compact set has a minimum. Take a norm ct set be the unit sphere for the sup norm.

VII, §2.) Let $E = \mathbf{R}^k$ and let S be a closed there exists a point $w \in S$ such that

$$|w-v|$$

suitable radius, centered at v, and consider

be a closed subset of \mathbf{R}^k . Define

$$= \underset{\substack{x \in K \\ y \in S}}{\mathsf{glb}} |x - y| =$$

ind $y_0 \in S$ such that

$$= |x_0 - y_0|$$

$$\mapsto d(S, x) \text{ for } x \in K.$$

mpact, then the conclusion does not necestwo sets S_1 and S_2 :

se distance is the distance between the sets, proach each other.)

 $\mathbb{I} \to K$ be a continuous map. Suppose that

$$|f(y)| \ge |x - y|$$

e inverse map $f^{-1}: f(K) \to K$ is continuous. en $x_0 \in K$, consider the sequence $\{f''(x_0)\}$, a might use Corollary 2.3.]

what there exists a sequence of compact j+1 for all j, and such that the union of all j ball of radius j, and let K_j be the set of j = 1/j.

VIII, §3. ALGEBRAIC CLOSURE OF THE COMPLEX NUMBERS

[VIII, §3] ALGEBRAIC CLOSURE OF THE COMPLEX NUMBERS

A polynomial with complex coefficients is simply a complex valued function f of complex numbers which can be written in the form

$$f(z) = a_0 + a_1 z + \dots + a_n z^n, \qquad a_i \in \mathbb{C}$$

We call a_0, \ldots, a_n the coefficients of f, and these coefficients are uniquely determined, just as in the real case. If $a_n \neq 0$, we call n the **degree** of f. A **root** of f is a complex number z_0 such that $f(z_0) = 0$. To say that the complex numbers are **algebraically closed** is, by definition, to say that every polynomial of degree ≥ 1 has a root in C. We shall now prove that this is the case.

We write

$$f(t) = a_n t^n + \dots + a_0$$

with $a_n \neq 0$. For every real number R, the function | f | such that

$$t \mapsto |f(t)|$$

is continuous on the closed disc of radius R, which is compact. Hence this function (real valued!) has a minimum value on this disc. On the other hand, from the expression

$$f(t) = a_n t^n \left(1 + \frac{a_{n-1}}{a_n t} + \dots + \frac{a_0}{a_n t^n} \right)$$

we see that when |t| becomes large, |f(t)| also becomes large, i.e. given C > 0, there exists R > 0 such that if |t| > R then |f(t)| > C. Consequently, there exists a positive number R_0 such that, if z_0 is a minimum point of |f| on the closed disc of radius R_0 , then

$$|f(t)| \ge |f(z_0)|$$

for all complex numbers t. In other words, z_0 is an absolute minimum of |f|. We shall prove that $f(z_0) = 0$.

We express f in the form

$$f(t) = c_0 + c_1(t - z_0) + \dots + c_n(t - z_0)^n$$

with constants c_i . If $f(z_0) \neq 0$, then $c_0 = f(z_0) \neq 0$. Let $z = t - z_0$ and let m be the smallest integer >0 such that $c_m \neq 0$. This integer m

exists because f is assumed to have degree ≥ 1 . Then we can write

$$f(t) = f_1(z) = c_0 + c_m z^m + z^{m+1} g(z)$$

for some polynomial g, and some polynomial f_1 (obtained from f by changing the variable). Let z_1 be a complex number such that

$$z_1^m = -c_0/c_m,$$

and consider values of z of the type $z = \lambda z_1$, where λ is real, $0 \le \lambda \le 1$. We have

$$f(t) = f_1(\lambda z_1) = c_0 - \lambda^m c_0 + \lambda^{m+1} z_1^{m+1} g(\lambda z_1)$$

= $c_0 [1 - \lambda^m + \lambda^{m+1} z_1^{m+1} c_0^{-1} g(\lambda z_1)].$

There exists a number C > 0 such that for all λ with $0 \le \lambda \le 1$ we have

$$|z_1^{m+1}c_0^{-1}g(\lambda z_1)| \le C$$

(continuous function on a compact set), and hence

$$|f_1(\lambda z_1)| \le |c_0|(1 - \lambda^m + C\lambda^{m+1}).$$

If we can now prove that for sufficiently small λ with $0 < \lambda < 1$ we have

$$0<1-\lambda^m+C\lambda^{m+1}<1,$$

then for such λ we get $|f_1(\lambda z_1)| < |c_0|$, thereby contradicting the hypothesis that $|f(z_0)| \le |f(t)|$ for all complex numbers t. The left-hand inequality is of course obvious since $0 < \lambda < 1$. The right-hand inequality amounts to $C\lambda^{m+1} < \lambda^m$, or equivalently $C\lambda < 1$, which is certainly satisfield for sufficiently small λ . This concludes the proof.

Remark. The idea of the proof is quite simple. We have our polynomial

$$f_1(z) = c_0 + c_m z^m + z^{m+1} g(z),$$

and $c_m \neq 0$. If g = 0, we simply adjust $c_m z^m$ so as to subtract a term in the same direction as c_0 , to shrink c_0 toward the origin. This is done by extracting the suitable m-th root as above. Since $g \neq 0$ in general, we have to do a slight amount of juggling to show that the third term is very small compared to $c_m z^m$, and that it does not disturb the general idea of the proof in an essential way.