
Reflective thinking turns experience into insight.
John Maxwell

1 Numbers

In 1879, Gottlob Frege completed the first step of his program to put mathematics
on a solid foundation. His idea was that logic should be the foundation of all
mathematics, and, following Gottfried von Leibniz (1646–1716) and George Boole
(1815–1864), he created a rigorous symbolic language, which he called Begriffs-
schrift, to incorporate all standard principles of logic.

Georg Cantor followed in his footsteps and developed set theory from basic log-
ical principles. In 1888, Richard Dedekind took the next step, and presented a
construction of the real numbers based on set theory.

It should be mentioned that Frege’s program was doomed to fail. Frege’s construc-
tion allowed objects such as “the set of all sets”. Bertrand Russell used this to
construct a paradox: Let E denote the set of all sets which do not contain them-
selves as members. Is E an element of E? It can’t be, because E contains only sets
which are not members of themselves. Can E fail to be an element of E? No, since
if E 6∈ E, then by the definition of the set E, E is contained in E.

Bertrand Russell’s and Alfred Whitehead’s attempts to “fix” these problems in their
monumental Principia Mathematica are generally regarded as artificial and therefore
in violation of the spirit of Frege’s program.

In response, David Hilbert came up with an alternative program: Use axiomatic
systems as the foundation of mathematics together with meta-mathematics. Math-
ematicians “do” mathematics starting from axiomatic systems; meta-mathematics
allows to talk about the process “from the outside” addressing issues such as com-
pleteness1 and consistency2 of a given axiomatic system.

In 1930, Kurt Gödel showed that this approach was equally flawed: It is not possible
to show (within the axiomatic system) that an axiomatic system which incorporates
the arithmetic of natural numbers is complete (or consistent).

1An axiomatic system is complete, if all statements within the axiomatic system can—in
principle—be shown to be true or to be false.

2An axiomatic system is said to be consistent, if the axioms can be shown not to lead to
contradictions.



1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set
of Natural Numbers3:

The natural numbers are a set N together with a special element called
0, and a function S : N → N satisfying the following axioms:

(D1) S is injective4.

(D2) S(N) = N \ {0}.5

(D3) If a subset M of N contains 0 and satisfies S(M) ⊆ M , then
M = N.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the
Principle of Induction:

Exercise 1.1

Let P (n) be a predicate with the set of natural numbers as its domain. If

1. P (0) is true, and

2. P (S(n)) is true, whenever P (n) is true,

then P (n) holds for all natural numbers.

3A similar definition of the natural numbers was introduced by Giuseppe Peano in 1889:

The natural numbers are a set N together with a special element called 0, and a function

S : N → N satisfying the following axioms:

(P1) 0 ∈ N.

(P2) If n ∈ N, then S(n) ∈ N.

(P3) If n ∈ N, then S(n) 6= 0.

(P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the

set A contains N.

(P5) S(m) = S(n) implies m = n for all m,n ∈ N.

4A function f : A → B is called injective if for all a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2.
5For a function f : A → B, f(A) := {b ∈ B | f(a) = b for some a ∈ A}.
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Existence of the set of natural numbers. Do natural numbers exist? Fol-
lowing Dedekind, we will say that a set M is infinite, if there is an injective map
f : M → M that is not surjective6.

Exercise 1.2

Show that the set of natural numbers as defined on the previous page is infinite.

In fact, one can show that the converse also holds: If there is an infinite set, then
there are natural numbers.

In order not to get stuck in a finite universe, we will from now on additionally as-
sume that the following axiom holds:

(D4) There is a set which satisfies Axioms (D1)–(D3).

Arithmetic Properties. Addition of natural numbers is established recursively
in the following way: For a fixed but arbitrary m ∈ N we define

m+ 0 := m

m+ S(n) := S(m+ n) for all n ∈ N

Exercise 1.3

If we set S(0) := 1, then S(m) = m+ 1 for all natural numbers m ∈ N.

Use induction for the following:

Exercise 1.4

Show that addition on N is associative.

6A function f : A → B is called surjective, if f(A) = B.
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Exercise 1.5

Show that addition on N is commutative.

This last exercise implies in particular that 0 is the (unique) neutral element with
respect to addition: n+ 0 = 0 + n = n holds for all n ∈ N.

Multiplication of natural numbers is also defined recursively as follows: For a fixed
but arbitrary m ∈ N we define

m · 0 := 0

m · (n+ 1) := m · n+m for all n ∈ N

Exercise 1.6

Show that the following distributive law holds for natural numbers:

(m+ n) · k = m · k + n · k.

Exercise 1.7

Show that multiplication on N is commutative.

Exercise 1.8

Show that multiplication on N is associative.

4



Exercise 1.9

Show that 1 is the neutral element with respect to multiplication.

Exercise 1.10

Show that multiplication is zero-divisor free:

m · n = 0 implies m = 0 or n = 0.

Finally we can impose a total order7 on N as follows: We say that m ≤ n, if there
is a natural number k, such that m+ k = n.

Show that “≤” is indeed a total order:

Exercise 1.11

“≤” is reflexive8.

Task 1.12

“≤” is anti-symmetric9.

7A relation ∼ on A is called a total order, if ∼ is reflexive, anti-symmetric, transitive, and has
the property that for all a, b ∈ A, a ∼ b or b ∼ a holds.

8A relation ∼ on A is reflexive if for all a ∈ A, a ∼ a.
9A relation ∼ on A is anti-symmetric if for all a, b ∈ A the following holds: a ∼ b and b ∼ a

implies that a=b.
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Exercise 1.13

“≤” is transitive10.

Task 1.14

For all m,n ∈ N, m ≤ n or n ≤ m.

Show the following two compatibility laws:

Task 1.15

If m ≤ n, then m+ k ≤ n+ k for all k ∈ N.

Task 1.16

If m ≤ n, then m · k ≤ n · k for all k ∈ N.

10A relation ∼ on A is transitive if for all a, b, c ∈ A the following holds: a ∼ b and b ∼ c implies
that a ∼ c.
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Recursion and Uniqueness. Before we give a proof of the “essential” uniqueness
of the natural numbers, we will follow Dedekind and establish the following general
Recursion Principle:

Task 1.17

Let A be an arbitrary set, and let a ∈ A and a function f : A → A be given.
Then there exists a unique map ϕ : N → A satisfying

1. ϕ(0) = a, and

2. ϕ ◦ S = f ◦ ϕ.

The setup of the proof is somewhat tricky: Consider all subsets K ⊆ N × A with
the following properties:

1. (0, a) ∈ K, and

2. If (n, b) ∈ K, then (S(n), f(b)) ∈ K.

Clearly N× A itself has these properties; we can therefore define the smallest such
set: Let

L =
⋂

{K ⊆ N×A | K satisfies (1) and (2)} .

Now show by induction that for every n ∈ N there is a unique b ∈ A with (n, b) ∈ L.
This property defines ϕ by setting ϕ(n) = b for all n ∈ N.

The Recursion Principles makes it possible to define a recursive procedure (the
function ϕ) via a formula (the function f).

Exercise 1.18

Define addition of an arbitrary natural number n and the fixed natural number
m using the Recursion Principle.
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Exercise 1.19

Define multiplication of an arbitrary natural number n with the fixed natural
number m using the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in
the following sense:

Task 1.20

Suppose that N, S : N → N and 0 satisfy Axioms (D1)–(D3), and that N
′,

S′ : N′ → N
′ and 0′ satisfy Axioms (D1)–(D3) as well.

Then there is a bijection11ϕ : N → N
′ such that

1. ϕ(0) = 0′, and

2. ϕ ◦ S = S′ ◦ ϕ.
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11A function f : A → B is a bijection, if it is both injective and surjective.
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