
Math 3335 Solutions for Test 2 Fall 2016

Problem 1 (10 points) Consider f : R3 → R, given by

f(x, y, z) = 2x2z2 − 3y2z.

1. At the point (−1, 2, 1), find the direction in which f increases most rapidly.

The function increases most rapidly in the direction of the gradient.

∇f(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (4xz2,−6yz, 4x2z − 3y2).

Consequently ∇f(−1, 2, 1) = (−4,−12,−8).

2. Compute the directional derivative in this direction.

If ~v is a unit vector, then the directional derivative of f in the direction of ~v

is given by ∇f · ~v. In our case ~v =
∇f

‖∇f‖
, and thus the desired directional

derivative is

∇f(−1, 2, 1) · ∇f(−1, 2, 1)

‖∇f(−1, 2, 1)‖
= ‖∇f(−1, 2, 1)‖ =

√
224 = 4

√
14.

Problem 2 (15 points) Let ~f : R2 → R2 be given by

~f(x, y) = (2xy − y sin(xy) + cos(x))~i+ (x2 − x sin(xy)− 3y2)~j.

1. Find F : R2 → R such that ∇F = ~f .

∂F

∂x
= 2xy − y sin(xy) + cos(x), so

F (x, y) =

∫
(2xy − y sin(xy) + cos(x))dx = x2y + cos(xy) + sin(x) + g(y).

To determine the function g(y), we differentiate the expression above with

respect to y, and compare to the second component of ~f(x, y):

∂F

∂y
= x2 − x sin(xy) + g′(y).

Thus g′(y) = −3y2; so g(y) = −y3 and

F (x, y) = x2y + cos(xy) + sin(x)− y3.

2. Let C be the curve parametrized by ~r(t) = (t, 2t) for t ∈ [0, 1]. Compute∫
C

~f · d~r.

Using the FTC for line integrals, we obtain∫
C

~f · d~r = F (~r(1))− F (~r(0)) = F (1, 2)− F (0, 0) = −7 + sin(1) + cos(2).



Problem 3 (15 points) Let

~f(t) =

(
cos t√
1 + t2

,
sin t√
1 + t2

,
−t√
1 + t2

)
.

1. Compute ‖~f(t)‖.

‖~f(t)‖ =

√
cos2 t+ sin2 t+ t2

1 + t2
= 1.

2. Show that ~f ′(t) · ~f(t) = 0 for all t.

~f ′(t) =
1

(1 + t2)1/2
(− sin t, cos t,−1) − t

(1 + t2)3/2
(cos t, sin t,−t), using the

quotient rule three times (with the same denominator). Consequently,

~f ′(t) · ~f(t) =
1

1 + t2
(− sin t cos t+ sin t cos t+ t)− t

(1 + t2)2
(cos2 t+ sin2+t2)

=
t

1 + t2
− t

(1 + t2)2
(1 + t2) = 0.

Problem 4 (15 points) Compute the arclength of ~f(t) = (cos 3t, sin 3t, 2t3/2) on the in-
terval [0, 1].∫ 1

0

‖~f ′(t)‖ dt =
∫ 1

0

√
9 sin2 t+ 9 cos2 t+ 9t dt = 3

∫ 1

0

√
1 + t dt = 4

√
2− 2.

In the last step one can use a substitution u = 1 + t.

Problem 5 (15 points) Compute the line integral for ~f(x, y) = (x2 − ex, x+ e2y) over the
polygonal path from (0, 0) to (1, 0) to (0, 1).
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We can parametrize the horizontal portion of the curve by ~r(t) = (t, 0), for
t ∈ [0, 1], and the diagonal portion of the curve by ~r(t) = (1 − t, t), also with
t ∈ [0, 1].
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Thus∫
C

~f · d~r =

∫ 1

0

(t2 − et, t+ 1) · (1, 0) dt

+

∫ 1

0

((1− t)2 + e1−t, (1− t) + e2t) · (−1, 1) dt

=

∫ 1

0

t2 − et − (1− t)2 − e1−t + (1− t) + e2t dt

=
e2

2

Problem 6 (15 points) Let f, g : R2 → R be two continuously differentiable functions.
(∇ denotes the gradient operator.)

1. Show: ∇(fg) = f ∇g + g ∇f .

∇(fg) =

(
∂(fg)

∂x
,
∂(fg)

∂y

)
=

(
f
∂g

∂x
+ g

∂f

∂x
, f

∂g

∂y
+ g

∂f

∂y

)
= f

(
∂g

∂x
,
∂g

∂y

)
+ g

(
∂f

∂x
,
∂f

∂y

)
= f ∇g + g ∇f.

2. Let C be a closed curve. Explain why∮
C

(f ∇g) · d~r = −
∮
C

(g ∇f) · d~r.

This follows from Part 1 and the FTC for line integrals over closed curves:∮
C

(f ∇g) · d~r +

∮
C

(g ∇f) · d~r =

∮
C

∇(fg) · d~r = 0.

Problem 7 (15 points) Let R = {(x, y) | x2 + y2 ≤ 1 and y ≥ 0} be the semi-disk of

radius 1 centered at (0, 0), and let ~F (x, y) = (2, x2).

1. Compute the left side of Green’s Theorem.

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫ 1

−1

(∫ √
1−x2

0

2x dy

)
dx =

∫ 1

−1

2x
√
1− x2 dx = 0.

For the last step a substitution u = 1− x2 is helpful.

2. Compute the right side of Green’s Theorem.

Let C1 be the circular portion of the boundary of R, and let C2 be the straight
portion at the bottom of R. C1 can be parametrized by ~r(t) = (cos t, sin t)
for t ∈ [0, π], and a parametrization of C2 is ~r(t) = (t, 0), with t ∈ [−1, 1].
It is then straightforward to check that the line integral over C1 equals −4,
while the second line integral computes to +4.
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