, %or, and not should be fully parenthesized.

• The Maxima operators and and or are both short-circuited. Thus and isn’t
associative or commutative.

Limitations The conjunction %and simplifies inequations locally, not globally. This
means that conjunctions such as

1012 Maxima 5.35.1 Manual

(%i5) (x < 1) %and (x > 1);
(%o5) (x > 1) %and (x < 1)

do not simplify to false. Also, the Fourier elimination code ignores the fact database;

(%i6) assume(x > 5);
(%o6) [x > 5]
(%i7) (x > 1) %and (x > 2);
(%o7) (x > 1) %and (x > 2)

Finally, nonlinear inequations that aren’t easily converted into an equivalent linear
inequation aren’t simplified.

There is no support for distributing %and over %or; neither is there support for dis-
tributing a logical negation over %and.

To use ‘load(to_poly_solve)’

Related functions %or, %if, and, or, not

Status The operator %and is experimental; the specifications of this function might
change and its functionality might be merged into other Maxima functions.

Operator%if (bool, a, b)
The operator %if is a simplifying conditional. The conditional bool should be
boolean-valued. When the conditional is true, return the second argument; when
the conditional is false, return the third; in all other cases, return a noun form.

Maxima inequations (either an inequality or an equality) are not boolean-valued;
for example, Maxima does not simplify 5 < 6 to true, and it does not simplify
5 = 6 to false; however, in the context of a conditional to an %if statement, Maxima
automatically attempts to determine the truth value of an inequation. Examples:

(%i1) f : %if(x # 1, 2, 8);
(%o1) %if(x - 1 # 0, 2, 8)
(%i2) [subst(x = -1,f), subst(x=1,f)];
(%o2) [2, 8]

If the conditional involves an inequation, Maxima simplifies it using the Fourier elim-
ination package.

Notes

• If the conditional is manifestly non-boolean, Maxima returns a noun form:

(%i3) %if(42,1,2);
(%o3) %if(42, 1, 2)

• The Maxima operator if is nary, the operator %if isn’t nary.

Limitations The Fourier elimination code only simplifies nonlinear inequations that
are readily convertible to an equivalent linear inequation.

To use: ‘load(to_poly_solve)’

Status: The operator %if is experimental; its specifications might change and its
functionality might be merged into other Maxima functions.

Operator%or
The operator %or is a simplifying nonshort-circuited logical disjunction. Maxima sim-
plifies an %or expression to either true, false, or a logically equivalent, but simplified,

Chapter 80: to poly solve 1013

expression. The operator %or is associative, commutative, and idempotent. Thus
when %or returns a noun form, the arguments of %or form a non-redundant sorted
list; for example

(%i1) a %or (a %or b);
(%o1) a %or b

If one member of the disjunction is the explicit the negation of another member, %or
returns true:

(%i2) a %or (not a);
(%o2) true

If any member of the disjunction is true, the disjunction simplifies to true even if
other members of the disjunction are manifestly non-boolean; for example

(%i3) 42 %or true;
(%o3) true

Any argument of an %or expression that is an inequation (that is, an inequality or
equation), is simplified using the Fourier elimination package. The Fourier elimination
code simplifies abs(x) + 1 > 0 to true, so we have

(%i4) (x < 1) %or (abs(x) + 1 > 0);
(%o4) true

Notes

• The option variable prederror does not alter the simplification of %or expres-
sions.

• You should parenthesize compound expressions involving the operators %and,

%or, and not; the binding powers of these operators might not match your ex-
pectations.

• The Maxima operators and and or are both short-circuited. Thus or isn’t asso-
ciative or commutative.

Limitations The conjunction %or simplifies inequations locally, not globally. This
means that conjunctions such as

(%i1) (x < 1) %or (x >= 1);
(%o1) (x > 1) %or (x >= 1)

do not simplify to true. Further, the Fourier elimination code ignores the fact
database;

(%i2) assume(x > 5);
(%o2) [x > 5]
(%i3) (x > 1) %and (x > 2);
(%o3) (x > 1) %and (x > 2)

Finally, nonlinear inequations that aren’t easily converted into an equivalent linear
inequation aren’t simplified.

The algorithm that looks for terms that cannot both be false is weak; also there is
no support for distributing %or over %and; neither is there support for distributing a
logical negation over %or.

To use ‘load(to_poly_solve)’

Related functions %or, %if, and, or, not

1014 Maxima 5.35.1 Manual

Status The operator %or is experimental; the specifications of this function might
change and its functionality might be merged into other Maxima functions.

Functioncomplex number p (x)
The predicate complex_number_p returns true if its argument is either a + %i * b, a,
%i b, or %i, where a and b are either rational or floating point numbers (including
big floating point); for all other inputs, complex_number_p returns false; for example

(%i1) map(’complex_number_p,[2/3, 2 + 1.5 * %i, %i]);
(%o1) [true, true, true]
(%i2) complex_number_p((2+%i)/(5-%i));
(%o2) false
(%i3) complex_number_p(cos(5 - 2 * %i));
(%o3) false

Related functions isreal_p

To use ‘load(to_poly_solve)’

Status The operator complex_number_p is experimental; its specifications might
change and its functionality might be merged into other Maxima functions.

Functioncompose functions (l)
The function call compose_functions(l) returns a lambda form that is the compo-
sition of the functions in the list l. The functions are applied from right to left ; for
example

(%i1) compose_functions([cos, exp]);
%g151

(%o1) lambda([%g151], cos(%e))
(%i2) %(x);

x
(%o2) cos(%e)

When the function list is empty, return the identity function:

(%i3) compose_functions([]);
(%o3) lambda([%g152], %g152)
(%i4) %(x);
(%o4) x

Notes

• When Maxima determines that a list member isn’t a symbol or a lambda form,
funmake (not compose_functions) signals an error:

(%i5) compose_functions([a < b]);

funmake: first argument must be a symbol, subscripted symbol,
string, or lambda expression; found: a < b
#0: compose_functions(l=[a < b])(to_poly_solve.mac line 40)
-- an error. To debug this try: debugmode(true);

• To avoid name conflicts, the independent variable is determined by the function
new_variable.

Chapter 80: to poly solve 1015

(%i6) compose_functions([%g0]);
(%o6) lambda([%g154], %g0(%g154))
(%i7) compose_functions([%g0]);
(%o7) lambda([%g155], %g0(%g155))

Although the independent variables are different, Maxima is able to to deduce
that these lambda forms are semantically equal:

(%i8) is(equal(%o6,%o7));
(%o8) true

To use ‘load(to_poly_solve)’

Status The function compose_functions is experimental; its specifications might
change and its functionality might be merged into other Maxima functions.

Functiondfloat (x)
The function dfloat is a similar to float, but the function dfloat applies rectform
when float fails to evaluate to an IEEE double floating point number; thus

(%i1) float(4.5^(1 + %i));
%i + 1

(%o1) 4.5
(%i2) dfloat(4.5^(1 + %i));
(%o2) 4.48998802962884 %i + .3000124893895671

Notes

• The rectangular form of an expression might be poorly suited for numerical
evaluation–for example, the rectangular form might needlessly involve the differ-
ence of floating point numbers (subtractive cancellation).

• The identifier float is both an option variable (default value false) and a function
name.

Related functions float, bfloat

To use ‘load(to_poly_solve)’

Status The function dfloat is experimental; its specifications might change and its
functionality might be merged into other Maxima functions.

Functionelim (l, x)
The function elim eliminates the variables in the set or list x from the equations in
the set or list l. Each member of x must be a symbol; the members of l can either
be equations, or expressions that are assumed to equal zero.

The function elim returns a list of two lists; the first is the list of expressions with
the variables eliminated; the second is the list of pivots; thus, the second list is a list
of expressions that elim used to eliminate the variables.

Here is a example of eliminating between linear equations:

(%i1) elim(set(x + y + z = 1, x - y - z = 8, x - z = 1),
set(x,y));

(%o1) [[2 z - 7], [y + 7, z - x + 1]]

Eliminating x and y yields the single equation 2 z - 7 = 0; the equations y + 7 = 0

and z - z + 1 = 1 were used as pivots. Eliminating all three variables from these
equations, triangularizes the linear system:

1016 Maxima 5.35.1 Manual

(%i2) elim(set(x + y + z = 1, x - y - z = 8, x - z = 1),
set(x,y,z));

(%o2) [[], [2 z - 7, y + 7, z - x + 1]]

Of course, the equations needn’t be linear:

(%i3) elim(set(x^2 - 2 * y^3 = 1, x - y = 5), [x,y]);
3 2

(%o3) [[], [2 y - y - 10 y - 24, y - x + 5]]

The user doesn’t control the order the variables are eliminated. Instead, the algorithm
uses a heuristic to attempt to choose the best pivot and the best elimination order.

Notes

• Unlike the related function eliminate, the function elim does not invoke solve

when the number of equations equals the number of variables.

• The function elim works by applying resultants; the option variable resultant

determines which algorithm Maxima uses. Using sqfr, Maxima factors each
resultant and suppresses multiple zeros.

• The elim will triangularize a nonlinear set of polynomial equations; the solution
set of the triangularized set can be larger than that solution set of the untrian-
gularized set. Thus, the triangularized equations can have spurious solutions.

Related functions elim allbut, eliminate using, eliminate

Option variables resultant

To use ‘load(to_poly)’

Status The function elim is experimental; its specifications might change and its
functionality might be merged into other Maxima functions.

Functionelim allbut (l, x)
This function is similar to elim, except that it eliminates all the variables in the list
of equations l except for those variables that in in the list x

(%i1) elim_allbut([x+y = 1, x - 5*y = 1],[]);
(%o1) [[], [y, y + x - 1]]
(%i2) elim_allbut([x+y = 1, x - 5*y = 1],[x]);
(%o2) [[x - 1], [y + x - 1]]

To use ‘load(to_poly)’

Option variables resultant

Related functions elim, eliminate using, eliminate

Status The function elim_allbut is experimental; its specifications might change and
its functionality might be merged into other Maxima functions.

Functioneliminate using (l, e, x)
Using e as the pivot, eliminate the symbol x from the list or set of equations in l.
The function eliminate_using returns a set.

(%i1) eq : [x^2 - y^2 - z^3 , x*y - z^2 - 5, x - y + z];
3 2 2 2

(%o1) [- z - y + x , - z + x y - 5, z - y + x]

Chapter 80: to poly solve 1017

(%i2) eliminate_using(eq,first(eq),z);
3 2 2 3 2

(%o2) {y + (1 - 3 x) y + 3 x y - x - x ,
4 3 3 2 2 4
y - x y + 13 x y - 75 x y + x + 125}

(%i3) eliminate_using(eq,second(eq),z);
2 2 4 3 3 2 2 4

(%o3) {y - 3 x y + x + 5, y - x y + 13 x y - 75 x y + x
+ 125}

(%i4) eliminate_using(eq, third(eq),z);
2 2 3 2 2 3 2

(%o4) {y - 3 x y + x + 5, y + (1 - 3 x) y + 3 x y - x - x }

Option variables resultant

Related functions elim, eliminate, elim allbut

To use ‘load(to_poly)’

Status The function eliminate_using is experimental; its specifications might change
and its functionality might be merged into other Maxima functions.

Functionfourier elim ([eq1, eq2, . . .], [var1, var, . . .])
Fourier elimination is the analog of Gauss elimination for linear inequations (equations
or inequalities). The function call fourier_elim([eq1, eq2, ...], [var1, var2,

...]) does Fourier elimination on a list of linear inequations [eq1, eq2, ...] with
respect to the variables [var1, var2, ...]; for example

(%i1) fourier_elim([y-x < 5, x - y < 7, 10 < y],[x,y]);
(%o1) [y - 5 < x, x < y + 7, 10 < y]
(%i2) fourier_elim([y-x < 5, x - y < 7, 10 < y],[y,x]);
(%o2) [max(10, x - 7) < y, y < x + 5, 5 < x]

Eliminating first with respect to x and second with respect to y yields lower and
upper bounds for x that depend on y, and lower and upper bounds for y that are
numbers. Eliminating in the other order gives x dependent lower and upper bounds
for y, and numerical lower and upper bounds for x.

When necessary, fourier_elim returns a disjunction of lists of inequations:

(%i3) fourier_elim([x # 6],[x]);
(%o3) [x < 6] or [6 < x]

When the solution set is empty, fourier_elim returns emptyset, and when the
solution set is all reals, fourier_elim returns universalset; for example

(%i4) fourier_elim([x < 1, x > 1],[x]);
(%o4) emptyset
(%i5) fourier_elim([minf < x, x < inf],[x]);
(%o5) universalset

For nonlinear inequations, fourier_elim returns a (somewhat) simplified list of in-
equations:

(%i6) fourier_elim([x^3 - 1 > 0],[x]);
2 2

(%o6) [1 < x, x + x + 1 > 0] or [x < 1, - (x + x + 1) > 0]

1018 Maxima 5.35.1 Manual

(%i7) fourier_elim([cos(x) < 1/2],[x]);
(%o7) [1 - 2 cos(x) > 0]

Instead of a list of inequations, the first argument to fourier_elim may be a logical
disjunction or conjunction:

(%i8) fourier_elim((x + y < 5) and (x - y >8),[x,y]);
3

(%o8) [y + 8 < x, x < 5 - y, y < - -]
2

(%i9) fourier_elim(((x + y < 5) and x < 1) or (x - y >8),[x,y]);
(%o9) [y + 8 < x] or [x < min(1, 5 - y)]

The function fourier_elim supports the inequation operators <, <=, >, >=, #, and
=.

The Fourier elimination code has a preprocessor that converts some nonlinear inequa-
tions that involve the absolute value, minimum, and maximum functions into linear
in equations. Additionally, the preprocessor handles some expressions that are the
product or quotient of linear terms:

(%i10) fourier_elim([max(x,y) > 6, x # 8, abs(y-1) > 12],[x,y]);
(%o10) [6 < x, x < 8, y < - 11] or [8 < x, y < - 11]
or [x < 8, 13 < y] or [x = y, 13 < y] or [8 < x, x < y, 13 < y]
or [y < x, 13 < y]
(%i11) fourier_elim([(x+6)/(x-9) <= 6],[x]);
(%o11) [x = 12] or [12 < x] or [x < 9]
(%i12) fourier_elim([x^2 - 1 # 0],[x]);
(%o12) [- 1 < x, x < 1] or [1 < x] or [x < - 1]

To use ‘load(fourier_elim)’

Functionisreal p (e)
The predicate isreal_p returns true when Maxima is able to determine that e is
real-valued on the entire real line; it returns false when Maxima is able to determine
that e isn’t real-valued on some nonempty subset of the real line; and it returns a
noun form for all other cases.

(%i1) map(’isreal_p, [-1, 0, %i, %pi]);
(%o1) [true, true, false, true]

Maxima variables are assumed to be real; thus

(%i2) isreal_p(x);
(%o2) true

The function isreal_p examines the fact database:

(%i3) declare(z,complex)$

(%i4) isreal_p(z);
(%o4) isreal_p(z)

Limitations Too often, isreal_p returns a noun form when it should be able to return
false; a simple example: the logarithm function isn’t real-valued on the entire real
line, so isreal_p(log(x)) should return false; however

Chapter 80: to poly solve 1019

(%i5) isreal_p(log(x));
(%o5) isreal_p(log(x))

To use ‘load(to_poly_solve)’

Related functions complex number p

Status The function isreal_p is experimental; its specifications might change and
its functionality might be merged into other Maxima functions.

Functionnew variable (type)
Return a unique symbol of the form %[z,n,r,c,g]k, where k is an integer. The
allowed values for type are integer, natural number, real, natural number, and general.
(By natural number, we mean the nonnegative integers; thus zero is a natural number.
Some, but not all,definitions of natural number exclude zero.)

When type isn’t one of the allowed values, type defaults to general. For integers, nat-
ural numbers, and complex numbers, Maxima automatically appends this information
to the fact database.

(%i1) map(’new_variable,
[’integer, ’natural_number, ’real, ’complex, ’general]);

(%o1) [%z144, %n145, %r146, %c147, %g148]
(%i2) nicedummies(%);
(%o2) [%z0, %n0, %r0, %c0, %g0]
(%i3) featurep(%z0, ’integer);
(%o3) true
(%i4) featurep(%n0, ’integer);
(%o4) true
(%i5) is(%n0 >= 0);
(%o5) true
(%i6) featurep(%c0, ’complex);
(%o6) true

Note Generally, the argument to new_variable should be quoted. The quote will
protect against errors similar to

(%i7) integer : 12$

(%i8) new_variable(integer);
(%o8) %g149
(%i9) new_variable(’integer);
(%o9) %z150

Related functions nicedummies

To use ‘load(to_poly_solve)’

Status The function new_variable is experimental; its specifications might change
and its functionality might be merged into other Maxima functions.

Functionnicedummies
Starting with zero, the function nicedummies re-indexes the variables in an expression
that were introduced by new_variable;

1020 Maxima 5.35.1 Manual

(%i1) new_variable(’integer) + 52 * new_variable(’integer);
(%o1) 52 %z136 + %z135
(%i2) new_variable(’integer) - new_variable(’integer);
(%o2) %z137 - %z138
(%i3) nicedummies(%);
(%o3) %z0 - %z1

Related functions new variable

To use ‘load(to_poly_solve)’

Status The function nicedummies is experimental; its specifications might change and
its functionality might be merged into other Maxima functions.

Functionparg (x)
The function parg is a simplifying version of the complex argument function carg;
thus

(%i1) map(’parg,[1,1+%i,%i, -1 + %i, -1]);
%pi %pi 3 %pi

(%o1) [0, ---, ---, -----, %pi]
4 2 4

Generally, for a non-constant input, parg returns a noun form; thus

(%i2) parg(x + %i * sqrt(x));
(%o2) parg(x + %i sqrt(x))

When sign can determine that the input is a positive or negative real number, parg
will return a non-noun form for a non-constant input. Here are two examples:

(%i3) parg(abs(x));
(%o3) 0
(%i4) parg(-x^2-1);
(%o4) %pi

Note The sign function mostly ignores the variables that are declared to be complex
(declare(x,complex)); for variables that are declared to be complex, the parg can
return incorrect values; for example

(%i1) declare(x,complex)$

(%i2) parg(x^2 + 1);
(%o2) 0

Related function carg, isreal p

To use ‘load(to_poly_solve)’

Status The function parg is experimental; its specifications might change and its
functionality might be merged into other Maxima functions.

Functionreal imagpart to conjugate (e)
The function real_imagpart_to_conjugate replaces all occurrences of realpart and
imagpart to algebraically equivalent expressions involving the conjugate.

(%i1) declare(x, complex)$

(%i2) real_imagpart_to_conjugate(realpart(x) + imagpart(x) = 3);

Chapter 80: to poly solve 1021

conjugate(x) + x %i (x - conjugate(x))
(%o2) ---------------- - --------------------- = 3

2 2

To use ‘load(to_poly_solve)’

Status The function real_imagpart_to_conjugate is experimental; its specifications
might change and its functionality might be merged into other Maxima functions.

Functionrectform log if constant (e)
The function rectform_log_if_constant converts all terms of the form log(c)

to rectform(log(c)), where c is either a declared constant expression or explicitly
declared constant

(%i1) rectform_log_if_constant(log(1-%i) - log(x - %i));
log(2) %i %pi

(%o1) - log(x - %i) + ------ - ------
2 4

(%i2) declare(a,constant, b,constant)$

(%i3) rectform_log_if_constant(log(a + %i*b));
2 2

log(b + a)
(%o3) ------------ + %i atan2(b, a)

2

To use ‘load(to_poly_solve)’

Status The function rectform_log_if_constant is experimental; the specifications
of this function might change might change and its functionality might be merged
into other Maxima functions.

Functionsimp inequality (e)
The function simp_inequality applies some simplifications to conjunctions and dis-
junctions of inequations.

Limitations The function simp_inequality is limited in at least two ways; first, the
simplifications are local; thus

(%i1) simp_inequality((x > minf) %and (x < 0));
(%o1) (x>1) %and (x<1)

And second, simp_inequality doesn’t consult the fact database:

(%i2) assume(x > 0)$

(%i3) simp_inequality(x > 0);
(%o3) x > 0

To use ‘load(fourier_elim)’

Status The function simp_inequality is experimental; its specifications might change
and its functionality might be merged into other Maxima functions.

1022 Maxima 5.35.1 Manual

Functionstandardize inverse trig (e)
This function applies the identities cot(x) = atan(1/x), acsc(x) = asin(1/x), and
similarly for asec, acoth, acsch and asech to an expression. See Abramowitz and
Stegun, Eqs. 4.4.6 through 4.4.8 and 4.6.4 through 4.6.6.

To use ‘load(to_poly_solve)’

Status The function standardize_inverse_trig is experimental; its specifications
might change and its functionality might be merged into other Maxima functions.

Functionsubst parallel (l, e)
When l is a single equation or a list of equations, substitute the right hand side
of each equation for the left hand side. The substitutions are made in parallel; for
example

(%i1) load(to_poly_solve)$

(%i2) subst_parallel([x=y,y=x], [x,y]);
(%o2) [y, x]

Compare this to substitutions made serially:

(%i3) subst([x=y,y=x],[x,y]);
(%o3) [x, x]

The function subst_parallel is similar to sublis except that subst_parallel al-
lows for substitution of nonatoms; for example

(%i4) subst_parallel([x^2 = a, y = b], x^2 * y);
(%o4) a b
(%i5) sublis([x^2 = a, y = b], x^2 * y);

2
sublis: left-hand side of equation must be a symbol; found: x
-- an error. To debug this try: debugmode(true);

The substitutions made by subst_parallel are literal, not semantic; thus subst_

parallel does not recognize that x ∗ y is a subexpression of x2 ∗ y
(%i6) subst_parallel([x * y = a], x^2 * y);

2
(%o6) x y

The function subst_parallel completes all substitutions before simplifications. This
allows for substitutions into conditional expressions where errors might occur if the
simplifications were made earlier:

(%i7) subst_parallel([x = 0], %if(x < 1, 5, log(x)));
(%o7) 5
(%i8) subst([x = 0], %if(x < 1, 5, log(x)));

log: encountered log(0).
-- an error. To debug this try: debugmode(true);

Related functions subst, sublis, ratsubst

To use ‘load(to_poly_solve_extra.lisp)’

Chapter 80: to poly solve 1023

Status The function subst_parallel is experimental; the specifications of this func-
tion might change might change and its functionality might be merged into other
Maxima functions.

Functionto poly (e, l)
The function to_poly attempts to convert the equation e into a polynomial system
along with inequality constraints; the solutions to the polynomial system that satisfy
the constraints are solutions to the equation e. Informally, to_poly attempts to
polynomialize the equation e; an example might clarify:

(%i1) load(to_poly_solve)$

(%i2) to_poly(sqrt(x) = 3, [x]);
2

(%o2) [[%g130 - 3, x = %g130],
%pi %pi

[- --- < parg(%g130), parg(%g130) <= ---], []]
2 2

The conditions -%pi/2<parg(%g130),parg(%g130)<=%pi/2 tell us that %g130 is in
the range of the square root function. When this is true, the solution set to sqrt(x)

= 3 is the same as the solution set to %g130-3,x=%g130^2.

To polynomialize trigonometric expressions, it is necessary to introduce a non alge-
braic substitution; these non algebraic substitutions are returned in the third list
returned by to_poly; for example

(%i3) to_poly(cos(x),[x]);
2 %i x

(%o3) [[%g131 + 1], [2 %g131 # 0], [%g131 = %e]]

Constant terms aren’t polynomializied unless the number one is a member of the
variable list; for example

(%i4) to_poly(x = sqrt(5),[x]);
(%o4) [[x - sqrt(5)], [], []]
(%i5) to_poly(x = sqrt(5),[1,x]);

2
(%o5) [[x - %g132, 5 = %g132],

%pi %pi
[- --- < parg(%g132), parg(%g132) <= ---], []]

2 2

To generate a polynomial with sqrt(5)+sqrt(7) as one of its roots, use the commands

(%i6) first(elim_allbut(first(to_poly(x = sqrt(5) + sqrt(7),
[1,x])), [x]));

4 2
(%o6) [x - 24 x + 4]

Related functions to poly solve

To use ‘load(to_poly)’

Status: The function to_poly is experimental; its specifications might change and its
functionality might be merged into other Maxima functions.

1024 Maxima 5.35.1 Manual

Functionto poly solve (e, l, [options])
The function to_poly_solve tries to solve the equations e for the variables l. The
equation(s) e can either be a single expression or a set or list of expressions; similarly,
l can either be a single symbol or a list of set of symbols. When a member of e isn’t
explicitly an equation, for example x2 − 1, the solver asummes that the expression
vanishes.

The basic strategy of to_poly_solve is to convert the input into a polynomial form
and to call algsys on the polynomial system. Internally to_poly_solve defaults
algexact to true. To change the default for algexact, append ’algexact=false to the
to_poly_solve argument list.

When to_poly_solve is able to determine the solution set, each member of the
solution set is a list in a %union object:

(%i1) load(to_poly_solve)$

(%i2) to_poly_solve(x*(x-1) = 0, x);
(%o2) %union([x = 0], [x = 1])

When to_poly_solve is unable to determine the solution set, a %solve nounform is
returned (in this case, a warning is printed)

(%i3) to_poly_solve(x^k + 2* x + 1 = 0, x);

Nonalgebraic argument given to ’to_poly’
unable to solve

k
(%o3) %solve([x + 2 x + 1 = 0], [x])

Subsitution into a %solve nounform can sometimes result in the solution

(%i4) subst(k = 2, %);
(%o4) %union([x = - 1])

Especially for trigonometric equations, the solver sometimes needs to introduce an
arbitary integer. These arbitary integers have the form %zXXX, where XXX is an integer;
for example

(%i5) to_poly_solve(sin(x) = 0, x);
(%o5) %union([x = 2 %pi %z33 + %pi], [x = 2 %pi %z35])

To re-index these variables to zero, use nicedummies:

(%i6) nicedummies(%);
(%o6) %union([x = 2 %pi %z0 + %pi], [x = 2 %pi %z1])

Occasionally, the solver introduces an arbitary complex number of the form %cXXX or
an arbitary real number of the form %rXXX. The function nicedummies will re-index
these identifiers to zero.

The solution set sometimes involves simplifing versions of various of logical operators
including %and, %or, or %if for conjunction, disjuntion, and implication, respectively;
for example

(%i7) sol : to_poly_solve(abs(x) = a, x);
(%o7) %union(%if(isnonnegative_p(a), [x = - a], %union()),

%if(isnonnegative_p(a), [x = a], %union()))
(%i8) subst(a = 42, sol);

Chapter 80: to poly solve 1025

(%o8) %union([x = - 42], [x = 42])
(%i9) subst(a = -42, sol);
(%o9) %union()

The empty set is represented by %union.

The function to_poly_solve is able to solve some, but not all, equations involving
rational powers, some nonrational powers, absolute values, trigonometric functions,
and minimum and maximum. Also, some it can solve some equations that are solvable
in in terms of the Lambert W function; some examples:

(%i1) load(to_poly_solve)$

(%i2) to_poly_solve(set(max(x,y) = 5, x+y = 2), set(x,y));
(%o2) %union([x = - 3, y = 5], [x = 5, y = - 3])
(%i3) to_poly_solve(abs(1-abs(1-x)) = 10,x);
(%o3) %union([x = - 10], [x = 12])
(%i4) to_poly_solve(set(sqrt(x) + sqrt(y) = 5, x + y = 10),

set(x,y));
3/2 3/2
5 %i - 10 5 %i + 10

(%o4) %union([x = - ------------, y = ------------],
2 2

3/2 3/2
5 %i + 10 5 %i - 10

[x = ------------, y = - ------------])
2 2

(%i5) to_poly_solve(cos(x) * sin(x) = 1/2,x,
’simpfuncs = [’expand, ’nicedummies]);

%pi
(%o5) %union([x = %pi %z0 + ---])

4
(%i6) to_poly_solve(x^(2*a) + x^a + 1,x);

2 %i %pi %z81

1/a a
(sqrt(3) %i - 1) %e

(%o6) %union([x = -----------------------------------],
1/a
2

2 %i %pi %z83

1/a a
(- sqrt(3) %i - 1) %e

[x = -------------------------------------])
1/a
2

(%i7) to_poly_solve(x * exp(x) = a, x);
(%o7) %union([x = lambert_w(a)])

For linear inequalities, to_poly_solve automatically does Fourier elimination:

(%i8) to_poly_solve([x + y < 1, x - y >= 8], [x,y]);

1026 Maxima 5.35.1 Manual

7
(%o8) %union([x = y + 8, y < - -],

2
7

[y + 8 < x, x < 1 - y, y < - -])
2

Each optional argument to to_poly_solve must be an equation; generally, the order
of these options does not matter.

• simpfuncs = l, where l is a list of functions. Apply the composition of the
members of l to each solution.

(%i1) to_poly_solve(x^2=%i,x);
1/4 1/4

(%o1) %union([x = - (- 1)], [x = (- 1)])
(%i2) to_poly_solve(x^2= %i,x, ’simpfuncs = [’rectform]);

%i 1 %i 1
(%o2) %union([x = - ------- - -------], [x = ------- + -------])

sqrt(2) sqrt(2) sqrt(2) sqrt(2)

Sometimes additional simplification can revert a simplification; for example

(%i3) to_poly_solve(x^2=1,x);
(%o3) %union([x = - 1], [x = 1])
(%i4) to_poly_solve(x^2= 1,x, ’simpfuncs = [polarform]);

%i %pi
(%o4) %union([x = 1], [x = %e]

Maxima doesn’t try to check that each member of the function list l is purely a
simplification; thus

(%i5) to_poly_solve(x^2 = %i,x, ’simpfuncs = [lambda([s],s^2)]);
(%o5) %union([x = %i])

To convert each solution to a double float, use simpfunc = [’dfloat]:

(%i6) to_poly_solve(x^3 +x + 1 = 0,x,
’simpfuncs = [’dfloat]), algexact : true;

(%o6) %union([x = - .6823278038280178],
[x = .3411639019140089 - 1.161541399997251 %i],
[x = 1.161541399997251 %i + .3411639019140089])

• use_grobner = true With this option, the function poly_reduced_grobner is
applied to the equations before attempting their solution. Primarily, this option
provides a workaround for weakness in the function algsys. Here is an example
of such a workaround:

(%i7) to_poly_solve([x^2+y^2=2^2,(x-1)^2+(y-1)^2=2^2],[x,y],
’use_grobner = true);
sqrt(7) - 1 sqrt(7) + 1

(%o7) %union([x = - -----------, y = -----------],
2 2

sqrt(7) + 1 sqrt(7) - 1
[x = -----------, y = - -----------])

2 2
(%i8) to_poly_solve([x^2+y^2=2^2,(x-1)^2+(y-1)^2=2^2],[x,y]);

Chapter 80: to poly solve 1027

(%o8) %union()

• maxdepth = k, where k is a positive integer. This function controls the maximum
recursion depth for the solver. The default value for maxdepth is five. When the
recursions depth is exceeded, the solver signals an error:

(%i9) to_poly_solve(cos(x) = x,x, ’maxdepth = 2);

Unable to solve
Unable to solve
(%o9) %solve([cos(x) = x], [x], maxdepth = 2)

• parameters = l, where l is a list of symbols. The solver attempts to return a
solution that is valid for all members of the list l; for example:

(%i10) to_poly_solve(a * x = x, x);
(%o10) %union([x = 0])
(%i11) to_poly_solve(a * x = x, x, ’parameters = [a]);
(%o11) %union(%if(a - 1 = 0, [x = %c111], %union()),

%if(a - 1 # 0, [x = 0], %union()))

In (%o2), the solver introduced a dummy variable; to re-index the these dummy
variables, use the function nicedummies:

(%i12) nicedummies(%);
(%o12) %union(%if(a - 1 = 0, [x = %c0], %union()),

%if(a - 1 # 0, [x = 0], %union()))

The to_poly_solve uses data stored in the hashed array one_to_one_reduce to solve
equations of the form f(a) = f(b). The assignment one_to_one_reduce[’f,’f] :

lambda([a,b], a=b) tells to_poly_solve that the solution set of f(a) = f(b) equals
the solution set of a = b; for example

(%i13) one_to_one_reduce[’f,’f] : lambda([a,b], a=b)$

(%i14) to_poly_solve(f(x^2-1) = f(0),x);
(%o14) %union([x = - 1], [x = 1])

More generally, the assignment one_to_one_reduce[’f,’g] : lambda([a,b], w(a,

b) = 0 tells to_poly_solve that the solution set of f(a) = f(b) equals the solution
set of w(a, b) = 0; for example

(%i15) one_to_one_reduce[’f,’g] : lambda([a,b], a = 1 + b/2)$

(%i16) to_poly_solve(f(x) - g(x),x);
(%o16) %union([x = 2])

Additionally, the function to_poly_solve uses data stored in the hashed array
function_inverse to solve equations of the form f(a) = b. The assignment
function_inverse[’f] : lambda([s], g(s)) informs to_poly_solve that the
solution set to f(x) = b equals the solution set to x = g(b); two examples:

(%i17) function_inverse[’Q] : lambda([s], P(s))$

(%i18) to_poly_solve(Q(x-1) = 2009,x);
(%o18) %union([x = P(2009) + 1])
(%i19) function_inverse[’G] : lambda([s], s+new_variable(integer));

1028 Maxima 5.35.1 Manual

(%o19) lambda([s], s + new_variable(integer))
(%i20) to_poly_solve(G(x - a) = b,x);
(%o20) %union([x = b + a + %z125])

Notes

The solve variables needn’t be symbols; when fullratsubst is able to appropri-
ately make substitutions, the solve variables can be nonsymbols:

(%i1) to_poly_solve([x^2 + y^2 + x * y = 5, x * y = 8],
[x^2 + y^2, x * y]);

2 2
(%o1) %union([x y = 8, y + x = - 3])

For equations that involve complex conjugates, the solver automatically appends
the conjugate equations; for example

(%i1) declare(x,complex)$

(%i2) to_poly_solve(x + (5 + %i) * conjugate(x) = 1, x);
%i + 21

(%o2) %union([x = - -----------])
25 %i - 125

(%i3) declare(y,complex)$

(%i4) to_poly_solve(set(conjugate(x) - y = 42 + %i,
x + conjugate(y) = 0), set(x,y));

%i - 42 %i + 42
(%o4) %union([x = - -------, y = - -------])

2 2

For an equation that involves the absolute value function, the to_poly_solve

consults the fact database to decide if the argument to the absolute value is
complex valued. When

(%i1) to_poly_solve(abs(x) = 6, x);
(%o1) %union([x = - 6], [x = 6])
(%i2) declare(z,complex)$

(%i3) to_poly_solve(abs(z) = 6, z);
(%o3) %union(%if((%c11 # 0) %and (%c11 conjugate(%c11) - 36 =

0), [z = %c11], %union()))

This is the only situation that the solver consults the fact database. If a solve
variable is declared to be an integer, for example, to_poly_solve ignores this
declaration.

Relevant option variables algexact, resultant, algebraic

Related functions to poly

To use ‘load(to_poly_solve)’

Status: The function to_poly_solve is experimental; its specifications might change
and its functionality might be merged into other Maxima functions.

Chapter 81: unit 1029

81 unit

81.1 Introduction to Units

The unit package enables the user to convert between arbitrary units and work with
dimensions in equations. The functioning of this package is radically different from the
original Maxima units package - whereas the original was a basic list of definitions, this
package uses rulesets to allow the user to chose, on a per dimension basis, what unit final
answers should be rendered in. It will separate units instead of intermixing them in the
display, allowing the user to readily identify the units associated with a particular answer.
It will allow a user to simplify an expression to its fundamental Base Units, as well as
providing fine control over simplifying to derived units. Dimensional analysis is possible,
and a variety of tools are available to manage conversion and simplification options. In
addition to customizable automatic conversion, units also provides a traditional manual
conversion option.

Note - when unit conversions are inexact Maxima will make approximations resulting
in fractions. This is a consequence of the techniques used to simplify units. The messages
warning of this type of substitution are disabled by default in the case of units (normally
they are on) since this situation occurs frequently and the warnings clutter the output.
(The existing state of ratprint is restored after unit conversions, so user changes to that
setting will be preserved otherwise.) If the user needs this information for units, they can
set unitverbose:on to reactivate the printing of warnings from the unit conversion process.

unit is included in Maxima in the share/contrib/unit directory. It obeys normal Maxima
package loading conventions:

(%i1) load("unit")$

* Units version 0.50 *
* Definitions based on the NIST Reference on *
* Constants, Units, and Uncertainty *
* Conversion factors from various sources including *
* NIST and the GNU units package *

Redefining necessary functions...
WARNING: DEFUN/DEFMACRO: redefining function TOPLEVEL-MACSYMA-EVAL ...
WARNING: DEFUN/DEFMACRO: redefining function MSETCHK ...
WARNING: DEFUN/DEFMACRO: redefining function KILL1 ...
WARNING: DEFUN/DEFMACRO: redefining function NFORMAT ...
Initializing unit arrays...
Done.

The WARNING messages are expected and not a cause for concern - they indicate the
unit package is redefining functions already defined in Maxima proper. This is necessary in
order to properly handle units. The user should be aware that if other changes have been
made to these functions by other packages those changes will be overwritten by this loading
process.

1030 Maxima 5.35.1 Manual

The unit.mac file also loads a lisp file unit-functions.lisp which contains the lisp functions
needed for the package.

Clifford Yapp is the primary author. He has received valuable assistance from Barton
Willis of the University of Nebraska at Kearney (UNK), Robert Dodier, and other intrepid
folk of the Maxima mailing list.

There are probably lots of bugs. Let me know. float and numer don’t do what is
expected.

TODO : dimension functionality, handling of temperature, showabbr and friends. Show
examples with addition of quantities containing units.

81.2 Functions and Variables for Units

Functionsetunits (list)
By default, the unit package does not use any derived dimensions, but will convert
all units to the seven fundamental dimensions using MKS units.

(%i2) N;
kg m

(%o2) ----
2
s

(%i3) dyn;
1 kg m

(%o3) (------) (----)
100000 2

s

(%i4) g;
1

(%o4) (----) (kg)
1000

(%i5) centigram*inch/minutes^2;
127 kg m

(%o5) (-------------) (----)
1800000000000 2

s

In some cases this is the desired behavior. If the user wishes to use other units, this
is achieved with the setunits command:

(%i6) setunits([centigram,inch,minute]);
(%o6) done

(%i7) N;
1800000000000 %in cg

(%o7) (-------------) (------)
127 2

%min

Chapter 81: unit 1031

(%i8) dyn;
18000000 %in cg

(%o8) (--------) (------)
127 2

%min

(%i9) g;
(%o9) (100) (cg)

(%i10) centigram*inch/minutes^2;
%in cg

(%o10) ------
2

%min

The setting of units is quite flexible. For example, if we want to get back to kilograms,
meters, and seconds as defaults for those dimensions we can do:

(%i11) setunits([kg,m,s]);
(%o11) done

(%i12) centigram*inch/minutes^2;
127 kg m

(%o12) (-------------) (----)
1800000000000 2

s

Derived units are also handled by this command:

(%i17) setunits(N);
(%o17) done

(%i18) N;
(%o18) N

(%i19) dyn;
1

(%o19) (------) (N)
100000

(%i20) kg*m/s^2;
(%o20) N

(%i21) centigram*inch/minutes^2;
127

(%o21) (-------------) (N)
1800000000000

Notice that the unit package recognized the non MKS combination of mass, length,
and inverse time squared as a force, and converted it to Newtons. This is how Maxima
works in general. If, for example, we prefer dyne to Newtons, we simply do the
following:

(%i22) setunits(dyn);
(%o22) done

(%i23) kg*m/s^2;
(%o23) (100000) (dyn)

1032 Maxima 5.35.1 Manual

(%i24) centigram*inch/minutes^2;
127

(%o24) (--------) (dyn)
18000000

To discontinue simplifying to any force, we use the uforget command:

(%i26) uforget(dyn);
(%o26) false

(%i27) kg*m/s^2;
kg m

(%o27) ----
2
s

(%i28) centigram*inch/minutes^2;
127 kg m

(%o28) (-------------) (----)
1800000000000 2

s

This would have worked equally well with uforget(N) or uforget(%force).

See also uforget. To use this function write first load("unit").

Functionuforget (list)
By default, the unit package converts all units to the seven fundamental dimensions
using MKS units. This behavior can be changed with the setunits command. After
that, the user can restore the default behavior for a particular dimension by means
of the uforget command:

(%i13) setunits([centigram,inch,minute]);
(%o13) done

(%i14) centigram*inch/minutes^2;
%in cg

(%o14) ------
2

%min

(%i15) uforget([cg,%in,%min]);
(%o15) [false, false, false]

(%i16) centigram*inch/minutes^2;
127 kg m

(%o16) (-------------) (----)
1800000000000 2

s

uforget operates on dimensions, not units, so any unit of a particular dimension will
work. The dimension itself is also a legal argument.

See also setunits. To use this function write first load("unit").

Functionconvert (expr, list)
When resetting the global environment is overkill, there is the convert command,
which allows one time conversions. It can accept either a single argument or a list

Chapter 81: unit 1033

of units to use in conversion. When a convert operation is done, the normal global
evaluation system is bypassed, in order to avoid the desired result being converted
again. As a consequence, for inexact calculations "rat" warnings will be visible if the
global environment controlling this behavior (ratprint) is true. This is also useful
for spot-checking the accuracy of a global conversion. Another feature is convert will
allow a user to do Base Dimension conversions even if the global environment is set
to simplify to a Derived Dimension.

(%i2) kg*m/s^2;
kg m

(%o2) ----
2
s

(%i3) convert(kg*m/s^2,[g,km,s]);
g km

(%o3) ----
2
s

(%i4) convert(kg*m/s^2,[g,inch,minute]);

‘rat’ replaced 39.37007874015748 by 5000/127 = 39.37007874015748
18000000000 %in g

(%o4) (-----------) (-----)
127 2

%min

(%i5) convert(kg*m/s^2,[N]);
(%o5) N

(%i6) convert(kg*m^2/s^2,[N]);
(%o6) m N

(%i7) setunits([N,J]);
(%o7) done

(%i8) convert(kg*m^2/s^2,[N]);
(%o8) m N

(%i9) convert(kg*m^2/s^2,[N,inch]);

‘rat’ replaced 39.37007874015748 by 5000/127 = 39.37007874015748
5000

(%o9) (----) (%in N)
127

(%i10) convert(kg*m^2/s^2,[J]);
(%o10) J

(%i11) kg*m^2/s^2;
(%o11) J

(%i12) setunits([g,inch,s]);
(%o12) done

(%i13) kg*m/s^2;
(%o13) N

(%i14) uforget(N);
(%o14) false

1034 Maxima 5.35.1 Manual

(%i15) kg*m/s^2;
5000000 %in g

(%o15) (-------) (-----)
127 2

s

(%i16) convert(kg*m/s^2,[g,inch,s]);

‘rat’ replaced 39.37007874015748 by 5000/127 = 39.37007874015748
5000000 %in g

(%o16) (-------) (-----)
127 2

s

See also setunits and uforget. To use this function write first load("unit").

Optional variableusersetunits
Default value: none

If a user wishes to have a default unit behavior other than that described, they can
make use of maxima-init.mac and the usersetunits variable. The unit package will
check on startup to see if this variable has been assigned a list. If it has, it will use
setunits on that list and take the units from that list to be defaults. uforget will
revert to the behavior defined by usersetunits over its own defaults. For example, if
we have a maxima-init.mac file containing:

usersetunits : [N,J];

we would see the following behavior:

(%i1) load("unit")$

* Units version 0.50 *
* Definitions based on the NIST Reference on *
* Constants, Units, and Uncertainty *
* Conversion factors from various sources including *
* NIST and the GNU units package *

Redefining necessary functions...
WARNING: DEFUN/DEFMACRO: redefining function
TOPLEVEL-MACSYMA-EVAL ...
WARNING: DEFUN/DEFMACRO: redefining function MSETCHK ...
WARNING: DEFUN/DEFMACRO: redefining function KILL1 ...
WARNING: DEFUN/DEFMACRO: redefining function NFORMAT ...
Initializing unit arrays...
Done.
User defaults found...
User defaults initialized.

(%i2) kg*m/s^2;
(%o2) N

(%i3) kg*m^2/s^2;
(%o3) J

Chapter 81: unit 1035

(%i4) kg*m^3/s^2;
(%o4) J m

(%i5) kg*m*km/s^2;
(%o5) (1000) (J)

(%i6) setunits([dyn,eV]);
(%o6) done

(%i7) kg*m/s^2;
(%o7) (100000) (dyn)

(%i8) kg*m^2/s^2;
(%o8) (6241509596477042688) (eV)

(%i9) kg*m^3/s^2;
(%o9) (6241509596477042688) (eV m)

(%i10) kg*m*km/s^2;
(%o10) (6241509596477042688000) (eV)

(%i11) uforget([dyn,eV]);
(%o11) [false, false]

(%i12) kg*m/s^2;
(%o12) N

(%i13) kg*m^2/s^2;
(%o13) J

(%i14) kg*m^3/s^2;
(%o14) J m

(%i15) kg*m*km/s^2;
(%o15) (1000) (J)

Without usersetunits, the initial inputs would have been converted to MKS, and
uforget would have resulted in a return to MKS rules. Instead, the user preferences are
respected in both cases. Notice these can still be overridden if desired. To completely
eliminate this simplification - i.e. to have the user defaults reset to factory defaults
- the dontusedimension command can be used. uforget can restore user settings
again, but only if usedimension frees it for use. Alternately, kill(usersetunits)
will completely remove all knowledge of the user defaults from the session. Here are
some examples of how these various options work.

(%i2) kg*m/s^2;
(%o2) N

(%i3) kg*m^2/s^2;
(%o3) J

(%i4) setunits([dyn,eV]);
(%o4) done

(%i5) kg*m/s^2;
(%o5) (100000) (dyn)

(%i6) kg*m^2/s^2;
(%o6) (6241509596477042688) (eV)

(%i7) uforget([dyn,eV]);
(%o7) [false, false]

(%i8) kg*m/s^2;
(%o8) N

1036 Maxima 5.35.1 Manual

(%i9) kg*m^2/s^2;
(%o9) J

(%i10) dontusedimension(N);
(%o10) [%force]

(%i11) dontusedimension(J);
(%o11) [%energy, %force]

(%i12) kg*m/s^2;
kg m

(%o12) ----
2
s

(%i13) kg*m^2/s^2;
2

kg m
(%o13) -----

2
s

(%i14) setunits([dyn,eV]);
(%o14) done

(%i15) kg*m/s^2;
kg m

(%o15) ----
2
s

(%i16) kg*m^2/s^2;
2

kg m
(%o16) -----

2
s

(%i17) uforget([dyn,eV]);
(%o17) [false, false]

(%i18) kg*m/s^2;
kg m

(%o18) ----
2
s

(%i19) kg*m^2/s^2;
2

kg m
(%o19) -----

2
s

(%i20) usedimension(N);
Done. To have Maxima simplify to this dimension, use
setunits([unit]) to select a unit.
(%o20) true

Chapter 81: unit 1037

(%i21) usedimension(J);
Done. To have Maxima simplify to this dimension, use
setunits([unit]) to select a unit.
(%o21) true

(%i22) kg*m/s^2;
kg m

(%o22) ----
2
s

(%i23) kg*m^2/s^2;
2

kg m
(%o23) -----

2
s

(%i24) setunits([dyn,eV]);
(%o24) done

(%i25) kg*m/s^2;
(%o25) (100000) (dyn)

(%i26) kg*m^2/s^2;
(%o26) (6241509596477042688) (eV)

(%i27) uforget([dyn,eV]);
(%o27) [false, false]

(%i28) kg*m/s^2;
(%o28) N

(%i29) kg*m^2/s^2;
(%o29) J

(%i30) kill(usersetunits);
(%o30) done

(%i31) uforget([dyn,eV]);
(%o31) [false, false]

(%i32) kg*m/s^2;
kg m

(%o32) ----
2
s

(%i33) kg*m^2/s^2;
2

kg m
(%o33) -----

2
s

Unfortunately this wide variety of options is a little confusing at first, but once the
user grows used to them they should find they have very full control over their working
environment.

1038 Maxima 5.35.1 Manual

Functionmetricexpandall (x)
Rebuilds global unit lists automatically creating all desired metric units. x is a
numerical argument which is used to specify how many metric prefixes the user wishes
defined. The arguments are as follows, with each higher number defining all lower
numbers’ units:

0 - none. Only base units
1 - kilo, centi, milli

(default) 2 - giga, mega, kilo, hecto, deka, deci, centi, milli,
micro, nano

3 - peta, tera, giga, mega, kilo, hecto, deka, deci,
centi, milli, micro, nano, pico, femto

4 - all

Normally, Maxima will not define the full expansion since this results in a very large
number of units, but metricexpandall can be used to rebuild the list in a more or
less complete fashion. The relevant variable in the unit.mac file is %unitexpand.

Variable%unitexpand
Default value: 2

This is the value supplied to metricexpandall during the initial loading of unit.

Chapter 82: zeilberger 1039

82 zeilberger

82.1 Introduction to zeilberger

zeilberger is a implementation of Zeilberger’s algorithm for definite hypergeometric
summation, and also Gosper’s algorithm for indefinite hypergeometric summation.

zeilberger makes use of the "filtering" optimization method developed by Axel Riese.

zeilberger was developed by Fabrizio Caruso.

load (zeilberger) loads this package.

82.1.1 The indefinite summation problem

zeilberger implements Gosper’s algorithm for indefinite hypergeometric summation.
Given a hypergeometric term Fk in k we want to find its hypergeometric anti-difference,
that is, a hypergeometric term fk such that

Fk = fk+1 − fk.

82.1.2 The definite summation problem

zeilberger implements Zeilberger’s algorithm for definite hypergeometric summation.
Given a proper hypergeometric term (in n and k) Fn,k and a positive integer d we want to
find a d-th order linear recurrence with polynomial coefficients (in n) for Fn,k and a rational
function R in n and k such that

a0 Fn,k + . . .+ ad Fn+d, k = ∆K (R (n, k)Fn,k) ,

where ∆k is the k-forward difference operator, i.e., ∆k (tk) ≡ tk+1 − tk.

82.1.3 Verbosity levels

There are also verbose versions of the commands which are called by adding one of the
following prefixes:

Summary Just a summary at the end is shown

Verbose Some information in the intermidiate steps

VeryVerbose

More information

Extra Even more information including information on the linear system in Zeil-
berger’s algorithm

For example:
GosperVerbose, parGosperVeryVerbose, ZeilbergerExtra, AntiDifferenceSummary.

1040 Maxima 5.35.1 Manual

82.2 Functions and Variables for zeilberger

FunctionAntiDifference (Fk, k)
Returns the hypergeometric anti-difference of Fk, if it exists.
Otherwise AntiDifference returns no_hyp_antidifference.

FunctionGosper (Fk, k)
Returns the rational certificate R(k) for Fk, that is, a rational function such that
Fk = R (k + 1) Fk+1 −R (k) Fk, if it exists. Otherwise, Gosper returns no_hyp_sol.

FunctionGosperSum (Fk, k, a, b)
Returns the summmation of Fk from k = a to k = b if Fk has a hypergeometric
anti-difference. Otherwise, GosperSum returns nongosper_summable.

Examples:

(%i1) load (zeilberger)$
(%i2) GosperSum ((-1)^k*k / (4*k^2 - 1), k, 1, n);
Dependent equations eliminated: (1)

3 n + 1
(n + -) (- 1)

2 1
(%o2) - ------------------ - -

2 4
2 (4 (n + 1) - 1)

(%i3) GosperSum (1 / (4*k^2 - 1), k, 1, n);
3

- n - -
2 1

(%o3) -------------- + -
2 2

4 (n + 1) - 1

(%i4) GosperSum (x^k, k, 1, n);
n + 1

x x
(%o4) ------ - -----

x - 1 x - 1

(%i5) GosperSum ((-1)^k*a! / (k!*(a - k)!), k, 1, n);
n + 1

a! (n + 1) (- 1) a!
(%o5) - ------------------------- - ----------

a (- n + a - 1)! (n + 1)! a (a - 1)!

(%i6) GosperSum (k*k!, k, 1, n);
Dependent equations eliminated: (1)
(%o6) (n + 1)! - 1

(%i7) GosperSum ((k + 1)*k! / (k + 1)!, k, 1, n);
(n + 1) (n + 2) (n + 1)!

(%o7) ------------------------ - 1
(n + 2)!

Chapter 82: zeilberger 1041

(%i8) GosperSum (1 / ((a - k)!*k!), k, 1, n);
(%o8) NON_GOSPER_SUMMABLE

FunctionparGosper (Fn,k, k, n, d)
Attempts to find a d-th order recurrence for Fn,k.

The algorithm yields a sequence [s1, s2, ..., sm] of solutions. Each solution has the
form

[R (n, k) , [a0, a1, . . . , ad]] .

parGosper returns [] if it fails to find a recurrence.

FunctionZeilberger (Fn,k, k, n)
Attempts to compute the indefinite hypergeometric summation of Fn,k.

Zeilberger first invokes Gosper, and if that fails to find a solution, then invokes
parGosper with order 1, 2, 3, ..., up to MAX_ORD. If Zeilberger finds a solution before
reaching MAX_ORD, it stops and returns the solution.

The algorithms yields a sequence [s1, s2, ..., sm] of solutions. Each solution has the
form

[R (n, k) , [a0, a1, . . . , ad]] .

Zeilberger returns [] if it fails to find a solution.

Zeilberger invokes Gosper only if Gosper_in_Zeilberger is true.

82.3 General global variables

Global variableMAX ORD
Default value: 5

MAX_ORD is the maximum recurrence order attempted by Zeilberger.

Global variablesimplified output
Default value: false

When simplified_output is true, functions in the zeilberger package attempt
further simplification of the solution.

Global variablelinear solver
Default value: linsolve

linear_solver names the solver which is used to solve the system of equations in
Zeilberger’s algorithm.

Global variablewarnings
Default value: true

When warnings is true, functions in the zeilberger package print warning messages
during execution.

1042 Maxima 5.35.1 Manual

Global variableGosper in Zeilberger
Default value: true

When Gosper_in_Zeilberger is true, the Zeilberger function calls Gosper before
calling parGosper. Otherwise, Zeilberger goes immediately to parGosper.

Global variabletrivial solutions
Default value: true

When trivial_solutions is true, Zeilberger returns solutions which have certifi-
cate equal to zero, or all coefficients equal to zero.

82.4 Variables related to the modular test

Global variablemod test
Default value: false

When mod_test is true, parGosper executes a modular test for discarding systems
with no solutions.

Global variablemodular linear solver
Default value: linsolve

modular_linear_solver names the linear solver used by the modular test in
parGosper.

Global variableev point
Default value: big_primes[10]

ev_point is the value at which the variable n is evaluated when executing the modular
test in parGosper.

Global variablemod big prime
Default value: big_primes[1]

mod_big_prime is the modulus used by the modular test in parGosper.

Global variablemod threshold
Default value: 4

mod_threshold is the greatest order for which the modular test in parGosper is
attempted.

Appendix A: Function and Variable Index 1043

Appendix A Function and Variable Index

!
! (Operator) . 154
!! (Operator) . 153

#
(Operator) . 107

$
$ (Input terminator) . 16

%
% (System variable) . 14
%% (System variable) . 14
%and (Operator) . 1011
%c (Variable) . 646
%e (Constant) . 45
%e_to_numlog (Option variable) 156
%edispflag (Option variable) 23
%emode (Option variable) . 157
%enumer (Option variable) 157
%f (Function) . 287
%gamma (Constant) . 45
%i (Constant) . 45
%iargs (Option variable) . 163
%if (Operator) . 1012
%k1 (Variable) . 647
%k2 (Variable) . 647
%m (Function) . 287
%or (Operator) . 1012
%phi (Constant) . 45
%pi (Constant) . 46
%piargs (Option variable) 162
%rnum_list (System variable) 335
%s (Function) . 272
%th (Function) . 15
%unitexpand (Variable) . 1038
%w (Function) . 287

’
’ (Operator) . 119
’’ (Operator) . 121

*
* (Operator) . 101
** (Operator) . 104

+
+ (Operator) . 101

-
- (Operator) . 101

.

. (Operator) . 104

/
/ (Operator) . 101

:
: (Operator) . 109
:: (Operator) . 110
::= (Operator) . 110
:= (Operator) . 112

;
; (Input terminator) . 16

<
< (Operator) . 105
<= (Operator) . 105

=
= (Operator) . 107

>
> (Operator) . 105
>= (Operator) . 105

?
? (Special symbol) . 16
?? (Special symbol) . 16

@
@ (Operator) . 70

[
[(Operator) . 48

1044 Maxima 5.35.1 Manual

]
] (Operator) . 48

^
^ (Operator) . 101
^^ (Operator) . 104

_ (System variable) . 13
__ (System variable) . 13

‘
‘ (Operator) . 814
‘‘ (Operator) . 816

\
\ . 42

|
| (Operator) . 430

~
~ (Operator) . 429

A
abasep (Function) . 466
abs (Function) . 145
absboxchar (Option variable) 24
absint (Function) . 483
absolute_real_time (Function) 526
acos (Function) . 163
acosh (Function) . 163
acot (Function) . 163
acoth (Function) . 163
acsc (Function) . 163
acsch (Function) . 163
activate (Function) . 183
activecontexts (System variable) 183
adapt_depth (Graphic option) 728
adapt_depth (Plot option) 213
add_edge (Function) . 863
add_edges (Function) . 863
add_vertex (Function) . 863
add_vertices (Function) . 863
addcol (Function) . 374
Addition . 101
additive (Property) . 131
addmatrices (Function) . 907
addrow (Function) . 374
adim (Variable) . 465

adjacency_matrix (Function) 847
adjoin (Function) . 551
adjoint (Function) . 374
af (Function) . 466
aform (Variable) . 465
agd (Function) . 967
airy_ai (Function) . 272
airy_bi (Function) . 272
airy_dai (Function) . 272
airy_dbi (Function) . 272
alg_type (Function) . 465
algebraic (Option variable) 241
algepsilon (Option variable) 335
algexact (Option variable) 335
algsys (Function) . 336
alias (Function) . 75
aliases (System variable) . 75
all_dotsimp_denoms (Option variable) 399
allbut (Keyword) . 76
allocation (Graphic option) 728
allroots (Function) . 337
allsym (Option variable) . 414
alphabetic (Property) . 173
alphacharp (Function) . 1003
alphanumericp (Function) 1003
amortization (Function) . 830
and (Operator) . 106
animation (Object option) 806
annuity_fv (Function) . 830
annuity_pv (Function) . 830
antid (Function) . 301
antidiff (Function) . 302
AntiDifference (Function) 1040
antisymmetric (Property). 131
append (Function) . 49
appendfile (Function) . 226
apply (Function) . 578
apply1 (Function) . 531
apply2 (Function) . 531
applyb1 (Function) . 531
apropos (Function) . 9
args (Function) . 76
arit_amortization (Function) 831
arithmetic (Function) . 967
arithsum (Function) . 967
array (Function) . 60
arrayapply (Function) . 60
arrayinfo (Function) . 60
arraymake (Function) . 62
arrays (System variable) . 63
arraysetapply (Function) . 63
ascii (Function) . 1003
asec (Function) . 163
asech (Function) . 164
asin (Function) . 164
asinh (Function) . 164
askexp (System variable) . 527
askinteger (Function) . 183

Appendix A: Function and Variable Index 1045

asksign (Function) . 183
assoc (Function) . 49
assoc_legendre_p (Function) 950
assoc_legendre_q (Function) 951
assume (Function) . 183
assume_external_byte_order (Function) 938
assume_pos (Option variable) 185
assume_pos_pred (Option variable) 185
assumescalar (Option variable) 184
asymbol (Variable) . 465
asympa (Function) . 629
at (Function) . 302
atan (Function) . 164
atan2 (Function) . 164
atanh (Function) . 164
atensimp (Function) . 465
atom (Function) . 76
atomgrad (Property) . 303
atrig1 (Package) . 164
atvalue (Function) . 303
augcoefmatrix (Function) 374
augmented_lagrangian_method (Function) . . . 631
av (Function) . 466
average_degree (Function). 847
axes (Plot option) . 213
axis_3d (Graphic option) 729
axis_bottom (Graphic option) 729
axis_left (Graphic option) 729
axis_right (Graphic option) 729
axis_top (Graphic option) 730
azimuth (Plot option) . 214
azimuth (Scene option) . 804

B
background (Scene option) 804
background_color (Graphic option) 730
backslash . 42
backsubst (Option variable) 338
backtrace (Function) . 603
bars (Graphic object) . 770
barsplot (Function) . 672
barsplot_description (Function) 673
base64 (Function) . 1004
base64_decode (Function) 1004
bashindices (Function) . 467
batch (Function) . 226
batchload (Function) . 227
bc2 (Function) . 353
bdvac (Function) . 451
belln (Function) . 551
benefit_cost (Function) . 833
berlefact (Option variable) 242
bern (Function) . 487
bernpoly (Function) . 487
bernstein_approx (Function) 634
bernstein_expand (Function) 634
bernstein_explicit (Variable) 633

bernstein_poly (Function). 633

bessel_i (Function) . 270

bessel_j (Function) . 269

bessel_k (Function) . 270

bessel_y (Function) . 270

besselexpand (Option variable) 271

beta (Function) . 276

beta_args_sum_to_integer (Option variable)
. 284

beta_expand (Option variable) 284

beta_incomplete (Function) 277

beta_incomplete_generalized (Function) . . . 281

beta_incomplete_regularized (Function) . . . 280

bezout (Function) . 242

bf_find_root (Function) . 361

bf_fmin_cobyla (Function). 640

bfallroots (Function) . 338

bffac (Function) . 273

bfhzeta (Function) . 487

bfloat (Function) . 35

bfloatp (Function) . 36

bfpsi (Function) . 273

bfpsi0 (Function) . 273

bftorat (Option variable) . 36

bftrunc (Option variable) . 36

bfzeta (Function) . 487

biconnected_components (Function) 848

bimetric (Function) . 451

bindtest (Property) . 173

binomial (Function) . 153

bipartition (Function) . 848

block (Function) . 579

blockmatrixp (Function) . 907

bode_gain (Function) . 635

bode_phase (Function) . 636

border (Graphic option) . 730

bothcoef (Function) . 242

boundaries_array (Global variable) 787

box (Function) . 76

box (Plot option) . 214

boxchar (Option variable) . 77

boxplot (Function) . 674

boxplot_description (Function) 675

break (Function) . 580

breakup (Option variable) 339

bug_report (Function) . 8

build_info (Function) . 8

build_sample (Function) . 653

buildq (Function) . 574

burn (Function) . 487

1046 Maxima 5.35.1 Manual

C
cabs (Function) . 150
canform (Function) . 415
canten (Function) . 414
capping (Object option) . 806
cardinality (Function) . 552
carg (Function) . 151
cartan (Function) . 304
cartesian_product (Function) 552
catch (Function) . 580
cauchy_matrix (Function) 374
cauchysum (Option variable) 471
cbffac (Function) . 273
cbrange (Graphic option) 730
cbtics (Graphic option) . 731
cdf_bernoulli (Function) 717
cdf_beta (Function) . 703
cdf_binomial (Function) . 715
cdf_cauchy (Function) . 712
cdf_chi2 (Function) . 694
cdf_continuous_uniform (Function) 704
cdf_discrete_uniform (Function) 720
cdf_exp (Function) . 699
cdf_f (Function) . 697
cdf_gamma (Function) . 702
cdf_general_finite_discrete (Function) . . . 714
cdf_geometric (Function) 719
cdf_gumbel (Function) . 712
cdf_hypergeometric (Function) 721
cdf_laplace (Function) . 711
cdf_logistic (Function) . 705
cdf_lognormal (Function) 701
cdf_negative_binomial (Function) 722
cdf_noncentral_chi2 (Function) 696
cdf_noncentral_student_t (Function) 692
cdf_normal (Function) . 689
cdf_pareto (Function) . 706
cdf_poisson (Function) . 716
cdf_rank_sum (Function) . 994
cdf_rayleigh (Function) . 708
cdf_signed_rank (Function) 994
cdf_student_t (Function) 690
cdf_weibull (Function) . 707
cdisplay (Function) . 452
ceiling (Function) . 146
center (Object option) . 806
central_moment (Function). 660
cequal (Function) . 1003
cequalignore (Function) 1003
cf (Function) . 488
cfdisrep (Function) . 489
cfexpand (Function) . 489
cflength (Option variable) 490
cframe_flag (Option variable) 457
cgeodesic (Function) . 451
cgreaterp (Function) . 1003
cgreaterpignore (Function) 1003
changename (Function) . 405

changevar (Function) . 313
chaosgame (Function) . 797
charat (Function) . 1005
charfun (Function) . 190
charfun2 (Function) . 883
charlist (Function) . 1005
charp (Function) . 1003
charpoly (Function) . 375
chebyshev_t (Function) . 951
chebyshev_u (Function) . 951
check_overlaps (Function). 398
checkdiv (Function) . 451
chinese (Function) . 488
cholesky (Function) . 908
christof (Function) . 440
chromatic_index (Function) 848
chromatic_number (Function) 848
cint (Function) . 1003
circulant_graph (Function) 842
clear_edge_weight (Function) 848
clear_rules (Function) . 545
clear_vertex_label (Function) 849
clebsch_gordan (Function). 637
clebsch_graph (Function) 843
clessp (Function) . 1003
clesspignore (Function) 1003
close (Function) . 998
closefile (Function) . 227
cmetric (Function) . 437
cnonmet_flag (Option variable) 457
coeff (Function) . 242
coefmatrix (Function) . 376
cograd (Function) . 450
col (Function) . 376
collapse (Function) . 77
collectterms (Function) . 965
color (Graphic option) . 731
color (Object option). 807
color (Plot option) . 214
color_bar (Plot option) . 214
color_bar_tics (Plot option) 214
colorbox (Graphic option) 732
columnop (Function) . 907
columns (Graphic option) 733
columnspace (Function) . 907
columnswap (Function) . 907
columnvector (Function) . 376
combination (Function) . 968
combine (Function) . 132
commutative (Property) . 132
comp2pui (Function) . 503
compare (Function) . 190
compfile (Function) . 580
compile (Function) . 581
compile_file (Function) . 600
complement_graph (Function) 843
complete_bipartite_graph (Function) 843
complete_graph (Function). 843

Appendix A: Function and Variable Index 1047

complex (Property) . 181
complex_number_p (Function) 1014
components (Function) . 408
compose_functions (Function) 1014
concan (Function) . 414
concat (Function) . 42
cone (Scene object) . 805
conjugate (Function) . 151
conmetderiv (Function) . 418
connect_vertices (Function) 863
connected_components (Function) 849
cons (Function) . 49
constant (Property) . 173
constantp (Function) . 174
constituent (Function) . 1003
constvalue (Function) . 819
cont2part (Function) . 507
content (Function) . 244
context (Option variable) 186
contexts (Option variable) 186
continuous_freq (Function) 654
contortion (Function) . 448
contour (Graphic option) 733
contour_levels (Graphic option) 733
contour_plot (Function) . 196
contract (Function) . 408, 507
contract_edge (Function) 864
contragrad (Function) . 450
contrib_ode (Function) . 645
convert (Function) . 1032
coord (Function) . 418
copy (Function) . 907
copy_graph (Function) . 842
copylist (Function) . 50
copymatrix (Function) . 376
cor (Function) . 668
cos (Function) . 164
cosh (Function) . 164
cosnpiflag (Option variable) 484
cot (Function) . 164
coth (Function) . 164
cov (Function) . 666
cov1 (Function) . 667
covdiff (Function) . 421
covect (Function) . 376
covers (Function) . 968
create_graph (Function) . 841
create_list (Function) . 50
csc (Function) . 164
csch (Function) . 164
csetup (Function) . 437
cspline (Function) . 884
ct_coords (Option variable) 459
ct_coordsys (Function) . 437
ctaylor (Function) . 442
ctaypov (Option variable) 457
ctaypt (Option variable) . 457
ctayswitch (Option variable) 457

ctayvar (Option variable) 457
ctorsion_flag (Option variable) 457
ctransform (Function) . 449
ctranspose (Function) . 908
ctrgsimp (Option variable) 456
cube (Scene object) . 806
cube_graph (Function) . 843
cuboctahedron_graph (Function) 843
cunlisp (Function) . 1004
current_let_rule_package (Option variable)

. 532
cv (Function) . 661
cycle_digraph (Function) 843
cycle_graph (Function) . 843
cylinder (Scene object) . 806
cylindrical (Graphic object) 770

D
data_file_name (Graphic option) 734
days360 (Function) . 829
dblint (Function) . 314
deactivate (Function) . 187
debugmode (Option variable) 617
declare (Function) . 174
declare_constvalue (Function) 819
declare_dimensions (Function) 823
declare_fundamental_dimensions (Function)

. 823
declare_fundamental_units (Function) 824
declare_qty (Function) . 821
declare_translated (Function) 600
declare_unit_conversion (Function) 822
declare_units (Function) 820
declare_weights (Function) 398
decreasing (Property) . 176
decsym (Function) . 414
default_let_rule_package (Option variable)

. 532
defcon (Function) . 407
define (Function) . 581
define_alt_display (Function) 624
define_variable (Function) 582
defint (Function) . 315
defmatch (Function) . 532
defrule (Function) . 534
defstruct (Function) . 69
deftaylor (Function) . 472
degree_sequence (Function) 850
del (Function) . 305
delay (Graphic option) . 734
delete (Function) . 50
deleten (Function) . 456
delta (Function) . 305
demo (Function) . 10
demoivre (Function) . 132
demoivre (Option variable) 132
denom (Function) . 244

1048 Maxima 5.35.1 Manual

dependencies (Function) . 305
dependencies (System variable) 305
depends (Function) . 306
derivabbrev (Option variable) 307
derivdegree (Function) . 307
derivlist (Function) . 307
derivsubst (Option variable) 307
describe (Function) . 10
desolve (Function) . 353
determinant (Function) . 377
detout (Option variable) . 377
dfloat (Function) . 1015
dgauss_a (Function) . 647
dgauss_b (Function) . 647
dgeev (Function) . 889
dgemm (Function) . 894
dgeqrf (Function) . 890
dgesv (Function) . 890
dgesvd (Function) . 892
diag (Function) . 681
diag_matrix (Function) . 908
diagmatrix (Function) . 377
diagmatrixp (Function) . 451
diagmetric (Option variable) 456
diameter (Function) . 849
diff (Function) . 307, 416
diff (Special symbol) . 309
digitcharp (Function) . 1004
dim (Option variable) . 456
dimacs_export (Function) 865
dimacs_import (Function) 865
dimension (Function) . 340
dimensionless (Function) 826
dimensions (Function) . 824
dimensions (Graphic option) 735
dimensions_as_list (Function) 824
direct (Function) . 508
discrete_freq (Function) 655
disjoin (Function) . 552
disjointp (Function) . 553
disolate (Function) . 78
disp (Function) . 24
dispcon (Function) . 405
dispflag (Option variable) 340
dispform (Function) . 78
dispfun (Function) . 584
dispJordan (Function) . 683
display (Function) . 24
display_format_internal (Option variable) . . . 25
display2d (Option variable) 25
disprule (Function) . 534
dispterms (Function) . 26
distrib (Function) . 132
distribute_over (Option variable) 133
divide (Function) . 244
Division . 101
divisors (Function) . 553
divsum (Function) . 490

dkummer_m (Function) . 647
dkummer_u (Function) . 647
dlange (Function) . 894
do (Special operator) . 603
doallmxops (Option variable) 377
dodecahedron_graph (Function) 843
domain (Option variable) . 134
domxexpt (Option variable) 378
domxmxops (Option variable) 378
domxnctimes (Option variable) 378
dontfactor (Option variable) 378
doscmxops (Option variable) 379
doscmxplus (Option variable) 379
dot0nscsimp (Option variable) 379
dot0simp (Option variable) 379
dot1simp (Option variable) 379
dotassoc (Option variable) 379
dotconstrules (Option variable) 379
dotdistrib (Option variable) 379
dotexptsimp (Option variable) 379
dotident (Option variable) 380
dotproduct (Function) . 908
dotscrules (Option variable) 380
dotsimp (Function) . 398
dpart (Function) . 79
draw (Function) . 726
draw_file (Function) . 727
draw_graph (Function) . 866
draw_graph_program (Option variable) 867
draw_realpart (Graphic option) 736
draw2d (Function) . 726
draw3d (Function) . 727
drawdf (Function) . 793
dscalar (Function) . 309, 450

E
echelon (Function) . 380
edge_color (draw graph option) 869
edge_coloring (draw graph option) 869
edge_coloring (Function) 849
edge_connectivity (Function) 850
edge_partition (draw graph option) 869
edge_type (draw graph option) 869
edge_width (draw graph option) 869
edges (Function) . 850
eigens_by_jacobi (Function) 909
eigenvalues (Function) . 380
eigenvectors (Function) . 381
eighth (Function) . 51
einstein (Function) . 441
eivals (Function) . 380
eivects (Function) . 381
elapsed_real_time (Function) 526
elapsed_run_time (Function) 526
ele2comp (Function) . 504
ele2polynome (Function) . 512
ele2pui (Function) . 503

Appendix A: Function and Variable Index 1049

elem (Function) . 504
elementp (Function) . 554
elevation (Plot option) . 214
elevation (Scene option) 804
elevation_grid (Graphic object) 771
elim (Function) . 1015
elim_allbut (Function) . 1016
eliminate (Function) . 244
eliminate_using (Function) 1016
ellipse (Graphic object) 771
elliptic_e (Function) . 296
elliptic_ec (Function) . 297
elliptic_eu (Function) . 296
elliptic_f (Function) . 296
elliptic_kc (Function) . 297
elliptic_pi (Function) . 297
ematrix (Function) . 383
empty_graph (Function) . 843
emptyp (Function) . 554
endcons (Function) . 51
endphi (Object option) . 807
endtheta (Object option) 807
enhanced3d (Graphic option) 736
entermatrix (Function) . 383
entertensor (Function) . 405
entier (Function) . 148
epsilon_lp (Option variable) 960
equal (Function) . 190
equalp (Function) . 483
equiv_classes (Function) 554
erf (Function) . 286
erf_generalized (Function) 286
erf_representation (Option variable) 286
erfc (Function) . 286
erfflag (Option variable) 315
erfi (Function) . 286
errcatch (Function) . 606
error (Function) . 607
error (System variable) . 607
error_size (Option variable) 607
error_syms (Option variable) 608
error_type (Graphic option) 738
errormsg (Function) . 608
errormsg (Option variable) 608
errors (Graphic object) . 772
euler (Function) . 490
ev (Function) . 123
ev_point (Global variable) 1042
eval (Special symbol) . 126
eval_string (Function) . 1005
even (Property) . 177
evenfun (Property) . 134
evenp (Function) . 36
every (Function) . 554
evflag (Property) . 126
evfun (Property) . 127
evolution (Function) . 797
evolution2d (Function) . 798

evundiff (Function) . 417
example (Function) . 11
exp (Function) . 158
expand (Function) . 134
expandwrt (Function) . 136
expandwrt_denom (Option variable) 136
expandwrt_factored (Function) 136
expintegral_chi (Function) 285
expintegral_ci (Function). 285
expintegral_e (Function) 285
expintegral_e1 (Function). 285
expintegral_ei (Function). 285
expintegral_li (Function). 285
expintegral_shi (Function) 285
expintegral_si (Function). 285
expintexpand (Option variable) 286
expintrep (Option variable) 285
explicit (Graphic object) 772
explose (Function) . 507
expon (Option variable) . 136
exponentialize (Function). 137
exponentialize (Option variable) 137
Exponentiation . 101
expop (Option variable) . 137
express (Function) . 309
expt (Special symbol) . 26
exptdispflag (Option variable) 26
exptisolate (Option variable) 79
exptsubst (Option variable) 79
exsec (Function) . 968
extdiff (Function) . 430
extract_linear_equations (Function) 398
extremal_subset (Function) 555
ezgcd (Function) . 245

F
f90 (Function) . 827
facexpand (Option variable) 245
facsum (Function) . 964
facsum_combine (Global variable) 964
factcomb (Function) . 154
factlim (Option variable) 155
factor (Function) . 245
factorfacsum (Function) . 965
factorflag (Option variable) 248
factorial (Function) . 154
factorial_expand (Option variable) 155
factorout (Function) . 248
factors_only (Option variable) 491
factorsum (Function) . 248
facts (Function) . 187
false (Constant) . 45
fast_central_elements (Function) 398
fast_linsolve (Function) 397
fasttimes (Function) . 249
fb (Variable) . 459
feature (Property) . 177

1050 Maxima 5.35.1 Manual

featurep (Function) . 177
features (Declaration) . 177
fernfale (Function) . 836
fft (Function) . 358
fib (Function) . 491
fibtophi (Function) . 491
fifth (Function) . 52
file_name (draw graph option) 870
file_name (Graphic option) 738
file_output_append (Option variable) 227
file_search (Function) . 227
file_search_demo (Option variable) 228
file_search_lisp (Option variable) 228
file_search_maxima (Option variable) 228
file_search_tests (Option variable) 228
file_search_usage (Option variable) 228
file_type (Function) . 228
file_type_lisp (Option variable) 229
file_type_maxima (Option variable) 229
filename_merge (Function). 227
fill_color (Graphic option) 739
fill_density (Graphic option) 739
fillarray (Function) . 63
filled_func (Graphic option) 739
find_root (Function) . 361
find_root_abs (Option variable) 361
find_root_error (Option variable) 361
find_root_rel (Option variable) 361
findde (Function) . 449
first (Function) . 52
fix (Function) . 148
fixed_vertices (draw graph option) 870
flatten (Function) . 556
flength (Function) . 998
flipflag (Option variable) 407
float (Function) . 36
float2bf (Option variable) 37
floatnump (Function) . 37
floor (Function) . 148
flower_snark (Function) . 843
flush (Function) . 418
flush1deriv (Function) . 420
flushd (Function) . 418
flushnd (Function) . 418
fmin_cobyla (Function) . 639
font (Graphic option) . 740
font_size (Graphic option) 741
for (Special operator) . 609
forget (Function) . 187
fortindent (Option variable) 238
fortran (Function) . 238
fortspaces (Option variable) 239
fourcos (Function) . 484
fourexpand (Function) . 484
fourier (Function) . 484
fourier_elim (Function) 1017
fourint (Function) . 484
fourintcos (Function) . 484

fourintsin (Function) . 484
foursimp (Function) . 484
foursin (Function) . 484
fourth (Function) . 52
fposition (Function) . 999
fpprec (Option variable) . 37
fpprintprec (Option variable) 37
frame_bracket (Function) 445
freeof (Function) . 80
freshline (Function) . 999
fresnel_c (Function) . 286
fresnel_s (Function) . 286
from_adjacency_matrix (Function) 843
frucht_graph (Function) . 843
full_listify (Function) . 557
fullmap (Function) . 585
fullmapl (Function) . 586
fullratsimp (Function) . 249
fullratsubst (Function) . 249
fullsetify (Function) . 557
funcsolve (Function) . 340
functions (System variable) 586
fundamental_dimensions (Global variable) . . . 823
fundamental_units (Function) 825
fundef (Function) . 587
funmake (Function) . 587
funp (Function) . 483
fv (Function) . 829

G
gamma (Function) . 273
gamma_expand (Option variable) 275
gamma_greek (Function) . 274
gamma_incomplete (Function) 275
gamma_incomplete_generalized (Function) . . 275
gamma_incomplete_regularized (Function) . . 275
gammalim (Option variable) 276
gauss_a (Function) . 647
gauss_b (Function) . 647
gaussprob (Function) . 967
gcd (Function) . 250
gcdex (Function) . 251
gcdivide (Function) . 966
gcfac (Function) . 970
gcfactor (Function) . 252
gd (Function) . 967
gdet (System variable) . 457
gen_laguerre (Function) . 951
generalized_lambert_w (Function) 291
genfact (Function) . 156
genindex (Option variable) 527
genmatrix (Function) . 383
gensumnum (Option variable) 527
gensym (Function) . 527
geo_amortization (Function) 831
geo_annuity_fv (Function). 830
geo_annuity_pv (Function). 830

Appendix A: Function and Variable Index 1051

geomap (Graphic object) . 789
geometric (Function) . 967
geometric_mean (Function). 664
geosum (Function) . 967
get (Function) . 178
get_edge_weight (Function) 850
get_lu_factors (Function). 910
get_output_stream_string (Function) 999
get_pixel (Function) . 785
get_plot_option (Function) 197
get_tex_environment (Function) 237
get_tex_environment_default (Function) . . . 237
get_vertex_label (Function) 850
gfactor (Function) . 252
gfactorsum (Function) . 252
ggf (Function) . 839
GGFCFMAX (Option variable) 839
GGFINFINITY (Option variable) 839
girth (Function) . 852
global_variances (Function) 667
globalsolve (Option variable) 341
gnuplot_close (Function) 223
gnuplot_command (System variable) 198
gnuplot_curve_styles (Plot option) 222
gnuplot_curve_titles (Plot option) 222
gnuplot_default_term_command (Plot option)

. 222
gnuplot_dumb_term_command (Plot option) . . . 222
gnuplot_file_args (System variable) 198
gnuplot_file_name (Graphic option) 741
gnuplot_out_file (Plot option) 221
gnuplot_pdf_term_command (Plot option) 222
gnuplot_pm3d (Plot option) 221
gnuplot_png_term_command (Plot option) 222
gnuplot_postamble (Plot option) 221
gnuplot_preamble (Plot option) 221
gnuplot_ps_term_command (Plot option) 222
gnuplot_replot (Function). 223
gnuplot_reset (Function) 223
gnuplot_restart (Function) 223
gnuplot_start (Function) 223
gnuplot_svg_term_command (Plot option) 222
gnuplot_term (Plot option) 220
gnuplot_view_args (System variable) 198
go (Function) . 609
Gosper (Function) . 1040
Gosper_in_Zeilberger (Global variable) 1042
GosperSum (Function) . 1040
gr2d (Scene constructor) . 725
gr3d (Scene constructor) . 725
gradef (Function) . 310
gradefs (System variable) 311
gramschmidt (Function) . 385
graph_center (Function) . 851
graph_charpoly (Function). 851
graph_eigenvalues (Function) 851
graph_flow (Function) . 829
graph_order (Function) . 851

graph_periphery (Function) 851
graph_product (Function) 844
graph_size (Function) . 851
graph_union (Function) . 844
graph6_decode (Function) 865
graph6_encode (Function) 865
graph6_export (Function) 865
graph6_import (Function) 865
great_rhombicosidodecahedron_graph (Function)

. 844
great_rhombicuboctahedron_graph (Function)

. 844
Greater than. 105
Greater than or equal . 105
grid (Graphic option) . 741
grid (Plot option) . 215
grid_graph (Function) . 844
grid2d (Plot option) . 215
grind (Function) . 27
grind (Option variable) . 28
grobner_basis (Function) 397
grotzch_graph (Function) 844

H
halfangles (Option variable) 165
hamilton_cycle (Function). 852
hamilton_path (Function) 852
hankel (Function) . 910
hankel_1 (Function) . 270
hankel_2 (Function) . 271
harmonic (Function) . 967
harmonic_mean (Function) 664
hav (Function) . 968
head_angle (draw graph option) 870
head_angle (Graphic option) 742
head_both (Graphic option) 742
head_length (draw graph option) 870
head_length (Graphic option) 743
head_type (Graphic option) 743
heawood_graph (Function) 844
height (Object option) . 807
height (Scene option) . 805
Help . 10
hermite (Function) . 951
hessian (Function) . 910
hgfred (Function) . 290
hilbert_matrix (Function). 910
hilbertmap (Function) . 837
hipow (Function) . 252
histogram (Function) . 675
histogram_description (Function) 676
hodge (Function) . 431
horner (Function) . 360
hypergeometric (Function). 287
hypergeometric_representation (Option

variable) . 286

1052 Maxima 5.35.1 Manual

I
ibase (Option variable) . 28
ic_convert (Function) . 433
ic1 (Function) . 354
ic2 (Function) . 354
icc1 (Variable) . 425
icc2 (Variable) . 425
ichr1 (Function) . 421
ichr2 (Function) . 421
icosahedron_graph (Function) 844
icosidodecahedron_graph (Function) 844
icounter (Option variable) 411
icurvature (Function) . 421
ident (Function) . 386
identfor (Function) . 911
identity (Function) . 557
idiff (Function) . 416
idim (Function) . 420
idummy (Function) . 411
idummyx (Option variable) 411
ieqn (Function) . 342
ieqnprint (Option variable) 342
if (Special operator) . 609
ifactors (Function) . 492
ifb (Variable) . 424
ifc1 (Variable) . 425
ifc2 (Variable) . 426
ifg (Variable) . 426
ifgi (Variable) . 426
ifr (Variable) . 426
iframe_bracket_form (Option variable) 426
iframes (Function) . 424
ifri (Variable) . 426
ifs (Function) . 799
igcdex (Function) . 492
igeodesic_coords (Function) 422
igeowedge_flag (Option variable) 432
ikt1 (Variable) . 427
ikt2 (Variable) . 427
ilt (Function) . 315
image (Graphic object) . 773
imaginary (Property) . 181
imagpart (Function) . 152
imetric (Function) . 420
imetric (System variable) 420
implicit (Graphic object) 774
implicit_derivative (Function) 879
implicit_plot (Function) 198
in (Special operator) . 603
in_neighbors (Function) . 852
inchar (Option variable) . 16
increasing (Property) . 176
ind (Constant) . 45
indexed_tensor (Function). 408
indices (Function) . 406
induced_subgraph (Function) 844
inf (Constant) . 45
inference_result (Function) 977

inferencep (Function) . 978
infeval (Option variable) 129
infinity (Constant) . 45
infix (Function) . 114
inflag (Option variable) . 81
info_display (Function) . 625
infolists (System variable). 17
init_atensor (Function) . 464
init_ctensor (Function) . 439
inm (Variable) . 426
inmc1 (Variable) . 426
inmc2 (Variable) . 427
innerproduct (Function) . 386
inpart (Function) . 81
inprod (Function) . 386
inrt (Function) . 492
intanalysis (Option variable) 316
integer (Property) . 178
integer_partitions (Function) 557
integerp (Function) . 37
integervalued (Property). 179
integrate (Function) . 317
integrate_use_rootsof (Option variable) 321
integration_constant (System variable) 319
integration_constant_counter (System variable)

. 320
interpolate_color (Graphic option) 743
intersect (Function) . 558
intersection (Function) . 558
intervalp (Function) . 951
intfaclim (Option variable) 252
intopois (Function) . 485
intosum (Function) . 467
inv_mod (Function) . 492
invariant1 (Function) . 451
invariant2 (Function) . 451
inverse_fft (Function) . 357
inverse_jacobi_cd (Function) 296
inverse_jacobi_cn (Function) 295
inverse_jacobi_cs (Function) 296
inverse_jacobi_dc (Function) 296
inverse_jacobi_dn (Function) 295
inverse_jacobi_ds (Function) 296
inverse_jacobi_nc (Function) 296
inverse_jacobi_nd (Function) 296
inverse_jacobi_ns (Function) 295
inverse_jacobi_sc (Function) 295
inverse_jacobi_sd (Function) 295
inverse_jacobi_sn (Function) 295
invert (Function) . 386
invert_by_adjoint (Function) 386
invert_by_lu (Function) . 911
ip_grid (Graphic option) 744
ip_grid_in (Graphic option) 745
irr (Function) . 832
irrational (Property) . 181
is (Function) . 187
is_biconnected (Function). 853

Appendix A: Function and Variable Index 1053

is_bipartite (Function) . 853
is_connected (Function) . 853
is_digraph (Function) . 853
is_edge_in_graph (Function) 853
is_graph (Function) . 854
is_graph_or_digraph (Function) 854
is_isomorphic (Function) 854
is_planar (Function) . 854
is_sconnected (Function) 855
is_tree (Function) . 855
is_vertex_in_graph (Function) 855
ishow (Function) . 406
isolate (Function) . 82
isolate_wrt_times (Option variable) 82
isomorphism (Function) . 852
isqrt (Function) . 493
isreal_p (Function) . 1018
items_inference (Function) 978
iterations (Plot option) 215
itr (Variable) . 427

J
jacobi (Function) . 493
jacobi_cd (Function) . 295
jacobi_cn (Function) . 294
jacobi_cs (Function) . 295
jacobi_dc (Function) . 295
jacobi_dn (Function) . 294
jacobi_ds (Function) . 295
jacobi_nc (Function) . 295
jacobi_nd (Function) . 295
jacobi_ns (Function) . 295
jacobi_p (Function) . 951
jacobi_sc (Function) . 295
jacobi_sd (Function) . 295
jacobi_sn (Function) . 294
jacobian (Function) . 911
JF (Function) . 681
join (Function) . 52
jordan (Function) . 682
julia (Function) . 199
julia_parameter (Optional variable). 836
julia_set (Function) . 836
julia_sin (Function) . 836

K
kdels (Function) . 411
kdelta (Function) . 411
keepfloat (Option variable) 253
key (Graphic option) . 745
key_pos (Graphic option) 745
kill (Function) . 18
killcontext (Function) . 188
kinvariant (Variable) . 459
kostka (Function) . 511
kron_delta (Function) . 559

kronecker_product (Function) 911
kt (Variable) . 459
kummer_m (Function) . 647
kummer_u (Function) . 647
kurtosis (Function) . 665
kurtosis_bernoulli (Function) 718
kurtosis_beta (Function) 704
kurtosis_binomial (Function) 716
kurtosis_chi2 (Function) 695
kurtosis_continuous_uniform (Function) . . . 705
kurtosis_discrete_uniform (Function) 720
kurtosis_exp (Function) . 700
kurtosis_f (Function) . 698
kurtosis_gamma (Function). 703
kurtosis_general_finite_discrete (Function)

. 714
kurtosis_geometric (Function) 719
kurtosis_gumbel (Function) 713
kurtosis_hypergeometric (Function) 722
kurtosis_laplace (Function) 711
kurtosis_logistic (Function) 706
kurtosis_lognormal (Function) 702
kurtosis_negative_binomial (Function) 723
kurtosis_noncentral_chi2 (Function) 697
kurtosis_noncentral_student_t (Function)

. 693
kurtosis_normal (Function) 690
kurtosis_pareto (Function) 707
kurtosis_poisson (Function) 717
kurtosis_rayleigh (Function) 710
kurtosis_student_t (Function) 691
kurtosis_weibull (Function) 707

L
label (Graphic object) . 775
label (Plot option) . 215
label_alignment (draw graph option) 868
label_alignment (Graphic option) 746
label_orientation (Graphic option) 746
labels (Function) . 18
labels (System variable) . 19
lagrange (Function) . 881
laguerre (Function) . 951
lambda (Function) . 588
lambert_w (Function) . 291
laplace (Function) . 311
laplacian_matrix (Function) 855
lassociative (Property) . 137
last (Function) . 53
lbfgs (Function) . 897
lbfgs_ncorrections (Variable) 902
lbfgs_nfeval_max (Variable) 902
lc_l (Function) . 413
lc_u (Function) . 414
lc2kdt (Function) . 412
lcharp (Function) . 1004
lcm (Function) . 493

1054 Maxima 5.35.1 Manual

ldefint (Function) . 322
ldisp (Function) . 29
ldisplay (Function) . 30
leftjust (Option variable) 31
legend (Plot option) . 215
legendre_p (Function) . 951
legendre_q (Function) . 951
leinstein (Function) . 441
length (Function) . 53
Less than . 105
Less than or equal . 105
let (Function) . 535
let_rule_packages (Option variable) 537
letrat (Option variable) . 536
letrules (Function) . 536
letsimp (Function) . 537
levi_civita (Function) . 412
lfg (Variable) . 458
lfreeof (Function) . 84
lg (Variable) . 458
lgtreillis (Function) . 511
lhospitallim (Option variable) 299
lhs (Function) . 343
li (Function) . 158
liediff (Function) . 416
limit (Function) . 299
limsubst (Option variable) 299
Lindstedt (Function) . 903
line_graph (Function) . 845
line_type (Graphic option) 747
line_width (Graphic option) 747
linear (Function) . 966
linear (Property) . 137
linear_program (Function). 960
linear_regression (Function) 992
linear_solver (Global variable) 1041
linearinterpol (Function). 883
linechar (Option variable) 19
linel (Option variable) . 31
linenum (System variable) . 19
linewidth (Object option) 807
linsolve (Function) . 343
linsolve_params (Option variable) 345
linsolvewarn (Option variable) 345
lispdisp (Option variable) 31
List delimiters . 48
list_correlations (Function) 669
list_matrix_entries (Function) 386
list_nc_monomials (Function) 399
listarith (Option variable) 53
listarray (Function) . 64
listconstvars (Option variable) 83
listdummyvars (Option variable) 83
listify (Function) . 559
listoftens (Function) . 405
listofvars (Function) . 83
listp (Function) . 53, 911
lmax (Function) . 149

lmin (Function) . 149
lmxchar (Option variable) 387
load (Function) . 229
load_pathname (System variable) 230
loadfile (Function) . 230
loadprint (Option variable) 230
local (Function) . 591
locate_matrix_entry (Function) 912
log (Function) . 159
log_gamma (Function) . 274
logabs (Option variable) . 160
logarc (Function) . 160
logarc (Option variable) . 160
logcb (Graphic option) . 747
logconcoeffp (Option variable) 160
logcontract (Function) . 160
logexpand (Option variable) 161
lognegint (Option variable) 161
logsimp (Option variable) 161
logx (Graphic option) . 748
logx (Plot option) . 215
logx_secondary (Graphic option) 748
logy (Graphic option) . 748
logy (Plot option) . 215
logy_secondary (Graphic option) 749
logz (Graphic option) . 749
lopow (Function) . 253
lorentz_gauge (Function) 422
lowercasep (Function) . 1004
lpart (Function) . 84
lratsubst (Function) . 253
lreduce (Function) . 559
lriem (Variable) . 458
lriemann (Function) . 441
lsquares_estimates (Function) 919
lsquares_estimates_approximate (Function)

. 921
lsquares_estimates_exact (Function) 920
lsquares_mse (Function) . 922
lsquares_residual_mse (Function) 925
lsquares_residuals (Function) 924
lsum (Function) . 467
ltreillis (Function) . 511
lu_backsub (Function) . 912
lu_factor (Function) . 912
lucas (Function) . 493

M
m1pbranch (Option variable) 38
macroexpand (Function) . 576
macroexpand1 (Function) . 577
macroexpansion (Option variable) 591
macros (Global variable) . 577
mainvar (Property) . 84
make_array (Function) . 66
make_graph (Function) . 845
make_level_picture (Function) 785

Appendix A: Function and Variable Index 1055

make_poly_continent (Function) 787
make_poly_country (Function) 787
make_polygon (Function) . 787
make_random_state (Function) 170
make_rgb_picture (Function) 785
make_string_input_stream (Function) 999
make_string_output_stream (Function) 999
make_transform (Function). 200
makebox (Function) . 418
makefact (Function) . 284
makegamma (Function) . 276
makelist (Function) . 53
makeOrders (Function) . 931
makeset (Function) . 560
mandelbrot (Function) . 200
mandelbrot_set (Function). 836
manual_demo (Option variable) 12
map (Function) . 610
mapatom (Function) . 610
maperror (Option variable) 610
maplist (Function) . 611
mapprint (Option variable) 611
mat_cond (Function) . 914
mat_fullunblocker (Function) 915
mat_function (Function) . 684
mat_norm (Function) . 914
mat_trace (Function) . 915
mat_unblocker (Function) 915
matchdeclare (Function) . 537
matchfix (Function) . 115
mathml_display (Function). 625
matrix (Function) . 387
matrix_element_add (Option variable) 389
matrix_element_mult (Option variable) 390
matrix_element_transpose (Option variable)

. 391
matrix_size (Function) . 914
matrixmap (Function) . 389
matrixp (Function) . 389, 914
mattrace (Function) . 392
max (Function) . 149
max_clique (Function) . 856
max_degree (Function) . 856
max_flow (Function) . 856
max_independent_set (Function) 857
max_matching (Function) . 857
MAX_ORD (Global variable) 1041
maxapplydepth (Option variable) 540
maxapplyheight (Option variable) 540
maxima_tempdir (System variable) 523
maxima_userdir (System variable) 524
maximize_lp (Function) . 960
maxnegex (Option variable) 138
maxposex (Option variable) 138
maxpsifracdenom (Option variable) 284
maxpsifracnum (Option variable) 284
maxpsinegint (Option variable) 284
maxpsiposint (Option variable) 284

maxtayorder (Option variable) 472
maybe (Function) . 189
md5sum (Function) . 1005
mean (Function) . 658
mean_bernoulli (Function). 717
mean_beta (Function) . 704
mean_binomial (Function) 715
mean_chi2 (Function) . 694
mean_continuous_uniform (Function) 704
mean_deviation (Function). 663
mean_discrete_uniform (Function) 720
mean_exp (Function) . 699
mean_f (Function) . 697
mean_gamma (Function) . 702
mean_general_finite_discrete (Function) . . 714
mean_geometric (Function). 719
mean_gumbel (Function) . 712
mean_hypergeometric (Function) 721
mean_laplace (Function) . 711
mean_logistic (Function) 705
mean_lognormal (Function). 701
mean_negative_binomial (Function) 722
mean_noncentral_chi2 (Function) 696
mean_noncentral_student_t (Function) 692
mean_normal (Function) . 690
mean_pareto (Function) . 706
mean_poisson (Function) . 716
mean_rayleigh (Function) 709
mean_student_t (Function). 691
mean_weibull (Function) . 707
median (Function) . 662
median_deviation (Function) 663
member (Function) . 54
mesh (Graphic object) . 776
mesh_lines_color (Plot option) 215
method (System variable) . 646
metricexpandall (Function) 1037
min (Function) . 149
min_degree (Function) . 857
min_edge_cut (Function) . 857
min_vertex_cover (Function) 857
min_vertex_cut (Function). 857
minf (Constant) . 45
minfactorial (Function) . 156
minimalPoly (Function) . 683
minimize_lp (Function) . 960
minimum_spanning_tree (Function) 857
minor (Function) . 392
minpack_lsquares (Function) 929
minpack_solve (Function) 930
mnewton (Function) . 933
mod (Function) . 493
mod_big_prime (Global variable) 1042
mod_test (Global variable) 1042
mod_threshold (Global variable) 1042
mode_check_errorp (Option variable) 594
mode_check_warnp (Option variable) 594
mode_checkp (Option variable) 594

1056 Maxima 5.35.1 Manual

mode_declare (Function) . 594
mode_identity (Function) 595
ModeMatrix (Function) . 684
modular_linear_solver (Global variable) . . . 1042
modulus (Option variable) 254
moebius (Function) . 560
mon2schur (Function) . 504
mono (Function) . 398
monomial_dimensions (Function) 398
multi_display_for_texinfo (Function) 625
multi_elem (Function) . 505
multi_orbit (Function) . 510
multi_pui (Function) . 505
multibernstein_poly (Function) 634
multinomial (Function) . 519
multinomial_coeff (Function) 561
Multiplication . 101
multiplicative (Property) 138
multiplicities (System variable) 345
multiplot_mode (Function). 727
multsym (Function) . 510
multthru (Function) . 139
mycielski_graph (Function) 845
myoptions (System variable). 19

N
nary (Function) . 117
nary (Property) . 140
natural_unit (Function) . 826
nc_degree (Function) . 398
ncexpt (Special symbol) . 26
ncharpoly (Function) . 392
negative_picture (Function) 786
negdistrib (Option variable) 140
negsumdispflag (Option variable) 31
neighbors (Function) . 858
new (Function) . 70
new_graph (Function) . 845
new_variable (Function) 1019
newcontext (Function) . 189
newdet (Function) . 392
newline (Function) . 1000
newline (Variable). 1004
newton (Function) . 362
newtonepsilon (Option variable) 933
newtonmaxiter (Option variable) 933
next_prime (Function) . 494
nextlayerfactor (Global variable). 964
nicedummies (Function) . 1019
niceindices (Function) . 473
niceindicespref (Option variable) 473
ninth (Function) . 54
nm (Variable) . 459
nmc (Variable) . 459
noeval (Special symbol) . 129
nofix (Function) . 117
nolabels (Option variable) 19

nonarray (Property) . 179
noncentral_moment (Function) 660
nonegative_lp (Option variable) 961
noninteger (Property) . 178
nonmetricity (Function) . 448
nonnegintegerp (Function) 38
nonscalar (Property) . 179
nonscalarp (Function) . 180
nonzeroandfreeof (Function) 966
not (Operator) . 106
notequal (Function) . 192
noun (Property) . 84
noundisp (Option variable) 84
nounify (Function) . 84
nouns (Special symbol) . 129
np (Variable) . 459
npi (Variable) . 459
nptetrad (Function) . 445
npv (Function) . 832
nroots (Function) . 345
nterms (Function) . 85
ntermst (Function) . 452
nthroot (Function) . 345
nticks (Graphic option) . 749
nticks (Plot option) . 215
ntrig (Package) . 165
nullity (Function) . 915
nullspace (Function) . 915
num (Function) . 254
num_distinct_partitions (Function) 562
num_partitions (Function). 562
numbered_boundaries (Function) 787
numberp (Function) . 38
numer (Option variable) . 39
numer_pbranch (Option variable) 39
numerval (Function) . 39
numfactor (Function) . 285
nusum (Function) . 474
nzeta (Function) . 291
nzetai (Function) . 291
nzetar (Function) . 291

O
obase (Option variable) . 32
odd (Property) . 177
odd_girth (Function) . 858
oddfun (Property) . 134
oddp (Function) . 40
ode_check (Function) . 646
ode2 (Function) . 354
odelin (Function) . 645
op (Function) . 85
opacity (Object option) . 807
opena (Function) . 1000
opena_binary (Function) . 938
openr (Function) . 1000
openr_binary (Function) . 938

Appendix A: Function and Variable Index 1057

openw (Function) . 1000
openw_binary (Function) . 938
operatorp (Function) . 85
opproperties (System variable) 140
opsubst (Function) . 941
opsubst (Option variable) . 86
optimize (Function) . 86
optimprefix (Option variable) 86
optionset (Option variable) 20
or (Operator) . 106
orbit (Function) . 510
orbits (Function) . 800
ordergreat (Function) . 86
ordergreatp (Function) . 87
orderless (Function) . 86
orderlessp (Function) . 87
orientation (Object option) 807
origin (Object option) . 808
orthogonal_complement (Function) 916
orthopoly_recur (Function) 952
orthopoly_returns_intervals (Variable) 952
orthopoly_weight (Function) 952
out_neighbors (Function) 858
outative (Property) . 141
outchar (Option variable) . 20
outermap (Function) . 612
outofpois (Function) . 485

P
packagefile (Option variable) 528
pade (Function) . 475
palette (Graphic option) 750
palette (Plot option) . 216
parabolic_cylinder_d (Function) 288
parametric (Graphic object) 777
parametric_surface (Graphic object). 777
parg (Function) . 1020
parGosper (Function) . 1041
parse_string (Function) 1005
part (Function) . 88
part2cont (Function) . 507
partfrac (Function) . 494
partition (Function) . 89
partition_set (Function) 562
partpol (Function) . 508
partswitch (Option variable) 89
path_digraph (Function) . 845
path_graph (Function) . 845
pathname_directory (Function) 230
pathname_name (Function) 230
pathname_type (Function) 230
pdf_bernoulli (Function) 717
pdf_beta (Function) . 703
pdf_binomial (Function) . 715
pdf_cauchy (Function) . 712
pdf_chi2 (Function) . 693
pdf_continuous_uniform (Function) 704

pdf_discrete_uniform (Function) 720
pdf_exp (Function) . 698
pdf_f (Function) . 697
pdf_file (Plot option) . 217
pdf_gamma (Function) . 702
pdf_general_finite_discrete (Function) . . . 713
pdf_geometric (Function) 719
pdf_gumbel (Function) . 712
pdf_hypergeometric (Function) 721
pdf_laplace (Function) . 711
pdf_logistic (Function) . 705
pdf_lognormal (Function) 701
pdf_negative_binomial (Function) 722
pdf_noncentral_chi2 (Function) 696
pdf_noncentral_student_t (Function) 691
pdf_normal (Function) . 689
pdf_pareto (Function) . 706
pdf_poisson (Function) . 716
pdf_rank_sum (Function) . 994
pdf_rayleigh (Function) . 708
pdf_signed_rank (Function) 994
pdf_student_t (Function) 690
pdf_weibull (Function) . 707
pearson_skewness (Function) 666
permanent (Function) . 392
permut (Function) . 519
permutation (Function) . 968
permutations (Function) . 563
petersen_graph (Function). 845
petrov (Function) . 446
pfeformat (Option variable) 32
phiresolution (Object option) 808
pickapart (Function) . 89
picture_equalp (Function). 786
picturep (Function) . 786
piece (System variable) . 91
piechart (Function) . 676
piechart_description (Function) 677
pivot_count_sx (Variable) 961
pivot_max_sx (Variable) . 961
planar_embedding (Function) 858
playback (Function) . 20
plog (Function) . 161
plot_format (Plot option) 216
plot_options (System variable) 212
plot_realpart (Plot option) 216
plot2d (Function) . 201
plot3d (Function) . 207
plotdf (Function) . 363
ploteq (Function) . 369
plsquares (Function) . 925
png_file (Plot option) . 217
pochhammer (Function) . 952
pochhammer_max_index (Variable). 953
point_size (Graphic option) 751
point_type (Graphic option) 751
point_type (Plot option) 216
points (Graphic object) . 778

1058 Maxima 5.35.1 Manual

points (Object option) . 808
points_joined (Graphic option) 752
pointsize (Object option) 808
poisdiff (Function) . 485
poisexpt (Function) . 485
poisint (Function) . 485
poislim (Option variable) 485
poismap (Function) . 485
poisplus (Function) . 485
poissimp (Function) . 485
poisson (Special symbol) 485
poissubst (Function) . 486
poistimes (Function) . 486
poistrim (Function) . 486
polar (Graphic object) . 781
polar_to_xy (System function) 201
polarform (Function) . 152
polartorect (Function) . 357
poly_add (Function) . 873
poly_buchberger (Function) 875
poly_buchberger_criterion (Function) 875
poly_coefficient_ring (Option variable) 872
poly_colon_ideal (Function) 876
poly_content (Function) . 874
poly_depends_p (Function). 876
poly_elimination_ideal (Function) 876
poly_elimination_order (Option variable) . . . 872
poly_exact_divide (Function) 875
poly_expand (Function) . 874
poly_expt (Function) . 874
poly_gcd (Function) . 876
poly_grobner (Function) . 876
poly_grobner_algorithm (Option variable) . . . 873
poly_grobner_debug (Option variable) 872
poly_grobner_equal (Function) 877
poly_grobner_member (Function) 877
poly_grobner_subsetp (Function) 877
poly_ideal_intersection (Function) 876
poly_ideal_polysaturation (Function) 878
poly_ideal_polysaturation1 (Function) 877
poly_ideal_saturation (Function) 877
poly_ideal_saturation1 (Function) 877
poly_lcm (Function) . 876
poly_minimization (Function) 875
poly_monomial_order (Option variable) 872
poly_multiply (Function) 873
poly_normal_form (Function) 875
poly_normalize (Function). 874
poly_normalize_list (Function) 876
poly_polysaturation_extension (Function)

. 878
poly_primary_elimination_order (Option

variable) . 872
poly_primitive_part (Function) 873
poly_pseudo_divide (Function) 875
poly_reduced_grobner (Function) 876
poly_reduction (Function). 875
poly_return_term_list (Option variable) 872

poly_s_polynomial (Function) 873
poly_saturation_extension (Function) 878
poly_secondary_elimination_order (Option

variable) . 872
poly_subtract (Function) 873
poly_top_reduction_only (Option variable) . . 873
polydecomp (Function) . 255
polyfactor (Option variable) 345
polygon (Graphic object) 781
polymod (Function) . 255
polynome2ele (Function) . 512
polynomialp (Function) . 916
polytocompanion (Function) 916
pop (Function) . 54
posfun (Property) . 180
position (Object option) 808
postfix (Function) . 118
potential (Function) . 322
power_mod (Function) . 494
powerdisp (Option variable) 33
powerseries (Function) . 476
powerset (Function) . 563
pred (Special symbol) . 129
prederror (Option variable) 611
prefix (Function) . 118
prev_prime (Function) . 495
primep (Function) . 494
primep_number_of_tests (Option variable) . . . 495
principal_components (Function) 670
print (Function) . 33
print_graph (Function) . 859
printf (Function) . 1000
printfile (Function) . 231
printpois (Function) . 486
printprops (Function) . 180
prodrac (Function) . 513
product (Function) . 467
product_use_gamma (Option variable) 976
program (draw graph option) 870
programmode (Option variable) 345
promote_float_to_bigfloat (Option variable)

. 40
prompt (Option variable) . 21
properties (Function) . 180
proportional_axes (Graphic option) 753
props (System variable) . 180
propvars (Function) . 180
ps_file (Plot option) . 217
psexpand (Option variable) 476
psi (Function) . 284, 446
psubst (Function) . 91
ptriangularize (Function). 916
pui (Function) . 505
pui_direct (Function) . 510
pui2comp (Function) . 505
pui2ele (Function) . 506
pui2polynome (Function) . 513
puireduc (Function) . 506

Appendix A: Function and Variable Index 1059

push (Function) . 55

put (Function) . 180

pv (Function) . 829

Q
qput (Function) . 181

qrange (Function) . 663

qty (Function) . 821

quad_control (Function) . 334

quad_qag (Function) . 324

quad_qagi (Function) . 327

quad_qagp (Function) . 333

quad_qags (Function) . 326

quad_qawc (Function) . 328

quad_qawf (Function) . 329

quad_qawo (Function) . 330

quad_qaws (Function) . 332

quadrilateral (Graphic object) 782

quantile (Function) . 662

quantile_bernoulli (Function) 717

quantile_beta (Function) 703

quantile_binomial (Function) 715

quantile_cauchy (Function) 712

quantile_chi2 (Function) 694

quantile_continuous_uniform (Function) . . . 704

quantile_discrete_uniform (Function) 720

quantile_exp (Function) . 699

quantile_f (Function) . 697

quantile_gamma (Function). 702

quantile_general_finite_discrete (Function)
. 714

quantile_geometric (Function) 719

quantile_gumbel (Function) 712

quantile_hypergeometric (Function) 721

quantile_laplace (Function) 711

quantile_logistic (Function) 705

quantile_lognormal (Function) 701

quantile_negative_binomial (Function) 722

quantile_noncentral_chi2 (Function) 696

quantile_noncentral_student_t (Function)
. 692

quantile_normal (Function) 689

quantile_pareto (Function) 706

quantile_poisson (Function) 716

quantile_rayleigh (Function) 708

quantile_student_t (Function) 691

quantile_weibull (Function) 707

quartile_skewness (Function) 666

quit (Function) . 21

qunit (Function) . 495

quotient (Function) . 256

R
racah_v (Function) . 637
racah_w (Function) . 637
radcan (Function) . 141
radexpand (Option variable) 142
radius (Function) . 859
radius (Object option) . 808
radsubstflag (Option variable) 262
random (Function) . 170
random_bernoulli (Function) 719
random_beta (Function) . 704
random_binomial (Function) 716
random_bipartite_graph (Function) 845
random_cauchy (Function) 712
random_chi2 (Function) . 696
random_continuous_uniform (Function) 705
random_digraph (Function). 846
random_discrete_uniform (Function) 721
random_exp (Function) . 701
random_f (Function) . 698
random_gamma (Function) . 703
random_general_finite_discrete (Function)

. 715
random_geometric (Function) 720
random_graph (Function) . 846
random_graph1 (Function) 846
random_gumbel (Function) 713
random_hypergeometric (Function) 722
random_laplace (Function). 712
random_logistic (Function) 706
random_lognormal (Function) 702
random_negative_binomial (Function) 723
random_network (Function). 846
random_noncentral_chi2 (Function) 697
random_noncentral_student_t (Function) . . . 693
random_normal (Function) 690
random_pareto (Function) 707
random_permutation (Function) 564
random_poisson (Function). 717
random_rayleigh (Function) 711
random_regular_graph (Function) 846
random_student_t (Function) 691
random_tournament (Function) 846
random_tree (Function) . 846
random_weibull (Function). 708
range (Function) . 662
rank (Function) . 392, 917
rassociative (Property) . 142
rat (Function) . 256
ratalgdenom (Option variable) 257
ratchristof (Option variable) 457
ratcoef (Function) . 257
ratdenom (Function) . 257
ratdenomdivide (Option variable) 257
ratdiff (Function) . 258
ratdisrep (Function) . 259
rateinstein (Option variable) 457
ratepsilon (Option variable) 40

1060 Maxima 5.35.1 Manual

ratexpand (Function) . 259
ratexpand (Option variable) 259
ratfac (Option variable) . 260
ratinterpol (Function) . 886
rational (Function) . 965
rational (Property) . 181
rationalize (Function) . 40
ratmx (Option variable) . 393
ratnumer (Function) . 260
ratnump (Function) . 41
ratp (Function) . 261
ratprint (Option variable) 261
ratriemann (Option variable) 458
ratsimp (Function) . 261
ratsimpexpons (Option variable) 262
ratsubst (Function) . 262
ratvars (Function) . 263
ratvars (System variable) 263
ratvarswitch (Option variable) 263
ratweight (Function) . 264
ratweights (System variable) 264
ratweyl (Option variable) 458
ratwtlvl (Option variable) 265
read (Function) . 21
read_array (Function) . 936
read_binary_array (Function) 938
read_binary_list (Function) 939
read_binary_matrix (Function) 938
read_hashed_array (Function) 936
read_list (Function) . 937
read_matrix (Function) . 936
read_nested_list (Function) 937
read_xpm (Function) . 786
readchar (Function) . 1002
readline (Function) . 1002
readonly (Function) . 22
real (Property) . 181
real_imagpart_to_conjugate (Function). . . . 1020
realonly (Option variable) 346
realpart (Function) . 152
realroots (Function) . 346
rearray (Function) . 67
rectangle (Graphic object) 782
rectform (Function) . 153
rectform_log_if_constant (Function) 1021
recttopolar (Function) . 357
rediff (Function) . 416
redraw (draw graph option) 869
reduce_consts (Function) 970
reduce_order (Function) . 973
refcheck (Option variable) 618
region (Graphic object) . 782
region_boundaries (Function) 788
region_boundaries_plus (Function) 789
rem (Function) . 182
remainder (Function) . 265
remarray (Function) . 67
rembox (Function) . 91

remcomps (Function) . 410
remcon (Function) . 408
remcoord (Function) . 418
remfun (Function) . 483
remfunction (Function) . 595
remlet (Function) . 540
remove (Function) . 182
remove_constvalue (Function) 819
remove_dimensions (Function) 823
remove_edge (Function) . 864
remove_fundamental_dimensions (Function)

. 823
remove_fundamental_units (Function) 824
remove_plot_option (Function) 212
remove_vertex (Function) 865
rempart (Function) . 965
remrule (Function) . 540
remsym (Function) . 415
remvalue (Function) . 528
rename (Function) . 406
reset (Function) . 22
reset_displays (Functions) 626
residue (Function) . 322
resolution (Object option) 808
resolvante (Function) . 513
resolvante_alternee1 (Function) 517
resolvante_bipartite (Function) 517
resolvante_diedrale (Function) 517
resolvante_klein (Function) 517
resolvante_klein3 (Function) 518
resolvante_produit_sym (Function) 518
resolvante_unitaire (Function) 518
resolvante_vierer (Function) 518
rest (Function) . 55
restart (Scene option) . 805
resultant (Function) . 265
resultant (Option variable) 265
return (Function) . 611
reveal (Function) . 92
reverse (Function) . 56
revert (Function) . 477
revert2 (Function) . 477
rgb2level (Function) . 786
rhs (Function) . 346
ric (Variable) . 458
ricci (Function) . 440
riem (Variable) . 458
riemann (Function) . 441
rinvariant (Function) . 442
risch (Function) . 322
rk (Function) . 370
rmxchar (Option variable) 393
rncombine (Function) . 528
romberg (Function) . 955
rombergabs (Option variable) 956
rombergit (Option variable) 957
rombergmin (Option variable) 957
rombergtol (Option variable) 957

Appendix A: Function and Variable Index 1061

room (Function) . 524
rootsconmode (Option variable) 347
rootscontract (Function) 347
rootsepsilon (Option variable) 348
round (Function) . 149
row (Function) . 393
rowop (Function) . 917
rowswap (Function) . 917
rreduce (Function) . 564
run_testsuite (Function) . 7
run_viewer (Plot option) 217

S
same_xy (Plot option) . 218
same_xyz (Plot option) . 218
save (Function) . 231
savedef (Option variable) 595
savefactors (Option variable) 266
saving (Function) . 832
scalar (Property) . 182
scalarmatrixp (Option variable) 393
scalarp (Function) . 182
scale (Object option). 808
scale_lp (Option variable) 961
scaled_bessel_i (Function) 272
scaled_bessel_i0 (Function) 272
scaled_bessel_i1 (Function) 272
scalefactors (Function) . 393
scanmap (Function) . 611
scatterplot (Function) . 677
scatterplot_description (Function) 678
scene (Function) . 802
schur2comp (Function) . 506
sconcat (Function) . 43
scopy (Function) . 1006
scsimp (Function) . 142
scurvature (Function) . 441
sdowncase (Function) . 1006
sec (Function) . 166
sech (Function) . 166
second (Function) . 56
sequal (Function) . 1006
sequalignore (Function) 1006
set (Function partitions) . 566
set_alt_display (Function) 626
set_draw_defaults (Function) 727
set_edge_weight (Function) 859
set_plot_option (Function) 213
set_prompt (Function) . 626
set_random_state (Function) 170
set_tex_environment (Function) 237
set_tex_environment_default (Function) . . . 237
set_up_dot_simplifications (Function) 397
set_vertex_label (Function) 859
setcheck (Option variable) 618
setcheckbreak (Option variable) 618
setdifference (Function) 565

setelmx (Function) . 393
setequalp (Function) . 565
setify (Function) . 565
setp (Function) . 565
setunits (Function) . 1030
setup_autoload (Function). 529
setval (System variable) . 618
seventh (Function) . 56
sexplode (Function) . 1006
sf (Function) . 465
sha1sum (Function) . 1006
shortest_path (Function) 860
shortest_weighted_path (Function) 860
show (Function) . 407
show_edge_color (draw graph option) 869
show_edge_type (draw graph option) 869
show_edge_width (draw graph option) 869
show_edges (draw graph option) 869
show_id (draw graph option) 868
show_label (draw graph option) 868
show_vertex_color (draw graph option) 868
show_vertex_size (draw graph option) 868
show_vertex_type (draw graph option) 868
show_vertices (draw graph option) 868
show_weight (draw graph option) 868
showcomps (Function) . 410
showratvars (Function) . 266
showtime (Option variable) 22
sierpinskiale (Function) 835
sierpinskimap (Function) 837
sign (Function) . 189
signum (Function) . 149
similaritytransform (Function) 394
simp (Option variable) . 142
simp_inequality (Function) 1021
simplified_output (Global variable) 1041
simplify_products (Option variable) 974
simplify_sum (Function) . 974
simplode (Function) . 1006
simpmetderiv (Function) . 419
simpsum (Option variable) 468
simtran (Function) . 394
sin (Function) . 166
sinh (Function) . 166
sinnpiflag (Option variable) 484
sinsert (Function) . 1007
sinvertcase (Function) . 1007
sixth (Function) . 56
skewness (Function) . 665
skewness_bernoulli (Function) 718
skewness_beta (Function) 704
skewness_binomial (Function) 716
skewness_chi2 (Function) 695
skewness_continuous_uniform (Function) . . . 705
skewness_discrete_uniform (Function) 720
skewness_exp (Function) . 700
skewness_f (Function) . 698
skewness_gamma (Function). 703

1062 Maxima 5.35.1 Manual

skewness_general_finite_discrete (Function)
. 714

skewness_geometric (Function) 719
skewness_gumbel (Function) 713
skewness_hypergeometric (Function) 721
skewness_laplace (Function) 711
skewness_logistic (Function) 706
skewness_lognormal (Function) 702
skewness_negative_binomial (Function) 723
skewness_noncentral_chi2 (Function) 697
skewness_noncentral_student_t (Function)

. 693
skewness_normal (Function) 690
skewness_pareto (Function) 706
skewness_poisson (Function) 717
skewness_rayleigh (Function) 710
skewness_student_t (Function) 691
skewness_weibull (Function) 707
slength (Function) . 1007
smake (Function) . 1007
small_rhombicosidodecahedron_graph (Function)

. 846
small_rhombicuboctahedron_graph (Function)

. 846
smax (Function) . 661
smin (Function) . 661
smismatch (Function) . 1007
snowmap (Function) . 837
snub_cube_graph (Function) 846
snub_dodecahedron_graph (Function) 846
solve (Function) . 348
solve_rec (Function) . 974
solve_rec_rat (Function) 975
solvedecomposes (Option variable) 351
solveexplicit (Option variable) 351
solvefactors (Option variable) 352
solvenullwarn (Option variable) 352
solveradcan (Option variable) 352
solvetrigwarn (Option variable) 352
some (Function) . 567
somrac (Function) . 513
sort (Function) . 56
space (Variable) . 1004
sparse (Option variable) . 394
sparse6_decode (Function). 865
sparse6_encode (Function). 865
sparse6_export (Function). 865
sparse6_import (Function). 865
specint (Function) . 288
sphere (Scene object) . 806
spherical (Graphic object) 783
spherical_bessel_j (Function) 953
spherical_bessel_y (Function) 953
spherical_hankel1 (Function) 953
spherical_hankel2 (Function) 953
spherical_harmonic (Function) 954
spherical_to_xyz (System function) 213
splice (Function) . 577

split (Function) . 1007
sposition (Function) . 1008
spring_embedding_depth (draw graph option)

. 870
sprint (Function) . 1002
sqfr (Function) . 266
sqrt (Function) . 161
sqrtdenest (Function) . 971
sqrtdispflag (Option variable) 34
sremove (Function) . 1008
sremovefirst (Function) 1008
sreverse (Function) . 1008
ssearch (Function) . 1008
ssort (Function) . 1009
sstatus (Function) . 524
ssubst (Function) . 1009
ssubstfirst (Function) . 1009
staircase (Function) . 801
standardize (Function) . 655
standardize_inverse_trig (Function) 1021
stardisp (Option variable) 34
starplot (Function) . 678
starplot_description (Function) 679
startphi (Object option) 809
starttheta (Object option) 809
stats_numer (Option variable) 979
status (Function) . 524
std (Function) . 659
std_bernoulli (Function) 718
std_beta (Function) . 704
std_binomial (Function) . 715
std_chi2 (Function) . 695
std_continuous_uniform (Function) 705
std_discrete_uniform (Function) 720
std_exp (Function) . 700
std_f (Function) . 698
std_gamma (Function) . 703
std_general_finite_discrete (Function) . . . 714
std_geometric (Function) 719
std_gumbel (Function) . 713
std_hypergeometric (Function) 721
std_laplace (Function) . 711
std_logistic (Function) . 706
std_lognormal (Function) 702
std_negative_binomial (Function) 723
std_noncentral_chi2 (Function) 696
std_noncentral_student_t (Function) 693
std_normal (Function) . 690
std_pareto (Function) . 706
std_poisson (Function) . 716
std_rayleigh (Function) . 709
std_student_t (Function) 691
std_weibull (Function) . 707
std1 (Function) . 660
stemplot (Function) . 679
stirling (Function) . 995
stirling1 (Function) . 568
stirling2 (Function) . 568

Appendix A: Function and Variable Index 1063

strim (Function) . 1009
striml (Function) . 1010
strimr (Function) . 1010
string (Function) . 43
stringdisp (Option variable) 43
stringout (Function) . 232
stringp (Function) . 1010
strong_components (Function) 860
structures (Global variable) 69
struve_h (Function) . 287
struve_l (Function) . 287
style (Plot option) . 218
sublis (Function) . 93
sublis_apply_lambda (Option variable) 94
sublist (Function) . 58
sublist_indices (Function) 58
submatrix (Function) . 394
subnumsimp (Option variable) 94
subsample (Function) . 655
Subscript operator . 48
subset (Function) . 569
subsetp (Function) . 569
subst (Function) . 94
subst_parallel (Function) 1022
substinpart (Function) . 95
substpart (Function) . 96
substring (Function) . 1010
Subtraction . 101
subvar (Function) . 67
subvarp (Function) . 68
sum (Function) . 469
sumcontract (Function) . 470
sumexpand (Option variable) 471
summand_to_rec (Function). 976
sumsplitfact (Option variable) 156
supcase (Function) . 1010
supcontext (Function) . 189
surface (Object option) . 809
surface_hide (Graphic option) 753
svg_file (Plot option) . 218
symbolp (Function) . 96
symmdifference (Function). 569
symmetric (Property) . 143
symmetricp (Function) . 451
system (Function) . 525

T
t (Plot option) . 218
tab (Variable) . 1004
take_channel (Function) . 786
take_inference (Function). 978
tan (Function) . 166
tanh (Function) . 166
taylor (Function) . 477
taylor_logexpand (Option variable) 481
taylor_order_coefficients (Option variable)

. 481

taylor_simplifier (Function) 481
taylor_truncate_polynomials (Option variable)

. 482
taylordepth (Option variable) 480
taylorinfo (Function) . 481
taylorp (Function) . 481
taytorat (Function) . 482
tcl_output (Function) . 529
tcontract (Function) . 508
tellrat (Function) . 266
tellsimp (Function) . 541
tellsimpafter (Function) 542
tensorkill (System variable) 459
tentex (Function) . 432
tenth (Function) . 59
terminal (draw graph option) 870
terminal (Graphic option) 754
test_mean (Function) . 979
test_means_difference (Function) 981
test_normality (Function). 991
test_proportion (Function) 985
test_proportions_difference (Function) . . . 987
test_rank_sum (Function) 990
test_sign (Function) . 988
test_signed_rank (Function) 989
test_variance (Function) 983
test_variance_ratio (Function) 984
testsuite_files (Option variable) 7
tex (Function) . 233
tex_display (Function) . 625
tex1 (Function) . 234
texput (Function) . 234
thetaresolution (Object option) 809
third (Function) . 59
throw (Function) . 612
time (Function) . 525
timedate (Function) . 525
timer (Function) . 618
timer_devalue (Option variable) 619
timer_info (Function) . 619
title (Graphic option) . 755
title (Plot option) . 219
tldefint (Function) . 323
tlimit (Function) . 300
tlimswitch (Option variable) 300
to_lisp (Function) . 22
to_poly (Function) . 1023
to_poly_solve (Function) 1024
todd_coxeter (Function) . 521
toeplitz (Function) . 917
tokens (Function) . 1010
topological_sort (Function) 860
totaldisrep (Function) . 267
totalfourier (Function) . 484
totient (Function) . 495
tpartpol (Function) . 508
tr (Variable) . 459
tr_array_as_ref (Option variable) 597

1064 Maxima 5.35.1 Manual

tr_bound_function_applyp (Option variable)
. 598

tr_file_tty_messagesp (Option variable) 598
tr_float_can_branch_complex (Option variable)

. 598
tr_function_call_default (Option variable)

. 598
tr_numer (Option variable) 598
tr_optimize_max_loop (Option variable) 599
tr_semicompile (Option variable) 599
tr_state_vars (System variable) 599
tr_warn_bad_function_calls (Option variable)

. 599
tr_warn_fexpr (Option variable) 599
tr_warn_meval (Option variable) 599
tr_warn_mode (Option variable) 599
tr_warn_undeclared (Option variable) 600
tr_warn_undefined_variable (Option variable)

. 600
tr_warnings_get (Function) 599
trace (Function) . 620
trace_options (Function) 620
tracematrix (Function) . 965
track (Object option). 809
transcompile (Option variable) 595
transform (Graphic option) 755
transform_sample (Function) 657
transform_xy (Plot option) 219
translate (Function) . 596
translate_file (Function). 596
transparent (Graphic option) 756
transpose (Function) . 394
transrun (Option variable) 597
tree_reduce (Function) . 570
treefale (Function) . 835
treillis (Function) . 512
treinat (Function) . 512
triangle (Graphic object) 783
triangularize (Function) 394
trigexpand (Function) . 166
trigexpandplus (Option variable) 167
trigexpandtimes (Option variable) 167
triginverses (Option variable) 167
trigrat (Function) . 168
trigreduce (Function) . 167
trigsign (Option variable) 167
trigsimp (Function) . 168
trivial_solutions (Global variable) 1042
true (Constant) . 46
trunc (Function) . 482
truncate (Function) . 150
truncated_cube_graph (Function) 847
truncated_dodecahedron_graph (Function) . . 847
truncated_icosahedron_graph (Function) . . . 847
truncated_tetrahedron_graph (Function) . . . 847
tstep (Scene option) . 805
ttyoff (Option variable) . 34
tube (Graphic object) . 784

tube_extremes (Graphic option) 756
tutte_graph (Function) . 847

U
ueivects (Function) . 395
ufg (Variable) . 458
uforget (Function) . 1032
ug (Variable) . 458
ultraspherical (Function). 954
und (Constant) . 46
underlying_graph (Function) 847
undiff (Function) . 417
union (Function) . 570
unique (Function) . 59
unit_step (Function) . 954
unit_vectors (Graphic option) 757
uniteigenvectors (Function) 395
unitp (Function) . 821
units (Function) . 820
unitvector (Function) . 395
unknown (Function) . 193
unless (Special operator) 612
unorder (Function) . 96
unsum (Function) . 482
untellrat (Function) . 267
untimer (Function) . 619
untrace (Function) . 621
uppercasep (Function) . 1004
uric (Variable) . 458
uricci (Function) . 441
uriem (Variable) . 458
uriemann (Function) . 442
use_fast_arrays (Option variable) 68
user_preamble (Graphic option) 757
usersetunits (Optional variable) 1034
uvect (Function) . 395

V
values (System variable) . 23
vandermonde_matrix (Function) 917
var (Function) . 658
var_bernoulli (Function) 718
var_beta (Function) . 704
var_binomial (Function) . 715
var_chi2 (Function) . 695
var_continuous_uniform (Function) 705
var_discrete_uniform (Function) 720
var_exp (Function) . 699
var_f (Function) . 698
var_gamma (Function) . 703
var_general_finite_discrete (Function) . . . 714
var_geometric (Function) 719
var_gumbel (Function) . 713
var_hypergeometric (Function) 721
var_laplace (Function) . 711
var_logistic (Function) . 705

Appendix A: Function and Variable Index 1065

var_lognormal (Function) 702
var_negative_binomial (Function) 722
var_noncentral_chi2 (Function) 696
var_noncentral_student_t (Function) 692
var_normal (Function) . 690
var_pareto (Function) . 706
var_poisson (Function) . 716
var_rayleigh (Function) . 709
var_student_t (Function) 691
var_weibull (Function) . 707
var1 (Function) . 659
vect_cross (Option variable) 396
vector (Graphic object) . 784
vectorpotential (Function) 395
vectorsimp (Function) . 396
verbify (Function) . 97
verbose (Option variable) 483
vers (Function) . 968
vertex_color (draw graph option) 868
vertex_coloring (draw graph option) 869
vertex_coloring (Function) 862
vertex_connectivity (Function) 861
vertex_degree (Function) 861
vertex_distance (Function) 861
vertex_eccentricity (Function) 861
vertex_in_degree (Function) 861
vertex_out_degree (Function) 862
vertex_partition (draw graph option) 869
vertex_size (draw graph option) 868
vertex_type (draw graph option) 868
vertices (Function) . 862
vertices_to_cycle (Function) 870
vertices_to_path (Function) 870
view (Graphic option) . 757

W
warnings (Global variable) 1041
weyl (Function) . 442
weyl (Variable) . 458
wheel_graph (Function) . 847
while (Special operator) . 612
width (Scene option) . 805
wiener_index (Function) . 862
wigner_3j (Function) . 637
wigner_6j (Function) . 637
wigner_9j (Function) . 637
windowname (Scene option) 805
windowtitle (Scene option) 805
wired_surface (Graphic option) 758
wireframe (Object option) 810
with_stdout (Function) . 232
write_binary_data (Function) 939
write_data (Function) . 937
writefile (Function) . 233
wronskian (Function) . 965

X
x (Plot option) . 219

x_voxel (Graphic option) 758

xaxis (Graphic option) . 758

xaxis_color (Graphic option) 758

xaxis_secondary (Graphic option) 759

xaxis_type (Graphic option) 759

xaxis_width (Graphic option) 759

xlabel (Graphic option) . 760

xlabel (Plot option) . 219

xlabel_secondary (Graphic option) 760

xlength (Object option) . 810

xrange (Graphic option) . 760

xrange_secondary (Graphic option) 761

xreduce (Function) . 571

xthru (Function) . 143

xtics (Graphic option) . 761

xtics (Plot option) . 219

xtics_axis (Graphic option) 762

xtics_rotate (Graphic option) 762

xtics_rotate_secondary (Graphic option) . . . 762

xtics_secondary (Graphic option) 762

xtics_secondary_axis (Graphic option) 762

xu_grid (Graphic option) 763

xy_file (Graphic option) 763

xy_scale (Plot option) . 219

xyplane (Graphic option) 763

Y
y (Plot option) . 219

y_voxel (Graphic option) 763

yaxis (Graphic option) . 763

yaxis_color (Graphic option) 764

yaxis_secondary (Graphic option) 764

yaxis_type (Graphic option) 764

yaxis_width (Graphic option) 765

ylabel (Graphic option) . 765

ylabel (Plot option) . 219

ylabel_secondary (Graphic option) 765

ylength (Object option) . 810

yrange (Graphic option) . 766

yrange_secondary (Graphic option) 766

ytics (Graphic option) . 766

ytics (Plot option) . 220

ytics_axis (Graphic option) 766

ytics_rotate (Graphic option) 767

ytics_rotate_secondary (Graphic option) . . . 767

ytics_secondary (Graphic option) 767

ytics_secondary_axis (Graphic option) 767

yv_grid (Graphic option) 767

yx_ratio (Plot option) . 220

1066 Maxima 5.35.1 Manual

Z
z (Plot option) . 220
z_voxel (Graphic option) 767
zaxis (Graphic option) . 768
zaxis_color (Graphic option) 768
zaxis_type (Graphic option) 768
zaxis_width (Graphic option) 768
Zeilberger (Function) . 1041
zeroa (Constant) . 47
zerob (Constant) . 47
zerobern (Option variable) 495
zeroequiv (Function) . 193
zerofor (Function) . 917
zeromatrix (Function) . 396
zeromatrixp (Function) . 918
zeta (Function) . 495
zeta%pi (Option variable) 496
zgeev (Function) . 896
zheev (Function) . 896
zlabel (Graphic option) . 769

zlabel (Plot option) . 220
zlange (Function) . 894
zlength (Object option) . 810
zmin (Plot option) . 220
zn_add_table (Function) . 496
zn_determinant (Function). 496
zn_invert_by_lu (Function) 497
zn_log (Function) . 497
zn_mult_table (Function) 498
zn_order (Function) . 499
zn_power_table (Function). 499
zn_primroot (Function) . 500
zn_primroot_limit (Option variable) 501
zn_primroot_p (Function) 501
zn_primroot_pretest (Option variable) 502
zn_primroot_verbose (Option variable) 502
zrange (Graphic option) . 769
ztics (Graphic option) . 769
ztics_axis (Graphic option) 770
ztics_rotate (Graphic option) 770

	Introduction to Maxima
	Bug Detection and Reporting
	Functions and Variables for Bug Detection and Reporting

	Help
	Documentation
	Functions and Variables for Help

	Command Line
	Introduction to Command Line
	Functions and Variables for Command Line
	Functions and Variables for Display

	Data Types and Structures
	Numbers
	Introduction to Numbers
	Functions and Variables for Numbers

	Strings
	Introduction to Strings
	Functions and Variables for Strings

	Constants
	Functions and Variables for Constants

	Lists
	Introduction to Lists
	Functions and Variables for Lists

	Arrays
	Functions and Variables for Arrays

	Structures
	Introduction to Structures
	Functions and Variables for Structures

	Expressions
	Introduction to Expressions
	Nouns and Verbs
	Identifiers
	Inequality
	Functions and Variables for Expressions

	Operators
	Introduction to operators
	Arithmetic operators
	Relational operators
	Logical operators
	Operators for Equations
	Assignment operators
	User defined operators

	Evaluation
	Functions and Variables for Evaluation

	Simplification
	Functions and Variables for Simplification

	Mathematical Functions
	Functions for Numbers
	Functions for Complex Numbers
	Combinatorial Functions
	Root, Exponential and Logarithmic Functions
	Trigonometric Functions
	Introduction to Trigonometric
	Functions and Variables for Trigonometric

	Random Numbers

	Maximas Database
	Introduction to Maximas Database
	Functions and Variables for Properties
	Functions and Variables for Facts
	Functions and Variables for Predicates

	Plotting
	Introduction to Plotting
	Plotting Formats
	Functions and Variables for Plotting
	Plotting Options
	Gnuplot Options
	Gnuplot_pipes Format Functions

	File Input and Output
	Comments
	Files
	Functions and Variables for File Input and Output
	Functions and Variables for TeX Output
	Functions and Variables for Fortran Output

	Polynomials
	Introduction to Polynomials
	Functions and Variables for Polynomials

	Special Functions
	Introduction to Special Functions
	Bessel Functions
	Airy Functions
	Gamma and factorial Functions
	Exponential Integrals
	Error Function
	Struve Functions
	Hypergeometric Functions
	Parabolic Cylinder Functions
	Functions and Variables for Special Functions

	Elliptic Functions
	Introduction to Elliptic Functions and Integrals
	Functions and Variables for Elliptic Functions
	Functions and Variables for Elliptic Integrals

	Limits
	Functions and Variables for Limits

	Differentiation
	Functions and Variables for Differentiation

	Integration
	Introduction to Integration
	Functions and Variables for Integration
	Introduction to QUADPACK
	Overview

	Functions and Variables for QUADPACK

	Equations
	Functions and Variables for Equations

	Differential Equations
	Introduction to Differential Equations
	Functions and Variables for Differential Equations

	Numerical
	Introduction to fast Fourier transform
	Functions and Variables for fast Fourier transform
	Functions for numerical solution of equations
	Introduction to numerical solution of differential equations
	Functions for numerical solution of differential equations

	Matrices and Linear Algebra
	Introduction to Matrices and Linear Algebra
	Dot
	Vectors
	eigen

	Functions and Variables for Matrices and Linear Algebra

	Affine
	Introduction to Affine
	Functions and Variables for Affine

	itensor
	Introduction to itensor
	New tensor notation
	Indicial tensor manipulation

	Functions and Variables for itensor
	Managing indexed objects
	Tensor symmetries
	Indicial tensor calculus
	Tensors in curved spaces
	Moving frames
	Torsion and nonmetricity
	Exterior algebra
	Exporting TeX expressions
	Interfacing with ctensor
	Reserved words

	ctensor
	Introduction to ctensor
	Functions and Variables for ctensor
	Initialization and setup
	The tensors of curved space
	Taylor series expansion
	Frame fields
	Algebraic classification
	Torsion and nonmetricity
	Miscellaneous features
	Utility functions
	Variables used by ctensor
	Reserved names
	Changes

	atensor
	Introduction to atensor
	Functions and Variables for atensor

	Sums, Products, and Series
	Functions and Variables for Sums and Products
	Introduction to Series
	Functions and Variables for Series
	Introduction to Fourier series
	Functions and Variables for Fourier series
	Functions and Variables for Poisson series

	Number Theory
	Functions and Variables for Number Theory

	Symmetries
	Introduction to Symmetries
	Functions and Variables for Symmetries
	Changing bases
	Changing representations
	Groups and orbits
	Partitions
	Polynomials and their roots
	Resolvents
	Miscellaneous

	Groups
	Functions and Variables for Groups

	Runtime Environment
	Introduction for Runtime Environment
	Interrupts
	Functions and Variables for Runtime Environment

	Miscellaneous Options
	Introduction to Miscellaneous Options
	Share
	Functions and Variables for Miscellaneous Options

	Rules and Patterns
	Introduction to Rules and Patterns
	Functions and Variables for Rules and Patterns

	Sets
	Introduction to Sets
	Usage
	Set Member Iteration
	Bugs
	Authors

	Functions and Variables for Sets

	Function Definition
	Introduction to Function Definition
	Function
	Ordinary functions
	Array functions

	Macros
	Functions and Variables for Function Definition

	Program Flow
	Lisp and Maxima
	Garbage Collection
	Introduction to Program Flow
	Functions and Variables for Program Flow

	Debugging
	Source Level Debugging
	Keyword Commands
	Functions and Variables for Debugging

	alt-display
	Introduction to alt-display
	Functions and Variables for alt-display

	asympa
	Introduction to asympa
	Functions and variables for asympa

	augmented_lagrangian
	Functions and Variables for augmented_lagrangian

	Bernstein
	Functions and Variables for Bernstein

	bode
	Functions and Variables for bode

	clebsch_gordan
	Functions and Variables for clebsch_gordan

	cobyla
	Introduction to cobyla
	Functions and Variables for cobyla
	Examples for cobyla

	contrib_ode
	Introduction to contrib_ode
	Functions and Variables for contrib_ode
	Possible improvements to contrib_ode
	Test cases for contrib_ode
	References for contrib_ode

	descriptive
	Introduction to descriptive
	Functions and Variables for data manipulation
	Functions and Variables for descriptive statistics
	Functions and Variables for statistical graphs

	diag
	Functions and Variables for diag

	distrib
	Introduction to distrib
	Functions and Variables for continuous distributions
	Functions and Variables for discrete distributions

	draw
	Introduction to draw
	Functions and Variables for draw
	Scenes
	Functions
	Graphics options
	Graphics objects

	Functions and Variables for pictures
	Functions and Variables for worldmap
	Variables and Functions
	Graphic objects

	drawdf
	Introduction to drawdf
	Functions and Variables for drawdf
	Functions

	dynamics
	The dynamics package
	Graphical analysis of discrete dynamical systems
	Visualization with VTK
	Scene options
	Scene objects
	Scene object's options

	ezunits
	Introduction to ezunits
	Introduction to physical_constants
	Functions and Variables for ezunits

	f90
	Functions and Variables for f90

	finance
	Introduction to finance
	Functions and Variables for finance

	fractals
	Introduction to fractals
	Definitions for IFS fractals
	Definitions for complex fractals
	Definitions for Koch snowflakes
	Definitions for Peano maps

	ggf
	Functions and Variables for ggf

	graphs
	Introduction to graphs
	Functions and Variables for graphs
	Building graphs
	Graph properties
	Modifying graphs
	Reading and writing to files
	Visualization

	grobner
	Introduction to grobner
	Notes on the grobner package
	Implementations of admissible monomial orders in grobner

	Functions and Variables for grobner
	Global switches for grobner
	Simple operators in grobner
	Other functions in grobner
	Standard postprocessing of Groebner Bases

	impdiff
	Functions and Variables for impdiff

	interpol
	Introduction to interpol
	Functions and Variables for interpol

	lapack
	Introduction to lapack
	Functions and Variables for lapack

	lbfgs
	Introduction to lbfgs
	Functions and Variables for lbfgs

	lindstedt
	Functions and Variables for lindstedt

	linearalgebra
	Introduction to linearalgebra
	Functions and Variables for linearalgebra

	lsquares
	Introduction to lsquares
	Functions and Variables for lsquares

	minpack
	Introduction to minpack
	Functions and Variables for minpack

	makeOrders
	Functions and Variables for makeOrders

	mnewton
	Introduction to mnewton
	Functions and Variables for mnewton

	numericalio
	Introduction to numericalio
	Plain-text input and output
	Separator flag values for input
	Separator flag values for output
	Binary floating-point input and output

	Functions and Variables for plain-text input and output
	Functions and Variables for binary input and output

	opsubst
	Functions and Variables for opsubst

	orthopoly
	Introduction to orthogonal polynomials
	Getting Started with orthopoly
	Limitations
	Floating point Evaluation
	Graphics and orthopoly
	Miscellaneous Functions
	Algorithms

	Functions and Variables for orthogonal polynomials

	romberg
	Functions and Variables for romberg

	simplex
	Introduction to simplex
	Tests for simplex
	klee_minty
	NETLIB

	Functions and Variables for simplex

	simplification
	Introduction to simplification
	Package absimp
	Package facexp
	Package functs
	Package ineq
	Package rducon
	Package scifac
	Package sqdnst

	solve_rec
	Introduction to solve_rec
	Functions and Variables for solve_rec

	stats
	Introduction to stats
	Functions and Variables for inference_result
	Functions and Variables for stats
	Functions and Variables for special distributions

	stirling
	Functions and Variables for stirling

	stringproc
	Introduction to string processing
	Functions and Variables for input and output
	Functions and Variables for characters
	Functions and Variables for strings

	to_poly_solve
	Functions and Variables for to_poly_solve

	unit
	Introduction to Units
	Functions and Variables for Units

	zeilberger
	Introduction to zeilberger
	The indefinite summation problem
	The definite summation problem
	Verbosity levels

	Functions and Variables for zeilberger
	General global variables
	Variables related to the modular test

	Function and Variable Index

