
2 Numerical Series

From this section onward the standard results from a first Analysis course are a
prerequisite. For this section in particular you can (and will need to) use results
about numerical sequences.

Given a sequence (an)n∈N of real numbers, the infinite series

∞∑

n=0

an is a formal

expression of the form

∞∑

n=0

an = a0 + a1 + a2 + a3 + · · ·

The corresponding sequence of partial sums (sk)k∈N is defined by

sk = a1 + a2 + a3 + · · · ak.

If the sequence of partial sums converges, with limit s, we say that the series

∞∑

n=0

an

converges, and we write
∞∑

n=0

an = s.

We will often write
∑

an instead of

∞∑

n=0

an. Sometimes the summation will not start

at n = 0.

Exercise 2.1

Show that the series
∞∑

n=0

an converges if and only if there is a k ∈ N such that

∞∑

n=k

an converges.
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This exercise does not imply that for a given k 6= 0

∞∑

n=0

an =
∞∑

n=k

an.

The following are also direct consequences of the corresponding facts for sequences:

1. If b ∈ R and the series
∑

an converges, then the sum
∑

(b · an) converges as
well, and

∞∑

n=0

(b · an) = b ·
∞∑

n=0

an.

2. If the series
∑

an and
∑

bn both converge, then their sum
∑

(an+bn) converges
as well, and

∞∑

n=0

(an + bn) =

∞∑

n=0

an +

∞∑

n=0

bn.

Exercise 2.2

If an ≥ 0 for all n ∈ N, then
∑

an converges if and only if the corresponding
sequence of partial sums (sk) is bounded.

Task 2.3

Show that

∞∑

n=1

1

n2
converges.

Hint: Show that the partial sums satisfy sk ≤ 2−
1

k
.

This implies that

∞∑

n=1

1

n2
≤ 2. Euler showed that the limit is actually equal to

π2

6
≈ 1.64493.
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Task 2.4

Show that
∞∑

n=1

1

n
diverges (= does not converge).

Hint: Show that the partial sums satisfy s2k ≥ 1 +
k

2
.

Exercise 2.5

The series
∑

an converges if and only if for all ε > 0 there is an N ∈ N such
that whenever m > n ≥ N it follows that

|an+1 + an+2 + · · · am| < ε.

Exercise 2.6

If
∑

an converges, then (an) converges to 0.

Note that by the example in Task 2.4 the converse of Exercise 2.6 does not hold.

Exercise 2.7

Show: If the series

∞∑

n=0

|an| converges, so does

∞∑

n=0

an.

If
∞∑

n=0

|an| converges, we say that
∞∑

n=0

an converges absolutely. If on the other hand,

∞∑

n=0

an converges while

∞∑

n=0

|an| diverges, we say that

∞∑

n=0

an converges conditionally.
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Task 2.8

Show that the series

∞∑

n=0

(−1)n

n+ 1
= 1−

1

2
+

1

3
−

1

4
+

1

5
− · · ·

converges conditionally.

The example above is a special case of the next task:

Task 2.9

Suppose the sequence (an) satisfies

1. a0 ≥ a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0, and

2. the sequence (an) converges to 0,

then
∞∑

n=0

(−1)nan converges.

Given a series

∞∑

n=0

an, we say the series

∞∑

n=0

bn is a rearrangement of

∞∑

n=0

an, if there

is a bijection ϕ : N → N such that bϕ(n) = an for all n ∈ N.

Task 2.10

If the series
∞∑

n=0

an converges absolutely, then any rearrangement of
∞∑

n=0

an con-

verges to the same limit.
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In other words: If a series is absolutely convergent, then it is “infinitely commuta-
tive.” If, on the other hand, a series converges only conditionally, then commuta-
tivity fails in a spectacular way:

Task 2.11

Suppose that the series

∞∑

n=0

an converges conditionally. Then for every s ∈ R,

there is a rearrangement

∞∑

n=0

bn of

∞∑

n=0

an such that

∞∑

n=0

bn converges to s.

Here are two hints to get you started on this problem:

1. Let a+n = max{an, 0} and a−n = max{−an, 0}. Thus an = a+n − a−n and

|an| = a+n + a−n . Observe that both series

∞∑

n=0

a+n and

∞∑

n=0

a−n do not converge.

Therefore both partial sums are not bounded.

2. The series in Task 2.8 actually converges to ln 2 ≈ 0.693147. Can you find a
recipe how to rearrange the series so that the rearrangement converges to 1
instead?
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