Analysis II

The problems are due on Tuesday, October 16.

For all students:

Problem 1 Let $(X, \|\cdot\|)$ be a normed vector space. Show that the only subsets of X that are both open and closed are X and the empty set.

Problem 2 Let A be a countable subset of \mathbb{R}^2 . Show that $\mathbb{R}^2 \setminus A$ is path-connected.

- **Problem 3** 1. Suppose A is a connected subset of the metric space (X, d). Show that B is connected if $A \subseteq B \subseteq cl(A)$.
 - 2. Show: If B_{α} is a connected subset of a metric space (X, d) for all $\alpha \in A$, and $B_{\alpha} \cap B_{\beta} \neq \emptyset$ for all $\alpha, \beta \in A$, then $\bigcup_{\alpha \in A} B_{\alpha}$ is connected.
- **Problem 4** 1. Let (X, d) be a countable non-empty metric space. Let $x \in X$. Show that there is a real number r > 0, such that

$$\{z \in X \mid d(x, z) = r\} = \emptyset.$$

2. Let (X, d) be a connected metric space with at least two elements. Show that X is uncountable.

For graduate students:

Problem 5 Let (X, d) be a metric space.

- 1. We say two Cauchy sequences (x_n) and (y_n) in X are equivalent if $\lim_{n \to \infty} d(x_n, y_n) = 0$. Show that this is indeed an equivalence relation.
- 2. Let X^{\sharp} be the set of all equivalence classes of Cauchy sequences obtained in this way. If $R, S \in X^{\sharp}$ with $(r_n) \in R$, and $(s_n) \in S$, define $D(R, S) = \lim_{n \to \infty} d(r_n, s_n)$. Note that the limit exists by a previous homework problem. Show that D is well-defined (i.e. the definition of D(R, S) is independent of the chosen representatives (r_n) and (s_n) in the two equivalence classes R and S).
- 3. Show that (X^{\sharp}, D) is a metric space.
- 4. Show that (X^{\sharp}, D) is complete.