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viil, §3. ALGEBRAIC CLOSURE OF THE
COMPLEX NUMBERS

A polynomial with complex coefficients is simply a complex valued func-
tion f of complex numbers which can be written in the form

f@=ay+az+ -+ a,?", a; € C

we call aq,. .. ,a, the coefficients of f, and these coefficients are uniquely
determined, just as in the real case. If a, # 0, we call n the degree of f.
A root of f is a complex number z, such that f(z,) = 0. To say that the
complex numbers are algebraically closed is, by definition, to say that every
polynomial of degree =1 has a root in C. We shall now prove that this is
the case.

We write

J@© = a, " + - + a
with a, # 0. For every real number R, the function | /| such that
t= |l
is continuous on the closed disc of radius R, which is compact. Hence

this function (real valued!) has a minimum value on this disc. On the
other hand, from the expression

1) = a,,t”<1 R ao)

apt apt"

we see that when || becomes large, | f(¢)] also becomes large, i.e. given
C >0, there exists R > 0 such that if [t| > R then | ()| > C. Conse-
quently, there exists a positive number R, such that, if z, is a minimum
point of | /| on the closed disc of radius Ry, then

/O Z 11 (z0)]
for all complex numbers ¢. In other words, z, is an absolute minimum of

|/]. We shall prove that f(z,) = 0.
We express f in the form

J@) = co + ¢ (t = 25) + -+ + ¢,(t = z¢)"

with constants c;. Il f(z0) #0, then ¢y = f(z) #0. Let z =1 — z,
and let m be the smallest integer >0 such that ¢,, # 0. This integer m
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exists because f is assumed to have degree = 1. Then we can write
SO = 11(2) = o + €™ + 2 g(2)

for some polynomial g, and some polynomial f, (obtained from f by chang.
ing the variable). Let z; be a complex number such that

=

<1 = _('IO/CIH’

and consider values of z of the type z = Az, where 4 is real, 0 £ 1 <1,
We have

) = fiAzy) = eo = Ao + 212 g(he)
= coll = A" o+ A 121 g g0z,
There exists a number C > O such that for all A with 0 < 2 < | we have
|27 eq tg(Az) I = C
(continuous function on a compact set), and hence

| /2] € leol (1= A7 4 CA* 1),

If we can now prove that for sufficiently small A with 0 < A < 1 we have
0 < 1 - /'Lm _+_ C/‘Lm+1 < 1’

then for such 1 we get | f1(Az,)| < |¢ol, thereby contradicting the hypoth-
esis that | f(zo)] £ | f(t)| for all complex numbers t. The left-hand in-
equality is of course obvious since 0 < A < 1. The right-hand inequality
amounts to CA"*' < A" or equivalently CA < 1, which is certainly satis-
field for sufficiently small A. This concludes the proof.

Remark. The idea of the proof is quite simple. We have our polynomial
[i2) = o + cu + 2 1g(2)

and ¢,, # 0. If g = 0, we simply adjust ¢,,z" so as to subtract a term in the
same direction as ¢,, to shrink ¢, toward the origin. This is done by ex-
tracting the suitable m-th root as above. Since g # 0 in general, we have
to do a slight amount of juggling to show that the third term is very small
compared to ¢,,z", and that it does not disturb the general idea of the proof
in an essential way.




