
3 Sequences and Series of Functions

3.1 Pointwise and Uniform Convergence

We now turn our attention to the convergence of sequences and series of functions.
Here is the natural definition to extend the notion of convergence from numbers to
functions:

Let D ⊆ R. Given functions fn : D → R and f : D → R, we say the sequence
(fn)n∈N converges to f pointwise if lim

n→∞

fn(x) = f(x) for all x ∈ D.

Equivalently, this means that for all x ∈ D and for all ε > 0 there is an N ∈ N such
that for all n ≥ N it follows that |fn(x)− f(x)| < ε.

Exercise 3.1

Let fn : [0, 1] → R be given by f(x) = xn. Find a suitable f : [0, 1] → R such
that (fn) converges to f pointwise.

This example reveals the first deficiency of pointwise convergence: the pointwise
limit of a sequence of continuous functions is not necessarily continuous.

The next example shows that the pointwise limit of a sequence of bounded functions
is not necessarily bounded. We say a function f : D → R is bounded if there is an
M > 0 such that |f(x)| ≤M for all x ∈ D.

Exercise 3.2

Let fn : (−1, 1) → R be given by fn(x) =

n
∑

k=0

xk. Show that (fn) converges

pointwise to the function f(x) =
1

1− x
.

Let us say that a sequence fn : D → R is uniformly bounded, if there is an M > 0
such that |fn(x)| ≤M for all x ∈ D and n ∈ N.
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Assuming this extra assumption, we obtain a positive result:

Exercise 3.3

Suppose the sequence fn : D → R is uniformly bounded and converges pointwise
to the function f . Then f is bounded.

Pointwise convergence also does not interact nicely with Riemann integration:

Exercise 3.4

Let fn : [0, 1]→ R be given by

fn(x) =











0, if x = 0

n, if 0 < x ≤ 1

n

0, if 1

n
< x ≤ 1

Show that this sequence converges pointwise to the zero-function.

Observe that

∫

1

0

fn(x) dx = 1 for all n, while the pointwise limit has integral 0.

We have already seen in Exercise 3.1 that the pointwise limit of differentiable func-
tions is not necessarily differentiable. The next example shows that even in the case
when the pointwise limit is differentiable, its derivative does not necessarily have
the desired properties.

Task 3.5

Let fn : [−1, 1] → R be defined by fn(x) =
x

1 + nx2
. Show that each fn is

differentiable, that (fn) has as its pointwise limit f the zero function, but that
lim
n→∞

f ′

n(0) 6= f ′(0).
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Figure 1: The functions f2, f10 and f100 from Task 3.5

All these examples show that pointwise convergence is not such a useful property14.

We will therefore study a different limit concept for functions:

Let D ⊆ R. Given functions fn : D → R and f : D → R, we say the sequence
(fn)n∈N converges to f uniformly if for all ε > 0 there is an N ∈ N such that for all
n ≥ N and for all x ∈ D it follows that |fn(x)− f(x)| < ε.

Exercise 3.6

Let functions fn : D → R and f : D → R be given. If (fn) converges to f

uniformly, then (fn) converges to f pointwise.

Exercise 3.7

Show that the converse of Exercise 3.6 is false.

14Actually, in the case of integration, this led to the development of a different notion of integra-

tion: the Lebesgue integral with its Dominated Convergence Theorem.
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Figure 2: Uniform convergence: The function fn (in black) lies in an ε-tube around
the function f (in gray).

Exercise 3.8

Let a sequence of functions fn : D → R be given. The sequence (fn) converges
uniformly if and only if for all ε > 0 there is an n ∈ N such that for all x ∈ D

and for all m,n ≥ N it follows that |fm(x)− fn(x)| < ε.

Exercise 3.9

Let a sequence of functions fn : D → R and numbers Mn ≥ 0 be given. Suppose

|fn(x)| ≤Mn for all x ∈ D and n ∈ N.

Show: If
∑

Mn converges, then
∑

fn converges uniformly (and absolutely).

The next two results highlight some of the permanence properties of uniform con-

30



vergence:

Task 3.10

Let fn : D → R be continuous functions such that (fn)n∈N converges uniformly
to some function f . Then f is continuous.

Task 3.11

Let fn : D → R be bounded functions such that (fn)n∈N converges uniformly to
some function f . Then f is bounded.

There are two more permanence results for uniform convergence:

Theorem 3.1. Let fn : [a, b]→ R be Riemann-integrable functions such that (fn)

converges uniformly to some function f . For t ∈ [a, b], let Fn(t) =

∫

t

a

fn(x) dx.

Then f is Riemann integrable, and moreover (Fn) converges uniformly to the func-

tion F , defined by F (t) =

∫

t

a

f(x) dx.

Theorem 3.2. Let fn : [a, b] → R be differentiable functions such that (f ′

n) con-
verges uniformly to some function g. Assume additionally that for some x0 ∈ [a, b]
the sequence (fn(x0)) converges.

Then (fn) converges uniformly to some function f , f is differentiable on [a, b], and
f ′(x) = g(x) for all x ∈ [a, b].
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