Multi-Resolution Analysis for the Haar Wavelet

Helmut Knaust

Department of Mathematical Sciences
University of Texas at El Paso
El Paso TX 79968-0514
Last edits: October 22, 2019

1 The space $L^{2}([0,1))$ and its scalar product

We will denote by $L^{2}([0,1))$ the vector space of all functions $f:[0,1) \rightarrow \mathbb{R}$ satisfying 1

$$
\begin{equation*}
\int_{0}^{1}|f(x)|^{2} d x<\infty \tag{1}
\end{equation*}
$$

On $L^{2}([0,1))$ one can define a SCALAR PRODUCT as follows:

$$
\begin{equation*}
<f, g>=\int_{0}^{1} f(x) \cdot g(x) d x \tag{2}
\end{equation*}
$$

Similarly to the case of \mathbb{R}^{n}, the scalar product automatically defines a NORM on $L^{2}([0,1))$ via the definition

$$
\begin{equation*}
\|f\|=\sqrt{<f, f>}=\sqrt{\int_{0}^{1}|f(x)|^{2} d x} \tag{3}
\end{equation*}
$$

Finally, we say that a sequence $\left(f_{n}\right)$ of functions in $L^{2}([0,1))$ converges to a function $f(x) \in$ $L^{2}([0,1))$ IN THE L^{2}-SENSE, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0 \tag{4}
\end{equation*}
$$

2 Orthonormal sets

We say that a set B of elements in $L^{2}([0,1))$ is an ORTHONORMAL SET, if the scalar product of each element in B with itself equals 1, and the scalar product of two different elements in B is equal to 0 :

1. $\langle f, f\rangle=1 \quad$ for all $f \in B$
2. $\langle f, g>=0 \quad$ for all $f, g \in B$ satisfying $f \neq g$.
[^0]An orthonormal set B is automatically linearly independent. ${ }^{2}$ Our ultimate goal will be to find a particular orthonormal set $B=\left\{f_{1}(x), f_{2}(x), \ldots\right\}$ such that we can approximate every function $f(x) \in L^{2}([0,1))$ by linear combinations of the elements in B; more precisely, given $f(x) \in L^{2}([0,1))$, we will be able to find scalars $\left(a_{k}\right)$ such that the sequence

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k} f_{k}(x)\right) \tag{5}
\end{equation*}
$$

converges to $f(x)$ in the L^{2}-sense. ${ }^{3}$

3 The Haar scaling function

Figure 1: The Haar scaling function $\phi(x)$

[^1]Then for any k with $k \in\{1, \ldots, n\}$

$$
<a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, g_{k}>=<0, g_{k}>=0 .
$$

On the other hand,

$$
\left.<a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, g_{k}>=a_{1}<g_{1}, g_{k}>+a_{2}<g_{2}, g_{k}>+\cdots+a_{n}<g_{n}, g_{k}>=a_{k}<g_{k}, g_{k}\right\rangle=a_{k} .
$$

So $a_{k}=0$ for all k.
${ }^{3}$ We basically already know one example of such a set: It is known that the set

$$
F=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos (x), \frac{1}{\sqrt{\pi}} \cos (2 x), \ldots, \frac{1}{\sqrt{\pi}} \sin (x), \frac{1}{\sqrt{\pi}} \sin (2 x), \ldots\right\}
$$

forms an orthonormal set with which we can approximate all elements in $L^{2}([-\pi, \pi])$ in this fashion.

We denote by $\phi(x)$ the following function:

$$
\phi(x)= \begin{cases}1, & \text { if } x \in[0,1) \tag{6}\\ 0, & \text { if } x<0 \text { or } x \geqslant 1\end{cases}
$$

$\phi: \mathbb{R} \rightarrow \mathbb{R}$ is called the HaAR scaling function, or the Haar "father" wavelet. Through-

Figure 2: The Haar scaling function $\phi(x)$ restricted to $[0,1)$
out we will identify $\phi(x)$ with its restriction to $[0,1)$.
Let V_{0} denote the one-dimensional vector space spanned by $\phi(x)$; this is nothing else but the set of all functions constant on $[0,1)$ (and vanishing elsewhere).

Next we consider the functions $2^{1 / 2} \phi(2 x)$ and $2^{1 / 2} \phi(2 x-1)$. They span a two-dimensional

Figure 3: The function $2^{1 / 2} \phi(2 x)$
vector space, denoted by V_{1}, consisting of all functions on $[0,1)$ that are constant both on $\left[0, \frac{1}{2}\right)$ and on $\left[\frac{1}{2}, 1\right)$.

Note that $V_{0} \subset V_{1}$. Indeed the function $\phi(x)$ is a linear combination of $2^{1 / 2} \phi(2 x)$ and $2^{1 / 2} \phi(2 x-1)$:

$$
\begin{equation*}
\phi(x)=\frac{1}{\sqrt{2}}\left(2^{1 / 2} \phi(2 x)\right)+\frac{1}{\sqrt{2}}\left(2^{1 / 2} \phi(2 x-1)\right) \tag{7}
\end{equation*}
$$

Figure 4: The function $2^{1 / 2} \phi(2 x-1)$

More generally, an equation of the form

$$
\begin{equation*}
\phi(x)=\sum_{k=0}^{n} a_{k} \phi(2 x-k) \tag{8}
\end{equation*}
$$

is called a dilation equation. Functions ϕ that satisfy a dilation equation are rare and hard to find.

Continuing in this fashion, we can define a 2^{j}-dimensional vector space V_{j}, spanned by the functions

$$
2^{j / 2} \phi\left(2^{j} x\right), 2^{j / 2} \phi\left(2^{j} x-1\right), \ldots, 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right)
$$

The vector space V_{j} consists of all functions on $[0,1)$ that are constant on intervals of the form $\left[k 2^{-j},(k+1) 2^{-j}\right)$ for $k=0,1,2, \ldots 2^{j}-1$. Figure 5 shows the function $2^{3 / 2} \phi\left(2^{3} x-5\right)$ contained in V_{3}. We have $V_{0} \subset V_{1} \subset \cdots \subset V_{j} \subset \cdots$.

Figure 5: The function $2^{3 / 2} \phi\left(2^{3} x-5\right)$
You should have wondered by now why the factor $2^{j / 2}$ is included. The answer is straightforward: this way the functions form an orthonormal set!

Exercise 1

Show that the set $\left\{2^{j / 2} \phi\left(2^{j} x\right), 2^{j / 2} \phi\left(2^{j} x-1\right), \ldots, 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right)\right\}$ forms an orthonormal set of functions in the vector space V_{j}.

4 Using V_{j} to approximate functions in $L^{2}([0,1))$

A function $f \in V_{j}$ has the form

$$
\begin{equation*}
f(x)=a_{0} 2^{j / 2} \phi\left(2^{j} x\right)+a_{1} 2^{j / 2} \phi\left(2^{j} x-1\right)+\cdots+a_{2^{j}-1} 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right) . \tag{9}
\end{equation*}
$$

Since the functions on the right side form an orthonormal set, the coefficients a_{k} are given by the formula

$$
\begin{equation*}
a_{k}=<f(x), 2^{j / 2} \phi\left(2^{j} x-k\right)>=\int_{0}^{1} f(x) \cdot 2^{j / 2} \phi\left(2^{j} x-k\right) d x \tag{10}
\end{equation*}
$$

Exercise 2

Take the scalar product with $2^{j / 2} \phi\left(2^{j} x-k\right)$ on both sides of (9) to verify Formula (10).

The same formula for the coefficients can be used to approximate functions in $L^{2}([0,1))$ by a function in V_{j}. Let $f(x)$ be a function in $L^{2}([0,1))$, and set

$$
\begin{equation*}
f_{j}(x)=a_{0} 2^{j / 2} \phi\left(2^{j} x\right)+a_{1} 2^{j / 2} \phi\left(2^{j} x-1\right)+\cdots+a_{2 j-1} 2^{j / 2} \phi\left(2^{j} x-\left(2^{j}-1\right)\right) \tag{11}
\end{equation*}
$$

where the coefficients a_{k} are computed via Formula (10).
Alfred Haar (1885-1933) showed in 1910 that, if $f(x)$ is continuous, the sequence $\left(f_{j}(x)\right)$ converges to $f(x)$ uniformly. If, on the other hand, $f(x) \in L^{2}([0,1))$, then

$$
\lim _{j \rightarrow \infty}\left\|f-f_{j}\right\|=0
$$

Figures 6 and 7 show the approximation of a function (dashed line) by an element in V_{4} and V_{7}, respectively (solid line).

While we have found nice orthonormal bases for all the vector spaces V_{j}, we still fall short of our goal: If we take two basis elements from different V_{j} 's, their scalar product will not necessarily equal zero, because the intervals where the basis elements are equal to 1 may overlap.

Figure 6: Approximating a function by an element in V_{4}

5 The Haar wavelet

Let's see whether we can remedy this deficiency step by step. We want to find a function $\psi(x)$ in V_{1}, such that the linear combinations of $\phi(x)$ and $\psi(x)$ span the vector space V_{1}, and such that the following conditions are satisfied:

1. $\langle\phi, \psi\rangle=0$
2. $\langle\psi, \psi\rangle=1$

Since $\psi \in V_{1}$ we can find scalars a_{1} and a_{2} such that

$$
\begin{equation*}
\psi(x)=a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1) . \tag{12}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\phi(x)=\phi(2 x)+\phi(2 x-1) . \tag{13}
\end{equation*}
$$

Using (12) and (13), the first condition becomes

$$
\begin{equation*}
<\phi, \psi>=<\phi(2 x)+\phi(2 x-1), a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1)>=a_{1} / \sqrt{2}+a_{2} / \sqrt{2}=0 \tag{14}
\end{equation*}
$$

so $a_{2}=-a_{1}$. The second condition yields:

$$
\begin{equation*}
<\psi, \psi>=<a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1), a_{1} \sqrt{2} \phi(2 x)+a_{2} \sqrt{2} \phi(2 x-1)>=a_{1}^{2}+a_{2}^{2}=1 \tag{15}
\end{equation*}
$$

Figure 7: Approximating a function by an element in V_{7}

Solving (14) and (15) for a_{1} and a_{2}, we obtain ${ }^{4}$

$$
\psi(x)=\phi(2 x)-\phi(2 x-1)=\left\{\begin{align*}
1, & \text { if } x \in\left[0, \frac{1}{2}\right) \tag{16}\\
-1, & \text { if } x \in\left[\frac{1}{2}, 1\right) \\
0, & \text { otherwise }
\end{align*}\right.
$$

The function $\psi(x)$ is called the HaAR "MOther" wavelet; its graph is depicted in Fig-

Figure 8: The Haar mother wavelet $\psi(x)$
ure 8.

[^2]We will denote the vector space spanned by the function $\psi(x)$ as W_{0}. It is customary to write

$$
\begin{equation*}
V_{1}=V_{0} \oplus W_{0} \tag{17}
\end{equation*}
$$

Here the symbol \oplus is used to indicate that each element in V_{1} can be written in a unique way as the sum of an element in V_{0} and an element in W_{0} and that the scalar product of any element in V_{0} with any element in W_{0} equals zero.

Exercise 3

Show that the functions $\sqrt{2} \psi(2 x)$ and $\sqrt{2} \psi(2 x-1)$ are elements in V_{2}.

Exercise 4

Show that the set $\{\sqrt{2} \psi(2 x), \sqrt{2} \psi(2 x-1)\}$ forms an orthonormal set.

Exercise 5

Show that $<\sqrt{2} \psi(2 x), f(x)>=0$ for all functions $f(x) \in V_{1}$. (The same result holds for $\sqrt{2} \psi(2 x-1)$.)

These two functions are shown in Figures 9 and 10, respectively.

Figure 9: The function $\sqrt{2} \psi(2 x)$ in W_{1}

Figure 10: The function $\sqrt{2} \psi(2 x-1)$ in W_{1}

Let's denote the vector space spanned by $\sqrt{2} \psi(2 x)$ and $\sqrt{2} \psi(2 x-1)$ as W_{1}. The three exercises above show that

$$
\begin{equation*}
V_{2}=V_{1} \oplus W_{1}=V_{0} \oplus W_{0} \oplus W_{1}, \tag{18}
\end{equation*}
$$

meaning once again that each element in V_{2} can be written in a unique way as the sum of an element in V_{1} and an element in W_{1} and that the scalar product of any element in V_{1} with any element in W_{1} equals zero.

Continuing in this fashion, we can write

$$
\begin{equation*}
V_{j+1}=V_{j} \oplus W_{j} \tag{19}
\end{equation*}
$$

where W_{j} is the vector space spanned by the functions

$$
2^{j / 2} \psi\left(2^{j} x\right), 2^{j / 2} \psi\left(2^{j} x-1\right), \ldots, 2^{j / 2} \psi\left(2^{j} x-\left(2^{j}-1\right)\right)
$$

The formula

$$
V_{j}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{j-1}
$$

is called Multi-Resolution Analysis.

6 A discrete example

A function in V_{4} is determined by its 16 coefficients. Suppose the vector of coefficients is $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{15}\right)=(180,167,244,190,159,242,176,192,168,250,175,219,193,232,200,234)$

The corresponding function

$$
\begin{equation*}
f(x)=\sum_{n=0}^{15} a_{n} 4 \phi(16 x-n) \tag{20}
\end{equation*}
$$

Figure 11: A function in V_{4}
is shown in Figure 11. How can we write this function f as a sum of a function in V_{3} and a function in W_{3} ? Let's start with the component g in V_{3}. By the discussion following the derivation of Formula (10), the function g is of the form

$$
\begin{equation*}
g(x)=\sum_{k=0}^{7} b_{k} 2^{3 / 2} \phi(8 x-k), \tag{22}
\end{equation*}
$$

with the coefficients b_{k} computed as $b_{k}=<f(x), 2^{3 / 2} \phi(8 x-k)>$. Thus we obtain

$$
\begin{aligned}
b_{k} & =<f(x), 2^{3 / 2} \phi(8 x-k)> \\
& =<\sum_{n=0}^{15} a_{n} 4 \phi(16 x-n), 2^{3 / 2} \phi(8 x-k)> \\
& =\sum_{n=0}^{15} a_{n} 8 \sqrt{2}<\phi(16 x-n), \phi(8 x-k)> \\
& =a_{2 k} 8 \sqrt{2}<\phi(16 x-2 k), \phi(8 x-k)>+a_{2 k+1} 8 \sqrt{2}<\phi(16 x-(2 k+1)), \phi(8 x-k)> \\
& =a_{2 k} 8 \sqrt{2} \frac{1}{16}+a_{2 k+1} 8 \sqrt{2} \frac{1}{16}
\end{aligned}
$$

Here we are using the fact that $<\phi(16 x-n), \phi(8 x-k)>\neq 0$ only if $n=2 k$ or $n=2 k+1$. (Draw a picture). More specifically, in these two cases $<\phi(16 x-n), \phi(8 x-k)>=\frac{1}{16}$.

Simplifying the last expression we obtain

$$
\begin{equation*}
b_{k}=\frac{a_{2 k}+a_{2 k+1}}{\sqrt{2}} \tag{23}
\end{equation*}
$$

This means that we can compute the vector representing the function in V_{3} by multiplying the vector in (20) by the 16×8 matrix

$$
\left(\begin{array}{llllllll}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{24}\\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

on the right. In our particular case, the vector (rounded to the nearest integer) representing the function in V_{3} is given by

$$
\begin{equation*}
(245,307,284,260,296,279,301,307) . \tag{25}
\end{equation*}
$$

Figure 12 shows the function in V_{4} and its "blurry" counterpart in V_{3}.

Exercise 6

Let $f=g+h$, with $f \in V_{4}, g \in V_{3}$, and $h \in W_{3}$. Show that if

$$
\begin{gathered}
\qquad f(x)=\sum_{n=0}^{15} a_{n} 4 \phi(16 x-n) \\
\text { and } h(x)=\sum_{k=0}^{7} c_{k} 2^{3 / 2} \psi(8 x-k),
\end{gathered}
$$

then

$$
\begin{equation*}
c_{k}=\frac{a_{2 k}-a_{2 k+1}}{\sqrt{2}} \tag{26}
\end{equation*}
$$

Figure 12: A function in V_{4} (black) and its "orthogonal projection" onto V_{3} (dashed)

You can either use the fact that $h=f-g$, or repeat the computation on p. 10.
In other words, this time we obtain the vector representing the function in W_{3} by multiplying the vector in (20) by the matrix

$$
\left(\begin{array}{llllllll}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{27}\\
-\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

In our particular case, the vector (rounded to the nearest integer) representing the function
in W_{3} is given by

$$
\begin{equation*}
(9,38,-59,-11,-58,-31,-28,-24) . \tag{28}
\end{equation*}
$$

Figure 13 shows this as a function in W_{3}.

Figure 13: The "orthogonal projection" of our function onto W_{3} (dashed)
If we are "joining" the vectors in (25) and (28), we obtain

$$
\begin{equation*}
(245,307,284,260,296,279,301,307,9,38,-59,-11,-58,-31,-28,-24) . \tag{29}
\end{equation*}
$$

Since our function in V_{4} is the sum of its orthogonal projections onto V_{3} and W_{3}, we will be able to retrieve the vector in (20) from the vector (29). The cumulative energy plots of both vectors are shown in Figure 14, indicating that the vector in (29) has a higher energy concentration than the original vector (20) and thus may be considered as a compressed version of the vector in (20).

Exercise 7

This section has shown how to compute vector (29) from vector (20). Can we reverse the procedure? Suppose our procedure produces as the vector in (29)

$$
(200,350,351,130,115,215,122,308,15,35,47,23,-12,-32,67,-23) .
$$

What does the corresponding original vector (20) look like?

Figure 14: The original vector (20) is shown dashed, while vector (29) is depicted solid.

7 Concluding Remarks

We have outlined a general procedure: (1) start with a father wavelet $\phi(x),(2)$ use a dilation equation to construct an increasing sequence of vector spaces

$$
V_{1} \subset V_{2} \subset \cdots \subset V_{j} \subset \cdots,
$$

capable of approximating functions in $L^{2}([0,1))$, (3) construct the corresponding mother wavelet, and (4) ultimately produce a multi-resolution analysis

$$
V_{j}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{j-1}
$$

Our choice for $\phi(x)$ was the constant 1 , with the dilation equation

$$
\phi(x)=\phi(2 x)+\phi(2 x-1) .
$$

As you will see later in the course, in the 1980's other possible candidates emerged.
Acknowledgment. This exposition is based on material in A First Course in Wavelets with Fourier Analysis by Albert Boggess \& Francis J. Narcowich.

[^0]: ${ }^{1}$ More precisely: those (equivalence classes of) measurable functions on $[0,1)$ whose square is Lebesgueintegrable. Since we will be ultimately interested only in the discrete case anyway, you can just think of bounded piecewise-continuous functions with the Riemann integral.

[^1]: ${ }^{2}$ Indeed assume that for some real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and some distinct elements $g_{1}, g_{2}, \ldots, g_{n}$ in B,

 $$
 a_{1} g_{1}(x)+a_{2} g_{2}(x)+\cdots+a_{n} g_{n}(x)=0 \text { for all } x
 $$

[^2]: ${ }^{4}$ There are actually two solutions; it suffices for us to consider the solution for which $a_{1}>0$. Why?

