## 2 Numerical Series

From this section onward the standard results from a first Analysis course are a prerequisite. For this section in particular you can (and will need to) use results about sequences.

Given a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, an infinite series is a formal expression of the form

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots
$$

The corresponding sequence of partial sums $\left(s_{k}\right)_{k \in \mathbb{N}}$ is defined by $s_{k}=a_{1}+a_{2}+$ $a_{3}+\cdots a_{k}$.
If the sequence of partial sums converges, with limit $s$, we say that the series $\sum_{n=1}^{\infty} a_{n}$ converges and we write

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

We will often write $\sum a_{n}$ instead of $\sum_{n=1}^{\infty} a_{n}$.
The following are direct consequences of the corresponding fact for sequences:

1. If the series $\sum a_{n}$ and $\sum b_{n}$ both converge, then their sum $\sum\left(a_{n}+b_{n}\right)$ converges as well, and

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

2. If $\sum a_{n}$ and $\sum c_{n}$ both converge, and

$$
\sum_{n=1}^{k} a_{n} \leq \sum_{n=1}^{k} b_{n} \leq \sum_{n=1}^{k} c_{n} \text { for all } \mathrm{k}
$$

then $\sum b_{n}$ converges as well.

## Exercise 2.1

If $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $\sum a_{n}$ converges if and only if the corresponding sequence of partial sums $\left(s_{k}\right)$ is bounded.

Task $2.2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
Show that

Hint: Show that the partial sums satisfy $s_{k} \leq 2-\frac{1}{k}$.
This implies that $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 2$. Euler showed that the limit is actually equal to $\frac{\pi^{2}}{6} \approx 1.64493$.

Task 2.3
Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges ( $=$ does not converge).

Hint: Show that the partial sums satisfy $s_{2^{k}} \geq 1+\frac{k}{2}$.

## Exercise 2.4

The series $\sum a_{n}$ converges if and only if for all $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that whenever $m>n \geq N$ it follows that

$$
\left|a_{n+1}+a_{n+2}+\cdots a_{m}\right|<\varepsilon .
$$

## Exercise 2.5

If $\sum a_{n}$ converges, then $\left(a_{n}\right)$ converges to 0 .

Note that by the example in Task 2.3 the converse does not hold.

## Exercise 2.6 Show: If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, so does $\sum_{n=1}^{\infty} a_{n}$.

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, we say that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely. If on the other hand, $\sum_{n=1}^{\infty} a_{n}$ converges while $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, we say that $\sum_{n=1}^{\infty} a_{n}$ converges conditionally.

## Task 2.7

Show that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots
$$

converges conditionally.

The example above is a special case of the next task:

## Task 2.8

Suppose the sequence $\left(a_{n}\right)$ satisfies

1. $a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq 0$, and
2. the sequence $\left(a_{n}\right)$ converges to 0 , then $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Given a series $\sum_{n=1}^{\infty} a_{n}$, we say the series $\sum_{n=1}^{\infty} b_{n}$ is a rearrangement of $\sum_{n=1}^{\infty} a_{n}$, if there is a bijection $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{\varphi(n)}=a_{n}$ for all $n \in \mathbb{N}$.

Task 2.9
If the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then any rearrangement of $\sum_{n=1}^{\infty} a_{n}$ converges to the same limit.

In other words: If the series is absolutely convergent, then it is "infinitely commutative." If on the other hand the series converges only conditionally, then commutativity fails in a spectacular way:

Task 2.10
Suppose that the series $\sum_{n=1}^{\infty} a_{n}$ converges conditionally. Then for every $s \in \mathbb{R}$, there is a rearrangement $\sum_{n=1}^{\infty} b_{n}$ of $\sum_{n=1}^{\infty} a_{n}$ such that $\sum_{n=1}^{\infty} b_{n}$ converges to $s$.

Here are two hints to get you started on this problem:

1. Let $a_{n}^{+}=\max \left\{a_{n}, 0\right\}$ and $a_{n}^{-}=\max \left\{-a_{n}, 0\right\}$. Thus $a_{n}=a_{n}^{+}-a_{n}^{-}$and $\left|a_{n}\right|=a_{n}^{+}+a_{n}^{-}$. Observe that both series $\sum_{n=1}^{\infty} a_{n}^{+}$and $\sum_{n=1}^{\infty} a_{n}^{-}$do not converge.
2. The series in Task 2.7 actually converges to $\ln 2 \approx 0.693147$. Can you find a recipe how to rearrange the series so that the rearrangement converges to 1 instead?
