
Chapter Six

More Integration

6.1. Cauchy’s Integral Formula. Suppose f is analytic in a region containing a simple
closed contour C with the usual positive orientation and its inside , and suppose z0 is inside
C. Then it turns out that

fz0  1
2i 

C

fz
z  z0 dz.

This is the famous Cauchy Integral Formula. Let’s see why it’s true.

Let   0 be any positive number. We know that f is continuous at z0 and so there is a
number  such that |fz  fz0|   whenever |z  z0 |  . Now let   0 be a number
such that    and the circle C0  z : |z  z0 |   is also inside C. Now, the function
fz
zz0 is analytic in the region between C and C0; thus


C

fz
z  z0 dz  

C0

fz
z  z0 dz.

We know that 
C0

1
zz0 dz  2i, so we can write


C0

fz
z  z0 dz  2ifz0  

C0

fz
z  z0 dz  fz0 

C0

1
z  z0 dz

 
C0

fz  fz0
z  z0 dz.

For zC0 we have
fz  fz0
z  z0  |fz  fz0|

|z  z0 |
 
 .

Thus,

6.1




C0

fz
z  z0 dz  2ifz0  

C0

fz  fz0
z  z0 dz

 
 2  2.

But  is any positive number, and so


C0

fz
z  z0 dz  2ifz0  0,

or,

fz0  1
2i 

C0

fz
z  z0 dz 

1
2i 

C

fz
z  z0 dz,

which is exactly what we set out to show.

Meditate on this result. It says that if f is analytic on and inside a simple closed curve and
we know the values fz for every z on the simple closed curve, then we know the value for
the function at every point inside the curve—quite remarkable indeed.

Example

Let C be the circle |z|  4 traversed once in the counterclockwise direction. Let’s evaluate
the integral


C

cos z
z2  6z  5

dz.

We simply write the integrand as

cos z
z2  6z  5

 cos z
z  5z  1  fz

z  1 ,

where
fz  cos z

z  5 .

Observe that f is analytic on and inside C, and so,
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
C

cos z
z2  6z  5

dz  
C

fz
z  1 dz  2if1

 2i cos11  5   i2 cos1

Exercises

1. Suppose f and g are analytic on and inside the simple closed curve C, and suppose
moreover that fz  gz for all z on C. Prove that fz  gz for all z inside C.

2. Let C be the ellipse 9x2  4y2  36 traversed once in the counterclockwise direction.
Define the function g by

gz  
C

s2  s  1
s  z ds.

Find a) gi b) g4i

3. Find


C

e2z
z2  4

dz,

where C is the closed curve in the picture:

4. Find 


e2z
z24

dz, where  is the contour in the picture:
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6.2. Functions defined by integrals. Suppose C is a curve (not necessarily a simple closed
curve, just a curve) and suppose the function g is continuous on C (not necessarily analytic,
just continuous). Let the function G be defined by

Gz  
C

gs
s  z ds

for all z  C. We shall show that G is analytic. Here we go.

Consider,
Gz  z  Gz

z  1
z 

C

1
s  z  z 

1
s  z gsds

 
C

gs
s  z  zs  z ds.

Next,

Gz  z  Gz
z  

C

gs
s  z2

ds  
C

1
s  z  zs  z 

1
s  z2

gsds

 
C

s  z  s  z  z
s  z  zs  z2

gsds

 z 
C

gs
s  z  zs  z2

ds.

Now we want to show that
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z0
lim z 

C

gs
s  z  zs  z2

ds  0.

To that end, let M  max|gs| : s  C, and let d be the shortest distance from z to C.
Thus, for s  C, we have |s  z|  d  0 and also

|s  z  z|  |s  z|  |z|  d  |z|.

Putting this all together, we can estimate the integrand above:

gs
s  z  zs  z2

 M
d  |z|d2

for all s  C. Finally,

z 
C

gs
s  z  zs  z2

ds  |z| M
d  |z|d2

lengthC,

and it is clear that

z0
lim z 

C

gs
s  z  zs  z2

ds  0,

just as we set out to show. Hence G has a derivative at z, and

Gz  
C

gs
s  z2

ds.

Truly a miracle!

Next we see that G has a derivative and it is just what you think it should be. Consider
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Gz  z  Gz
z  1

z 
C

1
s  z  z2

 1
s  z2

gsds

 1
z 

C

s  z2  s  z  z2
s  z  z2s  z2

gsds

 1
z 

C

2s  zz  z2
s  z  z2s  z2

gsds

 
C

2s  z  z
s  z  z2s  z2

gsds

Next,

Gz  z  Gz
z  2 

C

gs
s  z3

ds

 
C

2s  z  z
s  z  z2s  z2

 2
s  z3

gsds

 
C

2s  z2  zs  z  2s  z  z2
s  z  z2s  z3

gsds

 
C

2s  z2  zs  z  2s  z2  4zs  z  2z2
s  z  z2s  z3

gsds

 
C

3zs  z  2z2
s  z  z2s  z3

gsds

Hence,

Gz  z  Gz
z  2 

C

gs
s  z3

ds  
C

3zs  z  2z2
s  z  z2s  z3

gsds

 |z| |3m|  2|z|M
d  z2d3

,

where m  max|s  z| : s  C. It should be clear then that

z0
lim Gz  z  Gz

z  2 
C

gs
s  z3

ds  0,

or in other words,
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Gz  2 
C

gs
s  z3

ds.

Suppose f is analytic in a region D and suppose C is a positively oriented simple closed
curve in D. Suppose also the inside of C is in D. Then from the Cauchy Integral formula,
we know that

2ifz  
C

fs
s  z ds

and so with g  f in the formulas just derived, we have

f z  1
2i 

C

fs
s  z2

ds, and f z  2
2i 

C

fs
s  z3

ds

for all z inside the closed curve C. Meditate on these results. They say that the derivative
of an analytic function is also analytic. Now suppose f is continuous on a domain D in
which every point of D is an interior point and suppose that 

C
fzdz  0 for every closed

curve in D. Then we know that f has an antiderivative in D—in other words f is the
derivative of an analytic function. We now know this means that f is itself analytic. We
thus have the celebratedMorera’s Theorem:

If f:D  C is continuous and such that 
C
fzdz  0 for every closed curve in D, then f is

analytic in D.

Example

Let’s evaluate the integral


C

ez
z3
dz,

where C is any positively oriented closed curve around the origin. We simply use the
equation

f z  2
2i 

C

fs
s  z3

ds
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with z  0 and fs  es.Thus,

ie0  i  
C

ez
z3
dz.

Exercises

5. Evaluate


C

sin z
z2
dz

where C is a positively oriented closed curve around the origin.

6. Let C be the circle |z  i|  2 with the positive orientation. Evaluate

a) 
C

1
z24

dz b) 
C

1
z242

dz

7. Suppose f is analytic inside and on the simple closed curve C. Show that


C

f z
z  w dz  

C

fz
z  w2

dz

for every w  C.

8. a) Let  be a real constant, and let C be the circle t  eit,   t  . Evaluate


C

ez
z dz.

b) Use your answer in part a) to show that


0



ecos t cos sin tdt  .

6.3. Liouville’s Theorem. Suppose f is entire and bounded; that is, f is analytic in the
entire plane and there is a constant M such that |fz|  M for all z. Then it must be true
that f z  0 identically. To see this, suppose that f w  0 for some w. Choose R large
enough to insure that MR  |f w|. Now let C be a circle centered at 0 and with radius
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  maxR, |w|. Then we have :

M
  |f w|  1

2i 
C

fs
s  w2

ds

 1
2

M
2
2  M

 ,

a contradiction. It must therefore be true that there is no w for which f w  0; or, in other
words, f z  0 for all z. This, of course, means that f is a constant function. What we
have shown has a name, Liouville’s Theorem:

The only bounded entire functions are the constant functions.

Let’s put this theorem to some good use. Let pz  anzn  an1zn1 a1z  a0 be a
polynomial. Then

pz  an  an1z  an2
z2

 a0zn zn.

Now choose R large enough to insure that for each j  1,2, ,n, we have anj
zj

 |an |
2n

whenever |z|  R. (We are assuming that an  0. ) Hence, for |z|  R, we know that

|pz|  |an |  an1
z  an2

z2
 a0zn |z|n

 |an |  an1
z  an2

z2
 a0

zn |z|n

 |an |  |
an |
2n 

|an |
2n 

|an |
2n |z|n

 |an |
2 |z|n.

Hence, for |z|  R,

1
|pz|

 2
|an ||z|n

 2
|an |Rn

.

Now suppose pz  0 for all z. Then 1
pz is also bounded on the disk |z|  R. Thus,

1
pz

is a bounded entire function, and hence, by Liouville’s Theorem, constant! Hence the
polynomial is constant if it has no zeros. In other words, if pz is of degree at least one,
there must be at least one z0 for which pz0  0. This is, of course, the celebrated
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Fundamental Theorem of Algebra.

Exercises

9. Suppose f is an entire function, and suppose there is anM such that Re fz  M for all
z. Prove that f is a constant function.

10. Suppose w is a solution of 5z4  z3  z2  7z  14  0. Prove that |w|  3.

11. Prove that if p is a polynomial of degree n, and if pa  0, then pz  z  aqz,
where q is a polynomial of degree n  1.

12. Prove that if p is a polynomial of degree n  1, then

pz  cz  z1k1z  z2k2 z  zjkj ,

where k1,k2, ,kj are positive integers such that n  k1  k2 kj.

13. Suppose p is a polynomial with real coefficients. Prove that p can be expressed as a
product of linear and quadratic factors, each with real coefficients.

6.4. Maximum moduli. Suppose f is analytic on a closed domain D. Then, being
continuous, |fz| must attain its maximum value somewhere in this domain. Suppose this
happens at an interior point. That is, suppose |fz|  M for all z  D and suppose that
|fz0|  M for some z0 in the interior of D. Now z0 is an interior point of D, so there is a
number R such that the disk  centered at z0 having radius R is included in D. Let C be a
positively oriented circle of radius   R centered at z0. From Cauchy’s formula, we
know

fz0  1
2i 

C

fs
s  z0 ds.

Hence,

fz0  1
2 

0

2

fz0  eitdt,

and so,
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M  |fz0|  1
2 

0

2

|fz0  eit|dt  M.

since |fz0  eit|  M. This means

M  1
2 

0

2

|fz0  eit|dt.

Thus,

M  1
2 

0

2

|fz0  eit|dt  1
2 

0

2

M  |fz0  eit|dt  0.

This integrand is continuous and non-negative, and so must be zero. In other words,
|fz|  M for all z  C. There was nothing special about C except its radius   R, and so
we have shown that f must be constant on the disk .

I hope it is easy to see that if D is a region (connected and open), then the only way in
which the modulus |fz| of the analytic function f can attain a maximum on D is for f to be
constant.

Exercises

14. Suppose f is analytic and not constant on a region D and suppose fz  0 for all z  D.
Explain why |fz| does not have a minimum in D.

15. Suppose fz  ux,y  ivx,y is analytic on a region D. Prove that if ux,y attains a
maximum value in D, then u must be constant.
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