Chapter Four

Integration

4.1. Introduction. If y : D — C is simply a function on a real interval D = [a, 8] , then the
B

integral Iy(t)dt is, of course, simply an ordered pair of everyday 3’¢ grade calculus

integrals:
B B B
_f y()dt = Ix(t)dt +i I y(t)dt,

where y(¢) = x(¢) + iy(¢). Thus, for example,

1

2 R A S
-([[(t +1)+it’|dt = Tt

Nothing really new here. The excitement begins when we consider the idea of an integral
of an honest-to-goodness complex function /' : D - C, where D is a subset of the complex
plane. Let’s define the integral of such things; it is pretty much a straight-forward extension
to two dimensions of what we did in one dimension back in Mrs. Turner’s class.

Suppose f'is a complex-valued function on a subset of the complex plane and suppose a
and b are complex numbers in the domain of . In one dimension, there is just one way to
get from one number to the other; here we must also specify a path from a to b. Let C be a
path from a to b, and we must also require that C be a subset of the domain of /.

b

‘I/\/
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Note we do not even require that a # b; but in case a = b, we must specify an orientation
for the closed path C. We call a path, or curve, closed in case the initial and terminal points
are the same, and a simple closed path is one in which no other points coincide. Next, let P
be a partition of the curve; that is, P = {z0,z1,22, ...,z is a finite subset of C, such that

a = zo, b = z,, and such that z; comes immediately after z;_; as we travel along C from a to
b.

A Riemann sum associated with the partition P is just what it is in the real case:
n
S(P) = > _fz})Az;,
-1

where z; is a point on the arc between z;-1 and z; , and Az; = z; — z;;. (Note that for a
given partition P, there are many S(P)—depending on how the points z; are chosen.) If
there is a number L so that given any € > 0, there is a partition P, of C such that

IS(P)—L| < ¢

whenever P O P, then fis said to be integrable on C and the number L is called the

integral of fon C. This number L is usually written f Az)dz.
c

Some properties of integrals are more or less evident from looking at Riemann sums:
j cflz)dz = ¢ I fz2)dz
c c

for any complex constant c.
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v[Q”(z) +g(2))dz = Iﬂz)dz + vl.g(z)a’z
c C c

4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let

y : [a, f] = C be a complex description of the curve C. We partition C by partitioning the
interval [a, B] in the usual way: @ =ty < t; < t» <...< t, = 8. Then

{a = y(a),y(t1),y(t2),...,y(B) = b} is partition of C. (Recall we assume that y'(z) # 0
for a complex description of a curve C.) A corresponding Riemann sum looks like

S(P) = DMy NG ) = y(t1).

J=1

We have chosen the points z; = y(¢7), where ;1 < ¢ < ;. Next, multiply each term in the
sum by 1 in disguise:

Sy = S prn D=Ly,

j=1

I hope it is now reasonably convincing that ”in the limit”, we have

B
[0 = [ rry' @a.
c P
(We are, of course, assuming that the derivative y' exists.)

Example

We shall find the integral of f{z) = (x> +y) +i(xy) froma = 0 to b = 1 + i along three
different paths, or contours, as some call them.

First, let C; be the part of the parabola y = x? connecting the two points. A complex
description of Cyis y1(¢) = t+it?,0 <t < 1:
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Now, v1() = 1+2ti, and f{ y1(2)) = (> +?) +itt> = 21> +it’. Hence,

1

[ 1oz = [ 1@y war

C 0
1.

= | Q% +i3)(1 + 2t)dt

0

= .(21‘2 —2t% + 5637)dt
0

-4 5
- 15 T4

Next, let’s integrate along the straight line segment C, joining 0 and 1 + .

[ 02 04 06 0.8 i

Here we have y2(¢) = t+it,0 < ¢ < 1. Thus, y5(¢) = 1 + i, and our integral looks like
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1

[ 1oyt = [ fr20)r50ar
C

= |[(£? + 1) +ir?](1 + i)dt

1

= | [t +i(t+2¢%)]dt

o ¢

1.7
276!

Finally, let’s integrate along C3, the path consisting of the line segment from 0 to 1
together with the segment from 1 to 1 +i.

0.8

We shall do this in two parts: C3;, the line from 0 to 1 ; and Cs,, the line from 1 to 1 + 4.
Then we have

j A2)dz = j A2)dz + j A2)dz.
C;

C3 Csx

For C3; we have y(¢) = ¢,0 <t < 1. Hence,

jf(z)dz - jtzdt - %

C31 0

For C3; we have y(¢) = 1 +it,0 < ¢t < 1. Hence,

1
_ N 1, 3
Iﬂz)dz—j(1+t+zt)ldt— L3
Csp 0
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Thus,

If(z)dz = jj(z)dz+ jf(z)dz
Cs Csi Cn

1.,.3;
6+2l.

Suppose there is a number M so that |[f{(z)| < M for all zeC. Then

B
[100dz| = | [y @ar
C a
’
< |Iy(@)y'(0))dt
' B

< M{ly'())dt = ML,

a

B
where L = I|y’(t) |dt is the length of C.

Exercises

1. Evaluate the integral j?dz, where C is the parabolay = x> from 0 to 1 + i.
c

2. Evaluate J L dz, where C is the circle of radius 2 centered at 0 oriented
c
counterclockwise.

4. Evaluate I f(z)dz, where C is the curve y = x> from -1 —ito 1+i,and
c

1 for y<O
Az) = :
4y for y >0

5. Let C be the part of the circle y(¢) = e in the first quadrant from a = 1 to » = i. Find as
small an upper bound as you can for“c(z2 -z +5)dz | .
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6. Evaluate f fz)dz where f(z) = z+ 2Z and C'is the path fromz = 0toz = 1 + 2i
c

consisting of the line segment from 0 to 1 together with the segment from 1 to 1 + 2i.

4.3 Antiderivatives. Suppose D is a subset of the reals and y : D — C is differentiable at ¢.
Suppose further that g is differentiable at y(z). Then let’s see about the derivative of the
composition g(y(#)). Itis, in fact, exactly what one would guess. First,

gy () = ulx(®),y(®) +iv(x(®),y(),
where g(z) = u(x,y) + iv(x,y) and y(¢) = x(¢) + iy(¢). Then,

d _ Oudx , Qudy -(@@ @d_y)
¥ D) = 5ar o ar ti\axar Ty dr )

The places at which the functions on the right-hand side of the equation are evaluated are
obvious. Now, apply the Cauchy-Riemann equations:

d _ Oudx _ Ovdy (@ﬂ @ﬂ)
ar$0 D) = e "o ar T\ e dar T on ar
(i )( )

(ax “ax)( dr U dr

=g'(y()y' (.

The nicest result in the world!

Now, back to integrals. Let F : D - C and suppose F'(z) = f(z) in D. Suppose moreover
that @ and b are in D and that C < D is a contour from a to 5. Then

B
[ 100 = [ fr @y @,
c o

where y : [a, ] - C describes C. From our introductory discussion, we know that
%F(V(t)) = F'(y(®)y'(t) =Ay(£))y'(¢). Hence,

4.7



B
[ o)tz = [ Ry @)y (e
9 a

B
= [-LFG@)dt = Fr(B) - Fy(@)
= F(b) - F(a).

This is very pleasing. Note that integral depends only on the points a and b and not at all
on the path C. We say the integral is path independent. Observe that this is equivalent to
saying that the integral of f'around any closed path is 0. We have thus shown that if in D

the integrand f'is the derivative of a function F, then any integral j fz)dz for C < D is path
c
independent.

Example

Let C be the curve y = xLZ from the pointz = 1 +i to the pointz = 3 + é Let’s find

I z%dz.
c

This is easy—we know that F'(z) = z* , where F(z) = +z°. Thus,

[ 22z - %[(1 +i)% - (3+ 6)3}
C

260 _ 728 ;

27 2187

Now, instead of assuming f has an antiderivative, let us suppose that the integral of f
between any two points in the domain is independent of path and that f'is continuous.
Assume also that every point in the domain D is an interior point of D and that D is
connected. We shall see that in this case, f'has an antiderivative. To do so, let zo be any
point in D, and define the function F by

F) = [ flo)e,
C;

where C: is any path in D from z, to z. Here is important that the integral is path
independent, otherwise F(z) would not be well-defined. Note also we need the assumption
that D is connected in order to be sure there always is at least one such path.
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Now, for the computation of the derivative of F:

Fz+Az) - Fz) = j fs)ds,

La:

where L, is the line segment from z to z + Az.

ZTAZ

Zg

Next, observe that I ds = Az. Thus, f(z) = i I f(z)ds, and we have

LAz LAz

F(z+ AAzg —F@) g - t j (f(s) — fz))ds.
L

Now then,

< | Az |1azimax{[fts) ~ fiz)| : seLa:}

L [ (s) - f=))as
L
< max{|f{s) —f(z)| : s€La:}.

We know f'is continuous at z, and so lim max<{|f(s) — f(z)| : seLa-} = 0. Hence,
Az—0

lim

Az-0

F(Z+AA22—F(Z) ~flz) =lim (t I(f(s) —f(z))dS)
L

Az—0

= 0.
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In other words, F'(z) = f(z), and so, just as promised, f/ has an antiderivative! Let’s
summarize what we have shown in this section:

Suppose f : D - C is continuous, where D is connected and every point of D is an interior
point. Then f'has an antiderivative if and only if the integral between any two points of D is
path independent.

Exercises

7. Suppose C is any curve from 0 to 7 + 2i. Evaluate the integral
Z
I cos( 5 )dz.
c

1

Z .

8.a)Let F(z) = logz, —=m < argz < 27 Show that the derivative F'(z) =
b)Let G(z) = logz, —Z < argz < = Show that the derivative G'(z) = +.
c)Let C; be a curve in the right-half plane D; = {z : Rez > 0} from —i to i that does not

pass through the origin. Find the integral

J %dz.

Ci

d)Let C, be a curve in the left-half plane D, = {z : Rez < 0} from —i to i that does not
pass through the origin. Find the integral.

J. %dz.

C

9. Let C be the circle of radius 1 centered at 0 with the clockwise orientation. Find
1
j 70’2
c

10. a)Let H(z) = z¢,—n < argz < r. Find the derivative H'(z).
b)Let K(z) = z¢,—% < argz < Z-. Find the derivative K'(2).
c)Let C be any path from —1 to 1 that lies completely in the upper half-plane and does not

pass through the origin. (Upper half-plane = {z : Imz > 0}.) Find
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I F(z)dz,
c

where F(z) = z',-n < argz < 7.

11. Suppose P is a polynomial and C is a closed curve. Explain how you know that
IP(Z)dZ =0.
c

4.11



