
Reflective thinking turns experience into insight.
John Maxwell

1 Numbers

In 1879, Gottlob Frege completed the first step of his program to put mathematics
on a solid foundation. His idea was that logic should be the foundation of all
mathematics, and, following Gottfried von Leibniz (1646–1716) and George Boole
(1815–1864), he created a rigorous symbolic language, which he called Begriffs-
schrift, to incorporate all standard principles of logic.

Georg Cantor followed in his footsteps and developed set theory from basic log-
ical principles. In 1888, Richard Dedekind took the next step, and presented a
construction of the real numbers based on set theory.

It should be mentioned that Frege’s program was doomed to fail. Frege’s construc-
tion allowed objects such as “the set of all sets”. Bertrand Russell used this to
construct a paradox: Let E denote the set of all sets which do not contain them-
selves as members. Is E an element of E? It can’t be, because E contains only sets
which are not members of themselves. Can E fail to be an element of E? No, since
if E 6∈ E, then by the definition of the set E, E is contained in E.

Bertrand Russell’s and Alfred Whitehead’s attempts to “fix” these problems in their
monumental Principia Mathematica are generally regarded as artificial and therefore
in violation of the spirit of Frege’s program.

In response, David Hilbert came up with an alternative program: Use axiomatic
systems as the foundation of mathematics together with meta-mathematics. Math-
ematicians “do” mathematics starting from axiomatic systems; meta-mathematics
allows to talk about the process “from the outside” addressing issues such as com-
pleteness1 and consistency2 of a given axiomatic system.

In 1930, Kurt Gödel showed that this approach was equally flawed: It is not possible
to show (within the axiomatic system) that an axiomatic system which incorporates
the arithmetic of natural numbers is commplete (or consistent).

1An axiomatic system is complete, if all statements within the axiomatic system can—in
principle—be shown to be true or to be false.

2An axiomatic system is said to be consistent, if the axioms can be shown not to lead to
contradictions.



1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set
of Natural Numbers3:

The natural numbers are a set N together with a special element called
0, and a function S : N → N satisfying the following axioms:

(D1) S is injective4.

(D2) 0 6∈ S(N).5

(D3) If a subset M of N contains 0 and satisfies S(M) ⊆ M , then
M = N.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the
Principle of Induction:

Exercise 1.1

Let P (n) be a predicate with the set of natural numbers as its domain. If

1. P (0) is true, and

2. P (S(n)) is true, whenever P (n) is true,

then P (n) holds for all natural numbers.

3A similar definition of the natural numbers was introduced by Guiseppe Peano in 1889:

The natural numbers are a set N together with a special element called 0, and a function

S : N → N satisfying the following axioms:

(P1) 0 ∈ N.

(P2) If n ∈ N, then S(n) ∈ N.

(P3) If n ∈ N, then S(n) 6= 0.

(P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the

set A contains N.

(P5) S(m) = S(n) implies m = n for all m,n ∈ N.

4A function f : A → B is called injective if for all a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2.
5For a function f : A → B, f(A) := {b ∈ B | f(a) = b for some a ∈ A}.
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Existence and Uniqueness. Do natural numbers exist? Following Dedekind,
we will say that a set M is infinite, if there is an injective map f : M → M that is
not surjective6.

According to Dedekind’s definition, the set of natural numbers is infinite (why?).
In fact, one can show that the converse also holds: If there is an infinite set, then
there are natural numbers.

In order not to get stuck in a finite universe, we will from now on additionally as-
sume that the following axiom holds:

(D4) There is a set which satisfies Axioms (D1)–(D3).

Before we give a proof of the “essential” uniqueness of the natural numbers, we will
follow Dedekind and establish the following general Recursion Principle:

Task 1.2

Let A be an arbitrary set, and let a ∈ A and a function f : A → A be given.
Then there exists a unique map ϕ : N → A satisfying

1. ϕ(0) = a, and

2. ϕ ◦ S = f ◦ ϕ.

The setup of the proof is somewhat tricky: Consider all subsets K ⊆ N × A with
the following properties:

1. (0, a) ∈ K, and

2. If (n, b) ∈ K, then (S(n), f(b)) ∈ K.

Clearly N× A itself has these properties; we can therefore define the smallest such
set: Let

L =
⋂

{K ⊆ N×A | K satisfies (1) and (2)} .

6A function f : A → B is called surjective, if f(A) 6= B.
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Now show by induction that for every n ∈ N there is a unique b ∈ A with (n, b) ∈ L.
This property defines ϕ by setting ϕ(n) = b for all n ∈ N.

The Recursion Principles makes it possible to define a recursive procedure (the
function ϕ) via a formula (the function f).

The set of natural numbers is unique in the following sense:

Task 1.3

Suppose that N, S : N → N and 0 satisfy Axioms (D1)–(D3), and that N
′,

S′ : N′ → N
′ and 0′ satisfy Axioms (D1)–(D3) as well.

Then there is a bijection7ϕ : N → N
′ such that

1. ϕ(0) = 0′, and

2. ϕ ◦ S = S′ ◦ ϕ.

Arithmetic Properties. Addition of natural numbers is established recursively
in the following way: For a fixed but arbitrary m ∈ N we define

m+ 0 := m

m+ S(n) := S(m+ n) for all n ∈ N

Task 1.4

Use the Recursion Principle to make this procedure precise.

Note that we now know in particular that for all natural numbers S(m) = m + 1
(here S(0) := 1.)

Use induction for the following:

7A function f : A → B is a bijection, if it is both injective and surjective.
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Exercise 1.5

Show that addition on N is associative.

Exercise 1.6

Show that addition on N is commutative.

This last exercise implies in particular that 0 is the (unique) neutral element with
respect to addition: n+ 0 = 0 + n holds for all n ∈ N.

Multiplication of natural numbers is also defined recursively as follows: For m,n ∈
N we define

m · 0 := 0

m · (n+ 1) := m · n+m

Exercise 1.7

Show that the following distributive law holds for natural numbers:

(m+ n) · k = m · k + n · k.

Exercise 1.8

1. Show that multiplication on N is commutative.

2. Show that multiplication on N is associative.

3. Show that 1 is the neutral element with respect to multiplication.
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Exercise 1.9

Show that multiplication is zero-divisor free:

m · n = 0 implies m = 0 or n = 0.

Finally we can impose a total order8 on N as follows: We say that m ≤ n, if there
is a natural number k, such that m+ k = n.

Task 1.10

Show that “≤” is indeed a total order:

1. “≤” is reflexive9.

2. “≤” is anti-symmetric10.

3. “≤” is transitive11.

4. For all m,n ∈ N, m ≤ n or n ≤ m.

Task 1.11

Show the following compatibility laws:

1. If m ≤ n, then m+ k ≤ n+ k for all k ∈ N.

2. If m ≤ n, then m · k ≤ n · k for all k ∈ N.

8A relation ∼ on A is called a total order, if ∼ is reflexive, anti-symmetric, transitive, and has
the property that for all a, b ∈ A, a ∼ b or b ∼ a holds.

9A relation ∼ on A is reflexive if for all a ∈ A, a ∼ a.
10A relation ∼ on A is anti-symmetric if for all a, b ∈ A the following holds: a ∼ b and b ∼ a

implies that a=b.
11A relation ∼ on A is transitive if for all a, b, c ∈ A the following holds: a ∼ b and b ∼ c implies

that a ∼ c.
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1.2 The Integers

Definition. Integers can be written as differences of natural numbers. The set of
integers Z = {0, 1,−1, 2,−2, 3,−3, . . .} will therefore be defined as certain equiva-
lence classes of the two-fold Cartesian product of N.

We define a relation on N× N as follows:

(a, b) ∼ (c, d) if and only if a+ d = b+ c.

Exercise 1.12

Show that “∼” defines an equivalence relation on N× N:

1. “∼” is reflexive.

2. “∼” is symmetric12.

3. “∼” is transitive.

We will denote equivalence classes as follows:

(a, b)∼ := {(c, d) | (c, d) ∼ (a, b)}.

The set of integers Z is the set of all equivalence classes thus obtained:

Z = {(a, b)∼ | a, b ∈ N}.

Arithmetic Properties. Addition of integers will be defined component-wise:

(a, b)∼ + (c, d)∼ = (a+ c, b+ d)∼.

The next two exercises will show that Z is an Abelian group13 with respect to
addition.

12A relation ∼ on A is called symmetric, if for all a, b ∈ A the following holds: a ∼ b implies
b ∼ a.

13A set G with a binary operation ? is called an Abelian group if ? is commutative and associative,
if (A, ?) has a neutral element n satisfying g ?n = g for all g ∈ G, and if (A, ?) has inverse elements,
i.e., for all g ∈ G there is an h ∈ G satisfying g ? h = n.
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Exercise 1.13

1. Show that the addition of integers is well-defined (i.e. independent of the
chosen representatives of the equivalence classes).

2. Show that the addition of integers is commutative.

3. Show that the addition of integers is associative.

Exercise 1.14

1. Show that the addition of integers has (0, 0)∼ as its neutral element.

2. Show that for all a, b ∈ N the following holds: (a, b)∼ + (b, a)∼ = (0, 0)∼.
Thus every element in Z has an inverse element.

Exercise 1.15

1. The map φ : N → Z defined by φ(n) = (n, 0)∼ is injective.

2. For all m,n ∈ N the following holds: φ(m) + φ(n) = φ(m+ n).

From now on we will identify N with φ(N) and write a − b instead of (a, b)∼. For
instance −5 is the equivalence class of all elements equivalent to (0, 5).

Task 1.16

Define integer multiplication (make sure it is well-defined), and show that mul-
tiplication is commutative, associative, and has 1 as its neutral element.
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Last not least we will define a total order on Z as follows:

m ≤ n if and only if n−m ∈ N.

Exercise 1.17

1. Show that “≤” defines a total order on Z.

2. If m ≤ n, then m+ k ≤ n+ k for all k ∈ Z.

3. If m ≤ n and 0 ≤ k, then m · k ≤ n · k.
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