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Preface

Inquiry Based Learning. These notes are designed for classes using Inquiry Based
Learning, pioneered—among others—by the eminent mathematician Robert L. Moore,
who taught at the University of Texas at Austin from 1920–69. The basic idea behind
this method is that you can only learn how to do mathematics by doing mathematics.
Here are two famous quotes attributed to R.L. Moore:

“There is only one math book, and this book has only one page with a single
sentence: Do what you can!’”

“That Student is Taught the Best Who is Told the Least.”

Prerequisites. The only prerequisites for this course consist of knowledge of Calculus
and familiarity with set notation and the Method of Proof. These prerequisites can be
found in any Calculus book, and, for example, in inquiry based learning textbooks by
Carol Schumacher [20] or Margie Hale [7].

Ground Rules. Expect this course to be quite different from other mathematics
courses you have taken. Here are the ground rules we will be operating under:

• These notes contain “exercises” and “tasks”. You will solve these problems at
home and then present the solutions in class. I will call on students at random to
present “exercises”; I will call on volunteers to present solutions to the “tasks”.

• When you are in the audience, you are expected to be actively engaged in the
presentation. This means checking to see if every step of the presentation is clear
and convincing to you, and speaking up when it is not. When there are gaps in
the reasoning, the students in class will work together to fill the gaps.

• I will only serve as a moderator. My major contribution in class will consist of ask-
ing guiding and probing questions. I will also occasionally give short presentations
to put topics into a wider context, or to briefly talk about additional concepts not
dealt with in the notes.

• You may use only these notes and your own class notes; you are not allowed to con-
sult other books or materials. You must not talk to anyone outside of class about
the assignments. You are encouraged to collaborate with other class participants;
if you do, you must acknowledge their contribution during your presentation. Ex-
emptions from these restrictions require prior approval by the instructor.
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• Your instructor is an important resource for you. I expect frequent visits from all
of you during my office hours—many more visits than in a “normal” class. Among
other things, you probably will want to come to my office to ask questions about
concepts and assigned problems, you will probably occasionally want to show me
your work before presenting it in class, and you probably will have times when
you just want to talk about the frustrations you may experience.

• It is of paramount importance that we all agree to create a class atmosphere that
is supportive and non-threatening to all participants. Disparaging remarks will
be tolerated neither from students nor from the instructor.

Historical Perspective. This course gives an “Introduction to Analysis”. After its
discovery, Calculus turned out to be extremely useful in solving problems in Physics.
Ad hoc justifications were used by the generation of mathematicians following Isaac
Newton (1643–1727) and Gottfried Wilhelm von Leibniz (1646–1716), and even later
by mathematicians such as Leonhard Euler (1707–1783), Joseph-Louis Lagrange (1736–
1813) and Pierre-Simon Laplace (1749–1827). A mathematical argument given by Euler,
for example, did not differ much from the kind of “explanations” you have seen in your
Calculus classes.

In the first third of the nineteenth century, in particular with the publication of the
essay Théorie analytique de la chaleur by Jean Baptiste Joseph Fourier (1768–1830)
in 1822, fundamental problems with this approach of doing mathematics arose: The
leading mathematicians in Europe just did not know when Fourier’s ingenious method
of approximating functions by trigonometric series worked, and when it failed! This led
to the quest for putting the concepts of Calculus on a sound foundational basis: What
exactly does it mean for a sequence to converge? What exactly is a function? What does
it mean for a function to be differentiable? When is the integral of an infinite sum of
functions equal to the infinite sum of the integrals of the functions? Etc, etc.1

As these fundamental questions were investigated and consequently answered by mathe-
maticians such as Augustin Louis Cauchy (1789–1857), Bernhard Bolzano (1781–1848),
G. F. Bernhard Riemann (1826–1866), Karl Weierstraß (1815–1897), and many others,
the word “Analysis” became the customary term to describe this kind of “Rigorous
Calculus”. The progress in Analysis during the latter part of the nineteenth century
and the rapid progress in the twentieth century would not have been possible without
this revitalization of Calculus.

1Eventually the “crisis” in Analysis also led to renewed interest into general questions concerning
the nature of Mathematics. The resulting work of mathematicians and logicians such as Gottlob Frege
(1848–1925), Richard Dedekind (1831–1916), Georg Cantor (1845–1918), and Bertrand Russell (1872–
1970), David Hilbert (1862–1943), Kurt Gödel (1906–1978) and Paul Cohen (1934–), Luitzen Egbertus
Jan Brouwer (1881–1966) and Arend Heyting (1898–1980) has fundamentally impacted all branches of
mathematics and its practitioners. For a fascinating description and a very readable account of these
developments and how they led to the theory of computing, see [4].
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Consequently, in this course we will investigate (or in many cases revisit) the funda-
mental concepts in single-variable Calculus: Sequences and their convergence behavior,
local and global consequences of continuity, properties of differentiable functions, inte-
grability, and the relation between differentiability and integrability.

Acknowledgments. The author thanks the Educational Advancement Foundation
and its chairman Harry Lucas Jr. for their support.
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1 Introduction

When we want to study a subject in Mathematics, we first have to agree upon what we
assume we all already understand.

In this course we will assume that we are familiar with the Real Numbers, in the sequel
denoted by R. Before we list the basic axioms the Real Numbers satisfy, we will briefly
review more elementary concepts of numbers.

1.1 The Set of Natural Numbers

When we start learning Mathematics in elementary school, we live in the world of
Natural Numbers, which we will denote by N:

N = {1, 2, 3, 4, . . .}

Natural numbers are the “natural” objects to count things around us with. The first
thing we learn is to add natural numbers, then later on we start to multiply.

Besides their existence, we will take the following characterization of the Natural Num-
bers N for granted throughout the course:

Axiom N1 1 ∈ N.
Axiom N2 If n ∈ N, then n+ 1 ∈ N.
Axiom N3 If n 6= m, then n+ 1 6= m+ 1.
Axiom N4 There is no natural number n ∈ N, such that n+ 1 = 1.
Axiom N5 If a subset M ⊆ N satisfies (1) 1 ∈ M , and (2) m ∈ M ⇒

m+ 1 ∈M , then M = N.

The first four axioms describe the features of the counting process: We start counting
at 1, every counting number has a “successor”, and counting is not “cyclic”. The last
axiom guarantees the Principle of Induction:

Task 1.1
Let P (n) be a predicate with domain N. If

1. P (1) is true, and

2. Whenever P (n) is true, then P (n+ 1) is true,

then P (n) is true for all n ∈ N.
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1.2 Integers, Rational and Irrational Numbers

Deficiencies of the system of natural numbers start to appear when we want to divide—
the quotient of two natural numbers is not necessarily a natural number, or when we
want to subtract—the difference of two natural numbers is not necessarily a natural
number. This leads quite naturally to two extensions of the concept of number.

The set of integers, denoted by Z, is the set

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.

The set of rational numbers Q is defined as

Q =
{
p

q
| p, q ∈ Z and q 6= 0

}
.

Real numbers that are not rational are called irrational numbers. The existence of
irrational numbers, first discovered by the Pythagoreans in about 520 B.C., must have
come as a major surprise to Greek Mathematicians:

Task 1.2
Show that the square root of 2 is irrational. (

√
2 is the positive real number whose

square is 2.)

1.3 Groups

Next we will put the properties of numbers and their behavior with respect to the
standard arithmetic operations into a wider context by introducing the concept of an
“abelian group” and, in the next section, the concept of a “field”.

A set G with a binary operation ∗ is called an abelian group2, if (G, ∗) satisfies the
following axioms:

G1 ∗ is a map from G×G to G.

G2 (Associativity) For all a, b, c ∈ G

(a ∗ b) ∗ c = a ∗ (b ∗ c)

G3 (Commutativity) For all a, b ∈ G

a ∗ b = b ∗ a
2Named in honor of Niels Henrik Abel (1802–1829).
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G4 (Existence of a neutral element) There is an element n ∈ G, called
the neutral element of G, such that for all a ∈ G

a ∗ n = a

G5 (Existence of inverse elements) For every a ∈ G there exists b ∈ G,
called the inverse of a, such that

a ∗ b = n

The sets Z,Q and R are examples of abelian groups when endowed with the usual
addition + . The neutral element in these cases is 0; it is customary to denote the
inverse element of a by −a.

The sets Q \ {0} = {r ∈ Q | r 6= 0} and R \ {0} also form abelian groups under the
usual multiplication · . In these cases we denote the neutral element by 1; the inverse
element of a is customarily denoted by 1/a or by a−1.

Exercise 1.3
Write down the axioms G1–G5 explicitly for the set Q \ {0} with the binary
operation · (i.e., multiplication).

Addition and multiplication of rational and real numbers interact in a reasonable manner—
the following distributive law holds:

DL For all a, b, c ∈ R
(a+ b) · c = (a · c) + (b · c)

1.4 Fields

In short, a set F together with an addition + and a multiplication · is called a field, if

F1 (F,+) is an abelian group (with neutral element 0).
F2 (F \ {0}, ·) is an abelian group (with neutral element 1).
F3 For all a, b, c ∈ F : (a+ b) · c = (a · c) + (b · c).

The set of rational numbers and the set of real numbers are examples of fields.

Another example of a field is the set of complex numbers C:

C = {a+ bi | a, b ∈ R}
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Addition and multiplication of complex numbers are defined as follows:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

and
(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i,

respectively.

A field F endowed with a relation ≤ is called an ordered field if

O1 (Antisymmetry) For all x, y ∈ F

x ≤ y and y ≤ x implies x = y

O2 (Transitivity) For all x, y, z ∈ F

x ≤ y and y ≤ z implies x ≤ z

O3 For all x, y ∈ F
x ≤ y or y ≤ x

O4 For all x, y, z ∈ F
x ≤ y implies x+ z ≤ y + z

O5 For all x, y ∈ F and all 0 ≤ z

x ≤ y implies x · z ≤ y · z

If x ≤ y and x 6= y, we write x < y. Instead of x ≤ y, we also write y ≥ x.

Both the rational numbers Q and the real numbers R form ordered fields. The complex
numbers C cannot be ordered in such a way.

1.5 The Completeness Axiom

You probably have seen books entitled “Real Analysis” and “Complex Analysis” in the
library. There are no books on “Rational Analysis”.

Why? What is the main difference between the two ordered fields of Q and R?—The
ordered field R of real numbers is complete: sequences of real numbers have the
following property.

C Let (an) be an increasing sequence of real numbers. If (an) is bounded
from above, then (an) converges.
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The ordered field Q of rational numbers, on the other hand, is not complete. It should
therefore not surprise you that the Completeness Axiom will play a central part through-
out the course! We will discuss this axiom in great detail in Section 2.3.

The complex numbers C also form a complete field. Section 2.6 will give an idea how
to write down an appropriate completeness axiom for the field C.

1.6 Summary: An Axiomatic System for the Set of Real Num-
bers

Below is a summary of the properties of the real numbers R we will take for granted
throughout the course:

The set of real numbers R with its natural operations of +, ·, and ≤ forms a complete
ordered field. This means that the real numbers satisfy the following axioms:

Axiom 1 + is a map from R× R to R.

Axiom 2 For all a, b, c ∈ R

(a+ b) + c = a+ (b+ c)

Axiom 3 For all a, b ∈ R
a+ b = b+ a

Axiom 4 There is an element 0 ∈ R such that for all a ∈ R

a+ 0 = a

Axiom 5 For every a ∈ R there exists b ∈ R such that

a+ b = 0

Axiom 6 · is a map from R \ {0} × R \ {0} to R \ {0}.
Axiom 7 For all a, b, c ∈ R \ {0}

(a · b) · c = a · (b · c)

Axiom 8 For all a, b ∈ R \ {0}

a · b = b · a

Axiom 9 There is an element 1 ∈ R \ {0} such that for all a ∈ R \ {0}

a · 1 = a
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Axiom 10 For every a ∈ R \ {0} there exists b ∈ R \ {0} such that

a · b = 1

Axiom 11 For all a, b, c ∈ R

(a+ b) · c = (a · c) + (b · c)

Axiom 12 For all a, b ∈ R

a ≤ b and b ≤ a implies a = b

Axiom 13 For all a, b, c ∈ R

a ≤ b and b ≤ c implies a ≤ c

Axiom 14 For all a, b ∈ R
a ≤ b or a ≥ b

Axiom 15 For all a, b, c ∈ R

a ≤ b implies a+ c ≤ b+ c

Axiom 16 For all a, b ∈ R and all c ≥ 0

a ≤ b implies a · c ≤ b · c

Axiom 17 Let (an) be an increasing sequence of real numbers. If (an) is
bounded from above, then (an) converges.

1.7 Maximum and Minimum

Given a non-empty set A of real numbers, a real number b is called maximum of the
set A, if b ∈ A and b ≥ a for all a ∈ A. Similarly, a real number s is called minimum
of the set A, if s ∈ A and s ≤ a for all a ∈ A. We write b = maxA, and s = minA.

For example, the set {1, 3, 2, 0,−7, π} has minimum -7 and maximum π, the set of
natural numbers N has 1 as its minimum, but fails to have a maximum.

Exercise 1.4
Show that a set can have at most one maximum.
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Exercise 1.5
Characterize all subsets A of the set of real numbers with the property that minA =
maxA.

Task 1.6
Show that finite non-empty sets of real numbers always have a minimum.

1.8 The Absolute Value

The absolute value of a real number a is defined as

|a| = max{a,−a}.

For instance, |4| = 4, | − π| = π. Note that the inequalities a ≤ |a| and −a ≤ |a| hold
for all real numbers a.

The quantity |a − b| measures the distance between the two real numbers a and b on
the real number line; in particular |a| measures the distance of a from 0.

The following result is known as the triangle inequality:

Exercise 1.7
For all a, b ∈ R:

|a+ b| ≤ |a|+ |b|

A related result is called the reverse triangle inequality:

Exercise 1.8
For all a, b ∈ R:

|a− b| ≥
∣∣∣∣ |a| − |b| ∣∣∣∣

You will use both of these inequalities frequently throughout the course.
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1.9 Natural Numbers and Dense Sets inside the Real Numbers

In the sequel, we will also assume the following axiom for the Natural Numbers, even
though it can be deduced from the Completeness Axiom of the Real Numbers (see
Optional Task 2.1):

Axiom N6 For every positive real number s ∈ R, s > 0, there is a natural
number n ∈ N such that n− 1 ≤ s < n.

Exercise 1.9
Show that for every positive real number r, there is a natural number n, such that

0 <
1
n
< r.

We say that a set A of real numbers is dense in R, if for all real numbers x < y there
is an element a ∈ A satisfying x < a < y.

Task 1.10
The set of rational numbers Q is dense in R.

Task 1.11
The set of irrational numbers R \Q is dense in R.



2 Sequences and Accumulation Points

2.1 Convergent Sequences

Formally, a sequence of real numbers is a function ϕ : N → R. For instance the

function ϕ(n) =
1
n2

for all n ∈ N defines a sequence3. It is customary, though, to write
sequences by listing their terms such as

1,
1
4
,

1
9
,

1
16
, . . .

or by writing them in the form (an)n∈N; so in our particular example we could write

the sequence also as
(

1
n2

)
n∈N

. Note that the elements of a sequence come in a natural

order. For instance
1
49

is the 7th element of the sequence
(

1
n2

)
n∈N

.

Exercise 2.1
Let (an)n∈N denote the sequence of prime numbers in their natural order. What is
a5?4

Exercise 2.2
Write the sequence 0, 1, 0, 2, 0, 3, 0, 4, . . . as a function ϕ : N→ R.

We say that a sequence (an) is convergent, if there is a real number a, such that for
all ε > 0 there is an N ∈ N such that for all n ∈ N with n ≥ N ,

|an − a| < ε.

The number a is called limit of the sequence (an). We also say in this case that the
sequence (an)n∈N converges to a.

3See Figure 19 on page 74 for a pronunciation guide of Greek letters.
4“a5” is pronounced “a sub 5”.
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Exercise 2.3
Spend some quality time studying Figure 1 on the next page. Explain how the
pictures and the parts in the definition correspond to each other. Also reflect on
how the “rigorous” definition above relates to your prior understanding of what it
means for a sequence to converge.

A sequence, which fails to converge, is called divergent. Figure 2 on page 12 gives an
example.

Exercise 2.4
1. Write down formally (using ε-N language) what it means that a given se-

quence (an)n∈N does not converge to the real number a.

2. Similarly, write down what it means for a sequence to diverge.

Exercise 2.5
Show that the sequence an =

(−1)n

√
n

converges to 0.

Exercise 2.6
Show that the sequence an = 1− 1

n2 + 1
converges to 1.

The first general result below establishes that limits are unique.

Task 2.7
Show: If a sequence converges to two real numbers a and b, then a = b.

One way to proceed is to assume that the sequence converges to two numbers a and b
with a 6= b. Then one tries to derive a contradiction, since far out sequence terms must
be simultaneously close to both a and b.
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Figure 1: (i) A sequence (xn) converges to the limit a if . . . (ii) . . . for all ε > 0 . . . (iii)
. . . there is an N ∈ N, such that . . . (iv) . . . |xn − a| < ε for all n ≥ N
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20 40 60 80 100
n

xn

Figure 2: A divergent sequence

We say that a set S of real numbers is bounded if there are real numbers m and M
such that

m ≤ s ≤M

holds for all s ∈ S.

A sequence (an) is called bounded if its range

{an | n ∈ N}

is a bounded set.

Exercise 2.8
Give an example of a bounded sequence which does not converge.

Task 2.9
Every convergent sequence is bounded.

Consequently, boundedness is necessary for convergence of a sequence, but is not suffi-
cient to ensure that a sequence is convergent.
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2.2 Arithmetic of Converging Sequences

The following results deal with the “arithmetic” of convergent sequences.

Task 2.10
If the sequence (an) converges to a, and the sequence (bn) converges to b, then the
sequence (an + bn) is also convergent and its limit is a+ b.

Task 2.11
If the sequence (an) converges to a, and the sequence (bn) converges to b, then the
sequence (an · bn) is also convergent and its limit is a · b.

Task 2.12
Let (an) be a sequence converging to a 6= 0. Then there are a δ > 0 and an M ∈ N
such that |am| > δ for all m ≥M .

Task 2.12 is useful to prove:

Task 2.13
Let the sequence (bn) with bn 6= 0 for all n ∈ N converge to b 6= 0. Then the

sequence
(

1
bn

)
is also convergent and its limit is

1
b

.

Task 2.14
Let (an) be a sequence converging to a. If an ≥ 0 for all n ∈ N, then a ≥ 0.
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2.3 Monotone Sequences

Let A be a non-empty set of real numbers. We say that A is bounded from above
if there is an M ∈ R such that a ≤ M for all a ∈ A. The number M is then called an
upper bound for A. Similarly, we say that A is bounded from below if there is an
m ∈ R such that a ≥ m for all a ∈ A. The number m is then called a lower bound
for A.

A sequence is bounded from above (bounded from below), if its range

{an | n ∈ N}

is bounded from above (bounded from below).

A sequence (an) is called increasing if am ≤ an for all m < n ∈ N. It is called
strictly increasing if am < an for all m < n ∈ N.

Analogously, a sequence (an) is called decreasing if am ≥ an for all m < n ∈ N. It is
called strictly decreasing if am > an for all m < n ∈ N.

A sequence which is increasing or decreasing is called monotone.

The following axiom is a fundamental property of the real numbers. It establishes that
bounded monotone sequences are convergent. Most results in Analysis depend on this
fundamental axiom.

Completeness Axiom of the Real Numbers. Let (an) be an increasing
bounded sequence. Then (an) converges.

The same result holds of course if one replaces “increasing” by “decreasing”. (Can you
prove this?)

Note that an increasing sequence is always bounded from below, while a decreasing
sequence is always bounded from above.

Task 2.15
Let a1 = 1 and an+1 =

√
2an + 1 for all n ∈ N. Show that the sequence (an)

converges.

Once we know that the sequence converges, we can find its limit as follows: Let

L = lim
n→∞

an.
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Then lim
n→∞

an+1 = L as well, and therefore L = lim
n→∞

√
2an + 1 =

√
2L+ 1. Since L is

positive and L satisfies the equation

L =
√

2L+ 1,

we conclude that the limit of the sequence under consideration is equal to 1 +
√

2.

Let A be a non-empty set of real numbers. We say that a real number s is the least
upper bound of A (or that s is the supremum of A), if

1. s is an upper bound of A, and

2. no number smaller than s is an upper bound for A.

We write s = supA.

Similarly, we say that a real number i is the greatest lower bound of A (or that i
is the infimum of A), if

1. i is a lower bound of A, and

2. no number greater than i is a lower bound for A.

We write i = inf A.

Exercise 2.16
Show the following: If a non-empty set A of real numbers has a maximum, then
the maximum of A is also the supremum of A.

An interval I is a set of real numbers with the following property:

If x ≤ y and x, y ∈ I, then z ∈ I for all x ≤ z ≤ y.

In particular, the set
[a, b] := {x ∈ R | a ≤ x ≤ b}

is called a closed interval. Similarly, the set

(a, b) := {x ∈ R | a < x < b}

is called an open interval.
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Exercise 2.17
Find the supremum of each of the following sets:

1. The closed interval [−2, 3]

2. The open interval (0,2)

3. The set {x ∈ Z | x2 < 5}

4. The set {x ∈ Q | x2 < 3}.

Exercise 2.18
Let (an) be an increasing bounded sequence. By the Completeness Axiom the
sequence converges to some real number a. Show that its range {an | n ∈ N} has a
supremum, and that the supremum equals a.

The previous task uses the Completeness Axiom for the Real Numbers. Note that
without using the Completeness Axiom we can still obtain the following weaker result:
If an increasing bounded sequence converges, then it converges to the supremum of its
range.

Task 2.19
The Completeness Axiom is equivalent to the following: Every non-empty set of
real numbers which is bounded from above has a supremum.

The following hints may be useful to prove the “hard” direction of this result. The three
hints are independent of each other and suggest different ways in which to proceed.
Assume the non-empty set S is bounded from above.

• Suppose a ∈ S and b is an upper bound of S. Then (a) there is an upper
bound b′ of S such that |b′ − a| ≤ |b − a|/2, or (b) there exists a′ ∈ S such that
|b− a′| ≤ |b− a|/2.

• Show that for all ε > 0 there is an element a ∈ S such that a + ε is an upper
bound for S.
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• Show that the set of upper bounds of S is of the form [s,∞). Then show that s
is the supremum of S.

Optional Task 2.1
Use the Completeness Axiom to show the following: For every positive real number
s ∈ R, s > 0, there is a natural number n ∈ N such that n− 1 ≤ s < n.

2.4 Subsequences

Recall that a sequence is a function ϕ : N→ R. Let ψ : N→ N be a strictly increasing
function5.

Then the sequence ϕ ◦ ψ : N→ R is called a subsequence of ϕ.

Here is an example: Suppose we are given the sequence

1,
1
2
,

1
3
,

1
4
,

1
5
,

1
6
,

1
7
,

1
8
, . . .

The map ψ(n) = 2n then defines the subsequence

1
2
,

1
4
,

1
6
,

1
8
, . . .

If we denote the original sequence by (an), and if ψ(k) = nk for all k ∈ N, then we
denote the subsequence by (ank

).

So, in the example above,

an1 = a2 =
1
2
, an2 = a4 =

1
4
, an3 = a6 =

1
6
, . . .

Exercise 2.20
Let (an)n∈N =

(
1
n

)
n∈N. Which of the following sequences are subsequences of

(an)n∈N?

1. 1,
1
2
,

1
3
,

1
4
,

1
5
. . .

5A function ψ : N → N is called strictly increasing if it satisfies: ψ(n) < ψ(m) for all n < m in N.
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2.
1
2
, 1,

1
4
,

1
3
,

1
6
,

1
5
. . .

3. 1,
1
3
,

1
6
,

1
10
,

1
15
. . .

4. 1, 1,
1
3
,

1
3
,

1
5
,

1
5
. . .

For the subsequence examples, also find the function ψ : N→ N.

Task 2.21
If a sequence converges, then all of its subsequences converge to the same limit.

Task 2.22
Show that every sequence of real numbers has an increasing subsequence or it has
a decreasing subsequence.

To prove this result, the following definition may be useful: We say that the sequence
(an) has a peak at n0 if

an0 ≥ an for all n ≥ n0.

This result has a beautiful generalization due to Frank P. Ramsey (1903–1930), which
unfortunately requires some notation: Given an infinite subset M of N, we denote the
set of doubletons from M by

P(2)(M) := {{m,n} | m,n ∈M and m < n} .

• Ramsey’s Theorem [19]. Let A be an arbitrary subset of P(2)(N). Then there
is an infinite subset M of N such that either

P(2)(M) ⊆ A, or P(2)(M) ∩ A = ∅.

You should prove Task 2.22 without using this theorem, but the result in Task 2.22
follows easily from Ramsey’s Theorem: Set

A = {{m,n} | m < n and am ≤ an}.
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Does your proof of Task 2.22 actually show a slightly stronger result?

The next fundamental result is known as the Bolzano-Weierstrass Theorem.

Task 2.23
Every bounded sequence of real numbers has a convergent subsequence.

Exercise 2.24
Let a < b. Every sequence contained in the interval [a, b] has a subsequence that
converges to an element in [a, b].

Task 2.25
Suppose the sequence (an) does not converge to the real number L. Then there is
an ε > 0 and a subsequence (ank

) of (an) such that

|ank
− L| ≥ ε for all k ∈ N.

We conclude this section with a rather strange result: it establishes convergence of a
bounded sequence without ever showing any convergence at all.

Task 2.26
Let (an) be a bounded sequence. Suppose all of its convergent subsequences
converge to the same limit a. Then (an) itself converges to a.

2.5 Limes Inferior and Limes Superior*

Let (an) be a bounded sequence of real numbers. We define the limes inferior6 and
limes superior of the sequence as

lim inf
n→∞

an := lim
k→∞

(inf{an | n ≥ k}) ,

6“limes” means limit in Latin.
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and
lim sup

n→∞
an := lim

k→∞
(sup{an | n ≥ k}) .

Optional Task 2.2
Explain why the numbers lim inf

n→∞
an and lim sup

n→∞
an are well-defined7 for every

bounded sequence (an).

One can define the notions of lim sup and lim inf without knowing what a limit is:

Optional Task 2.3
Show that the limes inferior and the limes superior can also be defined as follows:

lim inf
n→∞

an := sup
{

inf{an | n ≥ k} | k ∈ N
}
,

and

lim sup
n→∞

an := inf
{

sup{an | n ≥ k} | k ∈ N
}
.

Optional Task 2.4
Show that a bounded sequence (an) converges if and only if

lim inf
n→∞

an = lim sup
n→∞

an.

Optional Task 2.5
Let (an) be a bounded sequence of real numbers. Show that (an) has a subsequence
that converges to lim sup

n→∞
an.

7An object is well-defined if it exists and is uniquely determined.
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Optional Task 2.6
Let (an) be a bounded sequence of real numbers, and let (ank

) be one of its con-
verging subsequences. Show that

lim inf
n→∞

an ≤ lim
k→∞

ank
≤ lim sup

n→∞
an.

2.6 Cauchy Sequences

A sequence (an)n∈N is called a Cauchy sequence8, if for all ε > 0 there is an N ∈ N
such that for all m,n ∈ N with m ≥ N and n ≥ N ,

|am − an| < ε.

Informally speaking: a sequence is convergent, if far out all terms of the sequence are
close to the limit; a sequence is a Cauchy sequence, if far out all terms of the sequence
are close to each other.

We will establish in this section that a sequence converges if and only if it is a Cauchy
sequence.

You may wonder why we bother to explore the concept of a Cauchy sequence when it
turns out that Cauchy sequences are nothing else but convergent sequences. Answer:
You can’t show directly that a sequence converges without knowing its limit a priori.
The concept of a Cauchy sequence on the other hand allows you to show convergence
without knowing the limit of the sequence in question! This will nearly always be the
situation when you study series of real numbers. The “Cauchy criterion” for series turns
out to be one of most widely used tools to establish convergence of series.

Exercise 2.27
Every convergent sequence is a Cauchy sequence.

Exercise 2.28
Every Cauchy sequence is bounded.

8Named in honor of Augustin Louis Cauchy (1789–1857)
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Task 2.29
If a Cauchy sequence has a converging subsequence with limit a, then the Cauchy
sequence itself converges to a.

Task 2.30
Every Cauchy sequence is convergent.

Optional Task 2.7
Show that the following three versions of the Completeness Axiom are equivalent:

1. Every increasing bounded sequence of real numbers converges.

2. Every non-empty set of real numbers which is bounded from above has a
supremum.

3. Every Cauchy sequence of real numbers converges.

From an abstract point of view, our course in “Analysis on the Real Line” hinges on
two concepts:

• We can measure the distance between real numbers. More precisely we can
measure “small” distances: for instance, we have constructs such as “|an−a| < ε”
measuring how “close” an and a are.

• We can order real numbers. The statement “For all ε > 0 there is an n ∈ N
such that 0 < 1

n < ε”, for example, relies exclusively on our ability to order real
numbers.

Thus the last two versions of the Completeness Axiom point to possible generalizations
of our subject matter.

The second version uses the concept of order (boundedness, least upper bound), but
does not mention distance. Section 2.5 gives clues how to define the limit concept in
such a scenario.
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The last version of the Completeness Axiom, on the other hand, requires the ability to
measure small distances, but does not rely on order. This will be useful when defining
completeness for sets such as C and Rn that cannot be ordered in the same way real
numbers can.

2.7 Accumulation Points

Given x ∈ R and ε > 0, we say that the open interval (x− ε, x+ ε) forms a neighbor-
hood of x.

We say that a property P (n) holds for all but finitely many n ∈ N if the set
{n ∈ N | P (n) does not hold} is finite.

Task 2.31
A sequence (an) converges to L ∈ R if and only if every neighborhood of L contains
all but a finite number of the terms of the sequence (an).

The real number x is called an accumulation point of the set S, if every neighborhood
of x contains infinitely many elements of S.

Task 2.32
The real number x is an accumulation point of the set S if and only if every
neighborhood of x contains an element of S different from x.

Note that finite sets do not have accumulation points.

The following exercise provides some more examples:

Exercise 2.33
Find all accumulation points of the following sets:

1. Q

2. N

3. [a, b)
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4.
{

1
n
| n ∈ N

}
.

Exercise 2.34
1. Find a set of real numbers with exactly two accumulation points.

2. Find a set of real numbers whose accumulation points form a sequence (an)
with an 6= am for all n 6= m.

Task 2.35
Show that x is an accumulation point of the set S if and only if there is a sequence
(xn) of elements in S with xn 6= xm for all n 6= m such that (xn) converges to x.

Task 2.36
Every infinite bounded set of real numbers has at least one accumulation point.

Optional Task 2.8
Characterize all infinite sets that have no accumulation points.

The next tasks in this section explore the relationship between the limit of a converging
sequence and accumulation points of its range.

Optional Task 2.9
1. Find a converging sequence whose range has exactly one accumulation point.

2. Find a converging sequence whose range has no accumulation points.
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3. Show that the range of a converging sequence has at most one accumulation
point.

Optional Task 2.10
Suppose the sequence (an) is bounded and satisfies the condition that am 6= an for
all m 6= n ∈ N. If its range {an | n ∈ N} has exactly one accumulation point a,
then (an) converges to a.

The remaining tasks investigate how accumulation points behave with respect to some
of the usual operations of set theory.

For any set S of real numbers, we denote by A(S) the set of all accumulation points of
S.

Optional Task 2.11
If S and T are two sets of real numbers and if S ⊆ T , then A(S) ⊆ A(T ).

Optional Task 2.12
If S and T are two sets of real numbers, then

A(S ∪ T ) = A(S) ∪A(T ).

Optional Task 2.13
1. Let (Sn)n∈N be a collection of sets of real numbers. Show that⋃

n∈N
A(Sn) ⊆ A

(⋃
n∈N

Sn

)
.

2. Find a collection (Sn)n∈N of sets of real numbers such that⋃
n∈N

A(Sn) is a proper subset of A

(⋃
n∈N

Sn

)
.
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Optional Task 2.14
Let S be a set of real numbers. Show that A(A(S)) ⊆ A(S).



3 Limits

3.1 Definition and Examples

Let D ⊆ R, let f : D → R be a function and let x0 be an accumulation point of D.

We say that the limit of f(x) at x0 is equal to L ∈ R, if for all ε > 0 there is a δ > 0
such that

|f(x)− L| < ε

whenever x ∈ D and 0 < |x− x0| < δ.

In this case we write lim
x→x0

f(x) = L.

Note that—by design—the existence of the limit (and L itself) does not depend on what
happens when x = x0, but only on what happens “close” to x0.

-0.2 -0.1 0.1 0.2
x

-0.20

-0.15

-0.10

-0.05

0.05

0.10

fHxL

Figure 3: The graph of x sin (1/x)

Exercise 3.1
Let f : R→ R be defined by

f(x) =
{
x sin

(
1
x

)
, if x 6= 0, x ∈ R

0, if x = 0
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Does f(x) have a limit a x0 = 0? If so, what is the limit? See Figure 3 on the page
before.

The next result reduces the study of the concept of a limit of a function at a point to
our earlier study of sequence convergence.

Exercise 3.2
Let D ⊆ R, let f : D → R be a function and let x0 be an accumulation point of D.
Then the following are equivalent:

1. lim
x→x0

f(x) exists and is equal to L.

2. Let (xn) be any sequence of elements in D that converges to x0, and satisfies
that xn 6= x0 for all n ∈ N. Then the sequence f(xn) converges to L.

Exercise 3.3
Let D ⊆ R, let f : D → R be a function and let x0 be an accumulation point of D.

Suppose that there is an ε > 0 such that for all δ > 0 there are x, y ∈ D \ {x0}
satisfying |x− y| < δ and |f(x)− f(y)| ≥ ε. Then f does not have a limit at x0.

Exercise 3.4
Let f : R→ R be defined by

f(x) =
{
|x|/x, if x 6= 0, x ∈ R

0, if x = 0

Does f(x) have a limit a x0 = 0? If so, what is the limit? See Figure 4 on the
following page.
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Figure 4: The graph of the function in Exercise 3.4

Exercise 3.5
Let f : R→ R be defined by

f(x) =
{

sin
(

1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Does f(x) have a limit a x0 = 0? If so, what is the limit? See Figure 5 on the next
page.

Exercise 3.6
Let f : (0, 1]→ R be defined by

f(x) =
{

1, if x ∈ Q
0, if x ∈ R \Q

For which values of x0 does f(x) have a limit a x0? What is the limit?



30 Limits
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Figure 5: The graph of sin (1/x)

Task 3.7
Let f : (0, 1]→ R be defined by

f(x) =


1
q
, if x =

p

q
with p, q relatively prime positive integers

0, if x ∈ R \Q

For which values of x0 does f(x) have a limit a x0? What is the limit? See Figure 6
on the following page.

You may want to try the case x0 = 0 first.

The result below is called the Principle of Local Boundedness.

Exercise 3.8
Let D ⊆ R, let f : D → R be a function and let x0 be an accumulation point of D.

If f(x) has a limit at x0, then there is a δ > 0 and an M > 0 such that

|f(x)| ≤M for all x ∈ (x0 − δ, x0 + δ) ∩D.
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Figure 6: The graph of the function in Task 3.7

3.2 Arithmetic of Limits*

Optional Task 3.1
Let D ⊆ R, let f, g : D → R be functions and let x0 be an accumulation point of
D.

If lim
x→x0

f(x) = L and lim
x→x0

g(x) = M , then the sum f + g has a limit at x0, and

lim
x→x0

(f + g)(x) = L+M .

Optional Task 3.2
Let D ⊆ R, let f, g : D → R be functions and let x0 be an accumulation point of
D.

If lim
x→x0

f(x) = L and lim
x→x0

g(x) = M , then the product f · g has a limit at x0, and

lim
x→x0

(f · g)(x) = L ·M .
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Optional Task 3.3
Let D ⊆ R, let f : D → R be a function and let x0 be an accumulation point of D.
Assume additionally that f(x) 6= 0 for all x ∈ D.

If lim
x→x0

f(x) = L and if L 6= 0, then the reciprocal function 1/f : D → R has a limit

at x0, and lim
x→x0

1
f(x)

=
1
L

.

3.3 Monotone Functions*

Let a < b be real numbers. A function f : [a, b] → R is called increasing on [a, b],
if x < y implies f(x) ≤ f(y) for all x, y ∈ [a, b]. It is called strictly increasing on
[a, b], if x < y implies f(x) < f(y) for all x, y ∈ [a, b].

Similarly, a function f : [a, b] → R is called decreasing on [a, b], if x < y implies
f(x) ≥ f(y) for all x, y ∈ [a, b]. It is called strictly decreasing on [a, b], if x < y
implies f(x) > f(y) for all x, y ∈ [a, b].

A function f : [a, b]→ R is called monotone on [a, b] if it is increasing on [a, b] or it is
decreasing on [a, b].

As we have seen in the last section, a function can fail to have limits for various reasons.
Monotone functions, on the other hand, are easier to understand: a monotone function
fails to have a limit at a point if and only if it “jumps” at that point. The next task
makes this precise.

Optional Task 3.4
Let a < b be real numbers and let f : [a, b] be an increasing function. Let
x0 ∈ (a, b). We define

L(x0) = sup{f(y) | y ∈ [a, x0)}

and
U(x0) = inf{f(y) | y ∈ (x0, b]}

Then f(x) has a limit at x0 if and only if U(x0) = L(x0). In this case

U(x0) = L(x0) = f(x0) = lim
x→x0

f(x).
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Optional Task 3.5
Under the assumptions of the previous task, state and prove a result discussing the
existence of a limit at the endpoints a and b.

Optional Task 3.6
Let a < b be real numbers and let f : [a, b] be an increasing function. Show that
the set

{y ∈ [a, b] | f(x) does not have a limit at y}

is finite or countable9.

You may want to show first that the set

Dn := {y ∈ (a, b) | (U(y)− L(y)) > 1/n}

is finite for all n ∈ N.

Let us look at an example of an increasing function with countably many “jumps”: Let
g : [0, 1]→ [0, 1] be defined as follows:

g(x) =

 0 , if x = 0
1
n

, if x ∈
(

1
n+ 1

,
1
n

]
for some n ∈ N

Figure 7 on the next page shows the graph of g(x). Note that the function is well
defined, since ⋃

n∈N

(
1

n+ 1
,

1
n

]
= (0, 1],

and (
1

m+ 1
,

1
m

]
∩
(

1
n+ 1

,
1
n

]
= ∅

for all m,n ∈ N with m 6= n.

9A set is called countable, if all of its elements can be arranged as a sequence y1, y2, y3, . . . with
yi 6= yj for all i 6= j.
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Figure 7: The graph of a function with countable many “jumps”

Optional Task 3.7
Show the following:

1. The function g(x) defined above fails to have a limit at all points in the set

D :=
{

1
n
| n ∈ N

}
.

2. The function g(x) has a limit at all points in the complement [0, 1] \D.
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4.1 Definition and Examples

Let D be a set of real numbers and x0 ∈ D. A function f : D → R is said to be
continuous at x0 if the following holds: For all ε > 0 there is a δ > 0 such that for all
x ∈ D with

|x− x0| < δ,

we have that
|f(x)− f(x0)| < ε.

If the function is continuous at all x0 ∈ D, we simply say that f : D → R is continuous
on D.

Compare this definition of continuity to the earlier definition of having a limit. For
continuity, we want to ensure that the behavior of the function close to the point x0

nicely interacts with the behavior of the function at the point in question itself; thus
we require that x0 lies in the domain D, and that the “limit” equals f(x0). Note also
that we do no longer require in the definition of continuity that x0 is an accumulation
point of D.

Exercise 4.1
Let D be a set of real numbers and x0 ∈ D be an accumulation point of D. Then
the function f : D → R is continuous at x0 if and only if lim

x→x0
f(x) = f(x0).

Exercise 4.2
Let D be a set of real numbers and x0 ∈ D. Assume also that x0 is not an
accumulation point of D. Then the function f : D → R is continuous at x0.

Optional Task 4.1
Let D be a set of real numbers and x0 ∈ D. A function f : D → R is continuous at
x0 if and only if for all sequences (xn) in D converging to x0, the sequence (f(xn))
converges to f(x0).
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Exercise 4.3
Let f : R→ R be defined by

f(x) =
{
|x|, if x ∈ Q
x2, if x ∈ R \Q

For which values of x0 is f(x) continuous?

Exercise 4.4
Let f : R→ R be defined by

f(x) =
{
x sin

(
1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) continuous at x0 = 0? See Figure 3 on page 27.

Exercise 4.5
Let f : R→ R be defined by

f(x) =
{

sin
(

1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) continuous at x0 = 0?

See Figure 5 on page 30.

Exercise 4.6
Let f : (0, 1]→ R be defined by

f(x) =
{

1, if x ∈ Q
0, if x ∈ R \Q

For which values of x0 is f(x) continuous?
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Exercise 4.7
Let f : (0, 1]→ R be defined by

f(x) =


1
q
, if x =

p

q
with p, q relatively prime positive integers

0, if x ∈ R \Q

For which values of x0 is f(x) continuous? See Figure 6 on page 31.

It is interesting to note that in the late 1890s René-Louis Baire (1874–1932) proved
a beautiful result which implies that there are no functions on the real line that are
continuous at all rational numbers and discontinuous at all irrational numbers.

4.2 Combinations of Continuous Functions

Optional Task 4.2
Let D ⊆ R, and let f, g : D → R be functions continuous at x0 ∈ D. Then
f + g : D → R is continuous at x0.

Optional Task 4.3
Let D ⊆ R, and let f, g : D → R be functions continuous at x0 ∈ D. Then
f · g : D → R is continuous at x0.

Optional Task 4.4
Polynomials are continuous on R.

Optional Task 4.5
Let D ⊆ R, and let f : D → R be a function continuous at x0 ∈ D. Assume

additionally that f(x) 6= 0 for all x ∈ D. Then
1
f

: D → R is continuous at x0.
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Task 4.8
Let D,E ⊆ R, and let f : D → R be a function continuous at x0 ∈ D. Assume
f(D) ⊆ E. Suppose g : E → R is a function continuous at f(x0). Then the
composition g ◦ f : D → R is continuous at x0.

4.3 Uniform Continuity

We say that a function f : D → R is uniformly continuous on D if the following
holds: For all ε > 0 there is a δ > 0 such that whenever x, y ∈ D satisfy

|x− y| < δ,

then
|f(x)− f(y)| < ε.

Exercise 4.9
If f : D → R is uniformly continuous on D, then f is continuous on D. What is
the difference between continuity and uniform continuity?

Exercise 4.10
Let f : (0, 1)→ R be defined by f(x) =

1
x

. Show that f is not uniformly continuous

on (0, 1).

Similarly one can show that the function f : R→ R, defined by f(x) = x2, is continuous
on R, but fails to be uniformly continuous on R.

Task 4.11
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Show that
f is uniformly continuous on [a, b].
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Along the way, you probably want to use the Bolzano-Weierstrass Theorem (Task 2.23
on page 19) to prove this result.

In light of Exercise 4.10, the result of Task 4.11 must depend heavily on properties of
the domain. It is therefore natural to ask for what domains continuity automatically
implies uniform continuity. The following two tasks explore this question.

Optional Task 4.6
Let f : N→ R be an arbitrary function. Then f is uniformly continuous on N.

Optional Task 4.7
Let D be a set of real numbers. Give a characterization of all the domains D such
that every continuous function f : D → R is uniformly continuous on D. [11]

Task 4.12
Let f : D → R be uniformly continuous on D. If D is a bounded subset of R, then
f(D) is also bounded.

Optional Task 4.8
Let f : D → R be uniformly continuous on D. If (xn) is a Cauchy sequence in D,
then (f(xn)) is also a Cauchy sequence.

Note a subtle, but important difference between the conclusion of the Task above and
the characterization of continuity in Exercise 4.1: Even though every Cauchy sequence
of elements in D will converge to some real number, that real number will not necessarily
lie in D.

Optional Task 4.9
If a function f : (a, b) → R is uniformly continuous on the open interval (a, b),
then it can be defined at the endpoints a and b in such a way that the extension
f : [a, b]→ R is (uniformly) continuous on the closed interval [a, b].
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Thus, for instance, the function f : (0, 1)→ R, given by f(x) = sin
(

1
x

)
is not uniformly

continuous on (0, 1).

It is often easier to show uniform continuity by establishing the following stronger con-
dition:

A function f : D → R is called a Lipschitz function on D if there is an M > 0 such
that for all x, y ∈ D

|f(x)− f(y)| ≤M |x− y|

Exercise 4.13
Let f : D → R be a Lipschitz function on D. Then f is uniformly continuous on
D.

Task 4.14
Show: The function f(x) =

√
x is uniformly continuous on the interval [0, 1], but

it is not a Lipschitz function on the interval [0, 1].

4.4 Continuous Functions on Closed Intervals

The major goal of this section is to show that the continuous image of a closed bounded
interval is a closed bounded interval.

We say a function f : D → R is bounded, if there exists an M ∈ R such that |f(x)| ≤M
for all x ∈ D.

Exercise 4.15
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Then f is
bounded on [a, b].

Optional Task 4.10
Let D be a set of real numbers. Give a characterization of all the domains D such
that every continuous function f : D → R is automatically bounded on D. [9]
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We say that the function f : D → R has an absolute maximum if there exists an
x0 ∈ D such that f(x) ≤ f(x0) for all x ∈ D. Similarly, f : D → R has an absolute
minimum if there exists an x0 ∈ D such that f(x) ≥ f(x0) for all x ∈ D.

We can improve upon the result of Exercise 4.15 as follows:

Task 4.16
Let f : [a, b]→ R be a continuous function on the closed interval [a, b]. Then f has
an absolute maximum (and an absolute minimum) on [a, b].

The next result is called the Intermediate Value Theorem.

x

y

ba

fHaL

fHbL

c

d

Figure 8: The Intermediate Value Theorem

Here the interval I can be any interval. Also: If x > y, we understand the interval (x, y)
to be the interval (y, x).

Task 4.17
Let f : I → R be a continuous function on the interval I. Let a, b ∈ I. If
d ∈ (f(a), f(b)), then there is a real number c ∈ (a, b) such that f(c) = d. See
Figure 8.
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A continuous function maps a closed bounded interval onto a closed bounded interval:

Task 4.18
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Then
f ([a, b]) := {f(x) | x ∈ [a, b]} is also a closed bounded interval.

Task 4.19
Let f : [a, b] → R be strictly increasing (or decreasing, resp.) and continuous
on [a, b]. Show that f has an inverse on f([a, b]), which is strictly increasing (or
decreasing, resp.) and continuous.

Task 2.26 may be helpful to prove this result.

Task 4.20
Show that

√
x : [0,∞)→ R is continuous on [0,∞).
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5.1 Definition and Examples

Let D be a set of real numbers and let x0 ∈ D be an accumulation point of D. The
function f : D → R is said to be differentiable at x0, if

lim
x→x0

f(x)− f(x0)
x− x0

exists.

In this case, we call the limit above the derivative of f at x0 and write

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

.

Exercise 5.1
Use the definition above to show that 3

√
x : R → R is differentiable at x0 = −27

and that its derivative at x0 = −27 equals
1
27

.

Exercise 5.2
Let f : R→ R be defined by

f(x) =
{
x sin

(
1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) differentiable at x0 = 0? See Figure 3 on page 27.

Exercise 5.3
Let f : R→ R be defined by

f(x) =
{
x2 sin

(
1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) differentiable at x0 = 0? Using your Calculus knowledge, compute the
derivative at points x0 6= 0. Is the derivative continuous at x0 = 0? See Figure 9
on the following page.
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Figure 9: The graph of x2 sin (1/x)

5.2 Techniques of Differentiation

Exercise 5.4
Suppose f : D → R is differentiable at x0 ∈ D. Show that f is continuous at x0.

Exercise 5.5
Give an example of a function with a point at which f is continuous, but not
differentiable.

Exercise 5.6
Let f, g : D → R be differentiable at x0 ∈ D. Then the function f+g is differentiable
at x0, with (f + g)′(x0) = f ′(x0) + g′(x0).

Next come some of the “Calculus Classics”, beginning with the “Product Rule”:
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Task 5.7
Let f, g : D → R be differentiable at x0 ∈ D. Then the function f ·g is differentiable
at x0, with

(f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0).

In particular, if c ∈ R, then

(c · f)′(x0) = c · f ′(x0).

Exercise 5.8
Show that polynomials are differentiable everywhere.

Compute the derivative of a polynomial of the form

P (x) =
n∑

k=0

akx
k.

Optional Task 5.1
State and prove the “Quotient Rule”.

Optional Task 5.2
State and prove the “Chain Rule”.

5.3 The Mean-Value Theorem and its Applications

Let D be a subset of R, and let f : D → R be a function. We say that f has a local
maximum at x0 ∈ D, if there is a neighborhood U of x0, such that

f(x) ≤ f(x0) for all x ∈ U.
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Similarly, we say that f has a local minimum at x0 ∈ D, if there is a neighborhood U
of x0, such that

f(x) ≥ f(x0) for all x ∈ U.

The next result is commonly known as the First Derivative Test. Note that this only
works for x0 ∈ (a, b), not if x0 is one of the endpoints a or b.

Task 5.9
Suppose f : [a, b]→ R has either a local maximum or a local minimum at x0 ∈ (a, b).
If f is differentiable at x0, then f ′(x0) = 0.

Task 5.10
Suppose f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b).

If f(a) = f(b) = 0, then there exists a c ∈ (a, b) with f ′(c) = 0.

This result is usually called Rolle’s Theorem, named after Michel Rolle (1652–1719).
A much more useful version of Task 5.10 is known as the Mean Value Theorem:

Task 5.11
Suppose f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b).

Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

See Figure 10 on the next page.

Do not confuse the Mean Value Theorem with the Intermediate Value Theorem!

Nearly all properties of differentiable functions follow from the Mean Value Theorem.
The exercises and tasks below are such examples of straightforward applications of the
Mean-Value Theorem.
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x

y

a

b

c

Figure 10: The Mean Value Theorem

Exercise 5.12
Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing.

Exercise 5.13
Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

A function f : D → R is called injective (or 1–1), if x 6= y implies f(x) 6= f(y) for all
x, y ∈ D.

Exercise 5.14
Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b).
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If f ′(x) 6= 0 for all x ∈ (a, b), then f is injective.

Task 5.15
Let f : [a, b]→ R be differentiable on [a, b] such that f ′(x) 6= 0 for all x ∈ [a, b].

Then f is injective; its inverse f−1 is differentiable on f([a, b]). Moreover, setting
y = f(x), we have (

f−1
)′

(y) =
1

f ′(x)
.

5.4 The Derivative and the Intermediate Value Property*

We say that a function f : [a, b] → R has the Intermediate Value Property on
[a, b] if the following holds: Let x1, x2 ∈ [a, b], and let

y ∈ (f(x1), f(x2)).

Then there is an x ∈ (x1, x2) satisfying f(x) = y.

Recall that we saw earlier that every continuous function has the intermediate value
property, see Task 4.17.

On the other hand, not every function with the intermediate value property is continu-
ous:

Optional Task 5.3
Let f : [−1, 1]→ R be defined by

f(x) =
{

sin
(

1
x

)
, if x 6= 0, x ∈ R

0, if x = 0

Show that f has the intermediate value property on the interval [−1, 1]. See Figure 5
on page 30.

The rest of this section will establish the surprising fact that derivatives have the inter-
mediate value property, even though they are not necessarily continuous (see Task 5.3).
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Optional Task 5.4
Let f : [a, b]→ R be differentiable on [a, b].

If f ′(x) 6= 0 for all x ∈ (a, b), then either f ′(x) ≥ 0 for all x ∈ [a, b] or f ′(x) ≤ 0 for
all x ∈ [a, b].

Optional Task 5.5
Let f : [a, b]→ R be differentiable on [a, b]. Then f ′ : [a, b]→ R has the intermediate
value property on [a, b].

5.5 A Continuous, Nowhere Differentiable Function*

This section follows the construction in [10]. Another example can be found in [12].

Recall that the largest integer function [x] : R→ R is defined as follows:

[x] = k, if k ∈ Z satisfies k ≤ x < k + 1.

For instance, [4.5] = 4 and [−π] = −4.

We start by defining a 1-periodic function f0 : R→ R as follows10:

f0(x) =
{

x , if 0 ≤ x− [x] < 1
2

1− x , if 1
2 < x− [x] < 1

See Figure 11 on the next page.

For n ∈ N, we define fn : R→ R by

fn(x) = 2−nf0(2nx).

Figure 12 on page 51 depicts the function f2(x).

Finally we let gn : [0, 1]→ R for n ∈ N be defined as

gn(x) =
n∑

k=0

fk(x),

and then set
g(x) = lim

n→∞
gn(x)

10A function f : R → R is called p-periodic if f(x+ p) = f(x) for all x ∈ R.
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Figure 11: The function f0(x)

for all x ∈ [0, 1]. Figure 13 on page 52 shows the function g(x).

The function g(x) is continuous on the interval [0, 1], but fails to be differentiable at all
points in the interval (0, 1). To establish these properties we start with

Optional Task 5.6
1. For n ∈ N ∪ {0}, the function fn(x) is continuous on [0, 1] and 2−n-periodic.

2. For n ∈ N ∪ {0}, the function fn(x) satisfies 0 ≤ fn(x) ≤ 2−(n+1) for all
x ∈ [0, 1].

3. Show that the estimate

|gm(x)− gn(x)| ≤ 2−(1+min{m,n})

holds for all x ∈ [0, 1] and all m,n ∈ N ∪ {0}.

4. Show that g(x) is well-defined for all x ∈ [0, 1].

5. The function g(x) maps the interval [0, 1] into itself.

Using the results above, show:
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Figure 12: The function f2(x)

Optional Task 5.7
The function g(x) is continuous on [0, 1].

We will now establish that the function g(x) is nowhere differentiable. First we need
the following result:

Optional Task 5.8
Let a function f : [0, 1]→ R be differentiable at the point y ∈ (0, 1). Then

lim
f(z)− f(x)

z − x
exists and equals f ′(y).

Here the limit is taken over all x, z ∈ [0, 1] satisfying x ≤ y ≤ z and x 6= y such
that max{|y − x|, |z − y|} → 0.

More precisely this means the following: For all ε > 0 there is a δ > 0 such that∣∣∣∣f(z)− f(x)
z − x

− f ′(y)
∣∣∣∣ < ε

for all x, z ∈ [0, 1] satisfying x ≤ y ≤ z, x 6= y, |y − x| < δ and |z − y| < δ.
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Figure 13: The function g(x)

The crucial step is the next task:

Optional Task 5.9
For all y ∈ (0, 1) there are four sequences (xn), (x′n), (zn), and (z′n) in [0, 1] with
the following properties:

1. All four sequences converge to y.

2. xn ≤ y ≤ zn, xn 6= zn for all n ∈ N.

3. x′n ≤ y ≤ z′n, x′n 6= z′n for all n ∈ N.

4.
∣∣∣∣g(zn)− g(xn)

zn − xn
− g(z′n)− g(x′n)

z′n − x′n

∣∣∣∣ ≥ 1 for all n ∈ N.

The proof is somewhat technical. Let p ∈ N be such that
p

2n
≤ y < p+ 1

2n
. Then choose

xn, zn, x′n and z′n suitably from the set
{
p

2n
,

2p+ 1
2n+1

,
p+ 1

2n

}
. Figure 14 on page 54

shows a typical scenario (for n = 11 and p = 172).

Finally one can use the last two tasks to show:
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Optional Task 5.10
The function g : [0, 1]→ [0, 1] fails to be differentiable at all points in (0, 1).

Since g(x) is continuous on the interval [0, 1], it has a maximum.

Optional Task 5.11
Show that the maximal value of g(x) on the interval [0, 1] is

2
3

.



54 The Derivative

172

211

345

212

173

211

gHxL and g10HxL

172

211

345

212

173

211

gHxL and g11HxL

172

211

345

212

173

211

gHxL and g12HxL

Figure 14: The pictures show the functions g(x) and g10(x), g(x) and g11(x), and g(x)
and g12(x), respectively.



6 The Integral

Throughout this chapter all functions are assumed to be bounded.

6.1 Definition and Examples

A finite set P = {x0, x1, x2, . . . , xn} of real numbers is called a partition of the interval
[a, b], if

a = x0 < x1 < x2 < · · · < xn = b.

a=x0 x1 x2 x3 x4=b

Figure 15: A 5-element partition of the interval [a, b].

Let a function f : [a, b] → R and a partition P = {x0, x1, x2, . . . , xn} of the interval
[a, b] be given. Let i ∈ {1, 2, 3, . . . , n}. We define

mi(f) := inf{f(x) | x ∈ [xi−1, xi]},

and
Mi(f) := sup{f(x) | x ∈ [xi−1, xi]}.

The lower Riemann sum L(f, P ) of the function f with respect to the partition P is
defined as

L(f, P ) :=
n∑

i=1

mi(f)(xi − xi−1).

See Figure 16 on the next page.

Analogously, the upper Riemann sum U(f, P ) is defined as

U(f, P ) :=
n∑

i=1

Mi(f)(xi − xi−1).

See Figure 17 on page 57.
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Figure 16: A lower Riemann sum with a partition of 20 equally spaced points.

The lower Riemann integral of f on the interval [a, b], denoted by L
∫ b

a

f(x) dx, is

defined as

L
∫ b

a

f(x) dx := sup{L(f, P ) | P is a partition of [a, b]}.

Similarly, the upper Riemann integral of f on the interval [a, b] is defined as

U
∫ b

a

f(x) dx := inf{U(f, P ) | P is a partition of [a, b]}.

Let P and Q be two partitions of the interval [a, b]. We say that the partition Q is
finer than the partition P if P ⊆ Q. In this situation, we also call P coarser than
Q.

Task 6.1
Let f : [a, b]→ R be a function, and P and Q be two partitions of the interval [a, b].
Assume that Q is finer than P . Then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Note that Task 6.1 implies that

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.
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Figure 17: An upper Riemann sum with a partition of 12 equally spaced points.

We are finally in a position to define the concept of integrability! We will say that a
function f : [a, b]→ R is Riemann integrable on the interval [a, b], if

L
∫ b

a

f(x) dx = U
∫ b

a

f(x) dx.

Their common value is then called the Riemann integral of f on the interval [a, b]
and denoted by ∫ b

a

f(x) dx.

Exercise 6.2
Use the definition above to compute L

∫ 1

0

x dx and U
∫ 1

0

x dx. Is the function Rie-

mann integrable on [0, 1]?

Exercise 6.3
Let f : [0, 1]→ R be defined by

f(x) =
{

1, if x ∈ Q
0, if x ∈ R \Q

Use the definitions above to compute L
∫ 1

0

f(x) dx and U
∫ 1

0

f(x) dx. Is the function

Riemann integrable on [0, 1]?
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Task 6.4
A function f : [a, b]→ R is Riemann integrable if and only if for every ε > 0 there
is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

The following “Lemma” is quite technical; it prepares for the proof of the subsequent
result. Note that given two partitions P and Q, the partition P ∪Q is finer than both
P and Q.

Given a partition P , we define its mesh width µ(P ) as

µ(P ) := max{xi − xi−1 | i = 1, 2, . . . , n}.

Task 6.5
Let f : [a, b] → R be a bounded function with |f(x)| ≤ M for all x ∈ [a, b]. Let
ε > 0 be given, and let P0 be a partition of [a, b] with n+ 1 elements. Then there
is a δ > 0 (depending on M , n and ε) such that for any partition P of [a, b] with
mesh width µ(P ) < δ

U(P ) < U(P ∪ P0) + ε and L(P ) > L(P ∪ P0)− ε.

Task 6.6
A function f : [a, b]→ R is Riemann integrable if and only if for every ε > 0 there
is a δ > 0 such that for all partitions P of [a, b] with mesh width µ(P ) < δ

U(f, P )− L(f, P ) < ε.

Two important classes of functions are Riemann-integrable—continuous functions and
monotone functions:

Task 6.7
If f : [a, b]→ R is continuous on [a, b], then f is Riemann integrable on [a, b].
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Task 6.8
If f : [a, b]→ R is increasing on [a, b], then f is Riemann integrable on [a, b].

An analogous result holds for decreasing functions, of course.

6.2 Arithmetic of Integrals

Exercise 6.9
Let f : [a, b]→ R be Riemann integrable on [a, b]. Then for all λ ∈ R, the function
λf is also Riemann integrable on [a, b], and∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx.

Exercise 6.10
Let f, g : [a, b] → R be Riemann integrable on [a, b]. Then f + g is also Riemann
integrable on [a, b], and∫ b

a

f(x) + g(x) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx.

Task 6.11
Let f : [a, c] → R be a function and a < b < c. Then f is Riemann integrable on
[a, c] if and only if f is Riemann integrable on both [a, b] and [b, c]. In this case∫ c

a

f(x) dx =
∫ b

a

f(x) dx+
∫ c

b

f(x) dx.
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Exercise 6.12
Suppose the function f : [a, b]→ R is bounded above by M ∈ R: f(x) ≤M for all
x ∈ [a, b]. Then ∫ b

a

f(x) dx ≤M · (b− a).

6.3 The Fundamental Theorem of Calculus

Task 6.13
Let f : [a, b] → R be continuous on [a, b]. Then there is a number c ∈ [a, b] such
that

f(c) =
1

b− a

∫ b

a

f(x) dx.

Task 6.14
Let f : [a, b]→ R be bounded and Riemann integrable on [a, b]. Let

F (x) =
∫ x

a

f(τ) dτ.

Then F : [a, b]→ R is continuous on [a, b].

Does your proof of the result above actually yield a stronger result?

Task 6.15
Let f : [a, b]→ R be continuous on [a, b]. Let

F (x) =
∫ x

a

f(τ) dτ.

Then F : [a, b]→ R is differentiable on [a, b], and

F ′(x) = f(x).
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The next result is the Fundamental Theorem of Calculus.

Task 6.16
Suppose f : [a, b]→ R is Riemann integrable on [a, b], and Suppose f : [a, b]→ R is
Riemann integrable on [a, b], and suppose F : [a, b] → R is an “anti-derivative” of
f(x), i.e., F satisfies:

1. F is continuous on [a, b] and differentiable on (a, b),

2. F ′(x) = f(x) for all x ∈ [a, b].

Then ∫ b

a

f(τ) dτ = F (b)− F (a).





A Cardinality*

Recall that a function ϕ : A→ B is called injective, if x 6= x′ implies ϕ(x) 6= ϕ(x) for
all elements x, x′ ∈ A. A function ϕ : A → B is called surjective, if for all elements
y ∈ B there is an element x ∈ A with ϕ(x) = y. A bijection is a function that is both
injective and surjective.

We say that two sets A and B have the same cardinality if there is a bijection
ϕ : A→ B. If A and B have the same cardinality we write A ∼ B.

Given a set G, its power set P(G) is the set of all subsets of G:

P(G) := {A | A ⊆ G}

For instance, P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

Task A.1
Let G be some set. Then “∼” defines an equivalence relation on the power set of
G, i.e., the following properties hold:

1. A ∼ A for all A ∈ P(G)

2. If A ∼ B, then B ∼ A for all A,B ∈ P(G)

3. If A ∼ B and B ∼ C, then A ∼ C holds for all A,B,C ∈ P(G)

Let n ∈ N and A be a set. If A ∼ {1, 2, 3, . . . , n}, we say A has cardinality n. Sets
with cardinality n for some n ∈ N are called finite. The empty set ∅ is said to have
cardinality 0 and is also considered to be a finite set.

A set A, for which A ∼ N is called countable, or said to have countable cardinal-
ity.

The next result is usually attributed to Galileo Galilei (1564–1642):

Task A.2
Let 2N be the set of even natural numbers. Show: N ∼ 2N.

The set of natural numbers has the same cardinality as the set of all integers:
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Task A.3
N ∼ Z.

The set of rational numbers is also countable; this result like all the following results in
this section were discovered by Georg Cantor (1845–1918).

Task A.4
N ∼ Q.

You may want to prove first that the set of positive rational numbers is countable.

Are there uncountable sets? The answer to this question is a loud yes! The next result
establishes that P(N) is an example of an infinite set that is not countable.

This result, known as Cantor’s Theorem, is considered to be one of the most beautiful
results in all of mathematics. It generalizes the well-known fact that for finite sets G of
cardinality n, the power set P(G) has cardinality 2n.

Task A.5
Let A be any set. Then P(A) does not have the same cardinality as A.

How does one go about proving something like this? A direct proof seems to be
impossible—the only hope is a proof by contradiction...

Cantor’s Theorem shows that there is at least a countable number of distinct uncount-
able cardinalities.

The rest of this section is devoted to a proof of the fact that R ∼ P(N), thus establishing
that the set of real numbers is uncountable.

Task A.6
R ∼ (0, 1).
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Open and closed intervals have the same cardinality:

Task A.7
(0, 1) ∼ [0, 1].

It is left to establish that [0, 1] ∼ P(N). To see this we will write elements x ∈ [0, 1] in
their binary expansion.

For instance
5
8

=
1
21

+
0
22

+
1
23

and 1 =
1
2

+
1
22

+
1
23

+
1
24

+ . . .

Task A.8
Show that

1
3

=
1
22

+
1
24

+
1
26

+
1
28

+ . . .

Task A.9
Show that every x ∈ [0, 1] can be written as

x =
∞∑

n=1

εn

2n

with εn either 0 or 1 for all n ∈ N.

The next two tasks address a minor technical problem: the binary expansion of a
real number is not always unique; some numbers in [0, 1] have two different binary
expansions.

Task A.10
Let B be the set of those real numbers in [0, 1] with two (or more?) distinct binary
expansions.

1. Find an element in B.

2. Classify all real numbers in B.

3. Show that the set B is countable (and infinite).
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Task A.11
Suppose A ∼ P(N), and let B ⊆ A with B ∼ N. Then

(A \B) ∼ P(N).

Here is the result we are after:

Task A.12
[0, 1] ∼ P(N).

Is it true that every set A of real numbers containing N either has the cardinality of N
or the cardinality of R? This question is known as the Continuum Hypothesis:

Does N ⊂ A ⊂ R imply that either A ∼ N or A ∼ R?

The Continuum Hypothesis cannot be answered. Within the usual axiomatic system
of set theory, no contradictions arise from either a positive or a negative answer to the
Continuum Hypothesis. This deep result that the Continuum Hypothesis is independent
of the axioms of set theory was proved by Paul Cohen (1934–) in 1963, completing work
started by Kurt Gödel (1906–1978).
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A non-empty set is called perfect if it equals its set of accumulation points. R itself
and closed intervals are examples of perfect sets.

Task B.1
Every perfect set is uncountable.

Note that this result provides a second proof of the fact that R is uncountable, without
giving the additional information that R ∼ P(N).

We now construct a more interesting perfect set: Let C0 = [0, 1]. Let’s remove the
middle third of C0:

C1 =
[
0,

1
3

]
∪
[

2
3
, 1
]
.

Next we remove the two middle thirds of C1:

C2 =
[
0,

1
9

]
∪
[

2
9
,

1
3

]
∪
[

2
3
,

7
9

]
∪
[

8
9
, 1
]
.

Continue in this fashion: in each step remove the middle thirds of the intervals from
the previous step. See Figure 18 on the next page.

The Cantor set C is defined as the intersection of all these sets:

C =
∞⋂

n=0

Cn.

Task B.2
Show that C is perfect.

Task B.3
Show that C does not contain an open interval.
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C0

C1

C2

C3

Figure 18: The first steps in building the Cantor set.

What is the “length” of the Cantor set? Clearly C0 has length 1 (being an interval of
length 1).

Similarly, C1 has length 2
3 , C2 has length

22

32
, etc. Since C is contained in all Cn, it

must have “length” 0.

The notion of “length” will be made precise in a course on measure theory. You will
learn in such a course that C is indeed a set of measure 0.

Task B.4
The Cantor set consists of all real numbers in [0, 1], which have a base-3 expansion
with digits 0 and 2:

C =

{ ∞∑
n=1

εn

3n
| εn ∈ {0, 2} for all n ∈ N

}
.

Task B.4 provides an alternative way to show that C is uncountable, and indeed that
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C has the same cardinality as R. Let ϕ : [0, 1]→ C, be defined by

ϕ

( ∞∑
n=1

εn

2n

)
=
∞∑

n=1

2εn

3n
.

Here, every real number x ∈ [0, 1] is written in its binary expansion as

x =
∞∑

n=1

εn

2n

with εn ∈ {0, 1} for all n ∈ N. The map “essentially” is a bijection; there is a small
problem again with those real numbers that have two distinct binary expansions.





How to Solve It

George Pólya (1887–1985) described the experience of problem solving in his book How
to Solve It [18], p. v:

A great discovery solves a great problem but there is a grain of discovery in
the solution of any problem. Your problem may be modest; but if it challenges
your curiosity and brings into play your inventive facilities, and if you solve
it by your own means, you may experience the tension and enjoy the triumph
of discovery.

As part of his work on problem solving, Pólya developed a four-step problem-solving
process similar to the following:

Understanding the Problem

1. Can you state the problem in your own words?

2. What are you trying to find or do?

3. What are the unknowns?

4. What information do you obtain from the problem?

5. What information, if any, is missing or not needed?

Devising a Plan The following list of strategies, although not exhaustive, is very use-
ful:

1. Look for a pattern.

2. Examine related problems and determine if the same technique can be ap-
plied.

3. Examine a simpler or special case of the problem to gain insight into the
solution of the original problem.

4. Make a table.

5. Make a diagram.

6. Write an equation.

7. Use a guess and check.

8. Work backward.

9. Identify a subgoal.

Carrying out the Plan

1. Implement the strategy in Step 2 and perform any necessary actions or com-
putations.
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2. Check each step of the plan as you proceed. This may be intuitive checking
or a formal proof of each step.

3. Keep an accurate record of your work.

Looking Back

1. Check the results in the original problem. In some cases, this will require a
proof.

2. Interpret the solution in terms of the original problem. Does your answer
make sense? Is it reasonable?

3. Determine whether there is another method of finding the solution.

4. If possible, determine other related or more general problems for which the
techniques will work.

These and other general problem-solving strategies, or rules of thumb for successful
problem solving, are called heuristics.



How to Check Your Written Proofs

The objective of a proof is to show an informed reader (e.g. a fellow mathematician),
why the statement under consideration is correct. Because of its communicative nature,
a proof has to satisfy the same standards as other technical writing: It has to be correct
(your main concern!), express its thoughts clearly, explain its ideas in the easiest way
possible, be coherent, legible and aesthetically pleasing.

Alternating between “proofreading” your proof line-by-line and considering your “prod-
uct” as a whole is one way to achieve these goals.

Line-by-line Analysis. While you are carefully checking each line and each little
step of your proof, you should watch out for the following:

• Is this step correct?

• Are there counterexamples?

• Are all symbols defined or explained, the first time they show up in the proof?

• Do I need all the symbols and steps I use?

• Is the spelling correct?

• Can the wording be improved upon?

• Is there a more elegant way of explaining the argument?

Even making minor changes during a line-by-line analysis usually requires to start the
analysis all over again. If you make more than minor changes, you have to rewrite your
proof completely. Proofs you have seen in books have probably been rewritten by the
author more than a dozen times.

Global Analysis. During a global analysis you consider your proof as a whole:

• Does my proof “really” show what I am supposed to show?

• Did I forget to prove any of the statements?

• Are all parts of my proof really necessary?

• Do I use all the hypotheses?

• Do I give all necessary references and acknowledgments?

• Does one need all the hypotheses? Does my proof suggest generalizations?

• Does my “final product” look good?
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Acknowledgments and References. If you work together with classmates and
jointly obtain a solution to a problem, proper credit must be given, e.g., ... jointly
obtained by J. Doe and myself; we thank J. Doe for her helpful advice...

There is a fine line between academic cooperation and collusion. To avoid the latter, it
is recommended when working in a group, that the participants independently compose
their own final version of the proof. Copying a solution from a classmate or using other
sources without references constitutes an act of academic dishonesty.

Greek Alphabet

α alpha β beta γ gamma δ delta
ε, ε epsilon ζ zeta η eta θ, ϑ theta
ι iota κ kappa λ lambda µ mu
ν nu ξ xi o omikron π pi
ρ, % rho σ sigma τ tau υ upsilon
φ, ϕ phi χ chi ψ psi ω omega

Γ Gamma ∆ Delta Θ Theta Λ Lambda
Ξ Xi Π Pi Σ Sigma Υ Upsilon
Φ Phi Ψ Psi Ω Omega

Figure 19: Some letters of the Greek Alphabet and their pronunciation
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• George Pólya’s wrote his book on problem-solving strategies in 1945. Nowa-
days it seems to be read more by software programmers than by students of
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