2.19

B

S.O.S. Mathematics CyberBoard • View topic - 2.19 S.O.S. Mathematics CyberBoard Your Resource for mathematics help on the web! Logout [helmut] O new messages 🔍 Search 🗉 Members 🙎 User Control Panel **FAO** Last visit was: Sun, 03 May 2020 08:58 It is currently Sun, 03 May 2020 12:25 View unanswered posts | View active topics View unread posts | View new posts | View your posts Board index » Math 3341 » Chapter 2 All times are UTC - 6 hours **Moderator: helmut** [Moderator Control Panel] newtopic locked Page 1 of 1 [8 posts] Subscribe topic | Bookmark topic | Print view | E-mail friend Previous topic | Next topic

Author Message helmut Post subject: 2.19 Dested: Sun, 05 Apr 2020 17:02 Here s an outline for the missing direction, using the last hint in the notes. online Site Admin Let $B = \{b \in \mathbb{R} \mid b \text{ is an upper bound of A}\}$ Step 1: Show that B is an interval of the form (b,∞) or of the form $[b,\infty)$ for some $b\in\mathbb{R}.$ Step 2: Show $B = [b, \infty)$. How: It suffices to show that the limit of any decreasing sequence of Joined: Sat, 26 Apr 2003 15:14 elements in B converges to an element in B. (Why?) You may use the CA for decreasing Posts: 2259 Location: El Paso TX (USA) sequences. Step 3: Show that b is the least upper bound of A.

> The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark. - Michelangelo Buonarroti

> > <u>, s x</u>

edit quote

Dested: Tue, 14 Apr 2020 00:03

offline Member

Тор

Joined: Mon, 30 Mar 2020 21:12 Posts: 15

solivas11

Post subject: Re: 2.19

profile)

2.19 The Completeness Axiom is equivalent to the following: Every non-empty set ofreal numbers which is bounded from above has a supremum.

 $(CA \iff$ supremum property)

pm

First half (Vivian's portion - $sup \ property \Rightarrow CA$)

🏹 email

Suppose every set bounded from above has a supremum. Let a_n be an increasing, bounded sequence. Let $A = \{a_n | n \in \mathbb{N}\}, a = sup(A)$

$$\begin{aligned} \forall \varepsilon > 0 \ \exists a_m \ s.t. \ |a - a_m| < \varepsilon \\ a - \varepsilon < a_m \ < \ a + \varepsilon \\ \Rightarrow \\ a - \varepsilon < \ a_m \ < \ a \\ since \ a_n \ bounded \ from \ above. \end{aligned}$$

Since (a_n) is an increasing sequence, if m < n, $a_m < a_n$, then $a - \varepsilon < a_m < a_n < a$, so $|a_n - a| < \varepsilon$ Thus $a_n \rightarrow a$

Other half ($CA \Rightarrow sup \ property$)

Let a_n be an increasing, bounded sequence. Let $A = \{a_n | n \in \mathbb{N}\}$ Let $B = \{b \in \mathbb{R} | b = UB(A) \text{ is true}\}$ $\iff B = \{b \in \mathbb{R} | \forall a \in A : a \leq b\}$

helmut wrote:

Step 1: Show that B is an interval of the form (b,∞) or of the form $[b,\infty)$ for some $b\in\mathbb{R}.$

$$\begin{array}{l} b = UB(A) \iff \exists b \in \mathbb{R}, \ \forall \ a \in A: \ a \leq b \\ \text{Let } \delta \in \mathbb{R}: \ \delta > 0 \\ \text{Since } a \leq b < b + \delta \Rightarrow a < b + \delta \ \forall \delta \\ \text{Then, } b + \delta = UB(A) \ \forall \delta \\ \text{By this, } B \text{ is unbounded from above.} \\ \text{If } a < b + \delta \ \forall \delta, \ then \ B = (b, \infty) \\ \text{For a special case } \delta \geq 0, \text{ if } a < b + \delta \ \forall \delta, \ then \ B = [b, \infty) \end{array}$$

helmut wrote:

Step 2: Show $B = [b, \infty)$. How: It suffices to show that the limit of any decreasing sequence of elements in B converges to an element in B. (Why?) You may use the CA for decreasing sequences.

Let b_n be a decreasing sequence whose range is defined as $\{b \in \mathbb{R} | \ b = UB(A) \ is \ true\}$ $\downarrow \Rightarrow$ b_n be a decreasing sequence whose range is defined by BSince B is bounded from below by $[b, \infty)$, and b_n is decreasing, by $CA, \ b_n \rightarrow \ k \in \mathbb{R}$

Now do a proof by contradiction to show $k \in [b, \infty)$ We know $b_n \in [b, \infty)$ Suppose $b_n \to k$, where k < bLet $\varepsilon = \frac{b-k}{2}$

 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } |b_n - k| < \varepsilon \ \forall n \ge N$

$$\begin{aligned} |b_n - k| &< \frac{b - k}{2} \\ \frac{k - b}{2} + k < b_n < \frac{b - k}{2} + k \\ \frac{k - b}{2} + k < b_n < \frac{k - b}{2} + b \\ k &< b_n + \frac{b - k}{2} < b \\ \Rightarrow \\ b_n + \varepsilon < b \end{aligned}$$

But we previously stated that $b_n \in [b, \infty)$ Yet, we showed $b_n < b$ Therefore, $b_n \rightarrow k$, where $k \in [b, \infty)$

helmut wrote:

Step 3: Show that b is the least upper bound of A.

Let $A = \{a_n | n \in \mathbb{N}\}$ Let $B = [b, \infty)$

Have to show: $sup(A) = b \iff b \ge a, \ \forall \ a \in A, \ and \ b \le x, \ \forall \ x \in B$ \iff $b = UB(A), \ and \ b \le x, \ \forall \ x \in B$

Let m < b

 $\begin{array}{l} \text{Suppose} \\ sup(A) = m \iff \\ m \geq a, \; \forall \; a \in A, \; and \; m \leq x, \; \forall \; x \in B \iff \\ m = UB(A), \; and \; m \leq x, \; \forall \; x \in B \end{array}$

However, if $m < b \Rightarrow m \notin B \Rightarrow m \neq UB(A) \Rightarrow m \neq sup(A)$ Additionally, earlier on we showed $\forall a \in A, \ a \leq b < b + \delta \ \forall \delta > 0$ Therefore, $b \geq a, \ \forall \ a \in A, \ and \ b \leq x, \ \forall \ x \in B \iff b = sup(A)$

Questions?

!? 🛇 🗙

🗴 profile) (😹 pm 🛛 (🎯 email)

helmut Post subject: Re: 2.19

Тор

Okay. I've also changed the hints just a bit.

Other half ($CA \Rightarrow sup \ property$)

Let A be a set bounded from above. Let B be the set of upper bounds for A i.e. $B = \{b \in \mathbb{R} | b = UB(A) \text{ is true} \}$ $\iff B = \{b \in \mathbb{R} | \forall a \in A : a \leq b\}$

helmut wrote:

Step 1:

Show that B is an interval of the form (c,∞) or of the form $[c,\infty)$ for some $c\in\mathbb{R}$. You may use the CA for decreasing sequences. Choose $a_1 \in A$, $b_1 \in B$. Now, select $c_1 \in (a_1, b_1) \cap (A \cup B)$ s.t. $|c_1 - a_1| \le \frac{1}{2} |b_1 - a_1|$ If $c_1 \in A$, then let $a_2 = c_1$, and $b_2 = b_1$. If $c_1 \in B$, then let $a_2 = a_1$, and $b_2 = c_1$. Now, select $c_2 \in (a_2, b_2) \cap (A \cup B)$ s.t. $|c_2 - a_2| \le \frac{1}{2} |b_2 - a_2|$ If $c_2 \in A$, then let $a_3 = c_2$, and $b_3 = b_2$. If $c_2 \in B$, then let $a_3 = a_2$, and $b_3 = c_2$.

Now, select $c_m \in (a_m, b_m) \cap (A \cup B)$ s.t. $|c_m - a_m| \le \frac{1}{2} |b_m - a_m|$ If $c_m \in A$, then let $a_{m+1} = c_m$, and $b_{m+1} = b_m$. If $c_m \in B$, then let $a_{m+1} = a_m$, and $b_{m+1} = c_m$.

By repeating the above, an increasing sequence a_n and a decreasing sequence b_n are created.

Define the range of a_n as $\{a_n | n \in \mathbb{N}\}$, and define the range of b_n as $\{b_n | n \in \mathbb{N}\}$ Since a_n is increasing and bounded from above, via CA $a_n \to c \in \mathbb{R}$. Since b_n is decreasing and bounded from below, via CA $b_n \to c \in \mathbb{R}$

Since $b_n \to c$, then either $c \in \{b_n | n \in \mathbb{N}\}$ or $c \notin \{b_n | n \in \mathbb{N}\}$, and since B is unbounded from above, then B is in the form of $[c, \infty)$ or (c, ∞) .

helmut wrote:

Step 2:

Show $B = [c, \infty)$. How: It suffices to show that the limit of any decreasing sequence of elements in B converges to an element in B. (Why?)

Suppose $c \notin B \iff c \neq UB(A) \iff \exists n \in \mathbb{N} \ s.t. \ a_n > c$ However, since $a_n \to c$, and a_n is increasing and bounded, then $a_n \leq c \ \forall n \in \mathbb{N}$, otherwise would contradict increasing. Thus, B is of the form $[c, \infty)$

helmut wrote:

Step 3: Show that c is the least upper bound of A.

Have to show: $sup(A) = c \iff c \ge a, \forall a \in A, and c \le x, \forall x \in B$ \iff $c = UB(A), and c \le x, \forall x \in B$ Let m < cSuppose

$$\begin{aligned} \sup(A) &= m \iff \\ m \geq a, \ \forall \ a \in A, \ and \ m \leq x, \ \forall \ x \in B \iff \\ m &= UB(A), \ and \ m \leq x, \ \forall \ x \in B \end{aligned}$$

However, if $m < c \Rightarrow m \notin B \Rightarrow m \neq UB(A) \Rightarrow m \neq sup(A)$ Therefore, $b \ge a$, $\forall a \in A$, and $b \le x$, $\forall x \in B \iff b = sup(A)$

Hope these fixes were sufficient.

!? 🔕 🗙

Тор

helmut

online

Site Admin

Joined: Sat, 26 Apr 2003 15:14 Posts: 2259 Location: El Paso TX (USA)

Тор

solivas11

offline

Member

Joined: Mon, 30 Mar 2020 21:12 Posts: 15

🏹 email profile pm edit quote Post subject: Re: 2.19 Dested: Thu, 30 Apr 2020 15:58 In Step 1, it looks like one could always pick $c_n=a_1$. You don't want that, right? Also: Why is $(a_1, b_1) \cap (A \cup B) \neq \emptyset$? The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark. - Michelangelo Buonarroti []?× 💩 profile 🏹 email 🐱 🕹 pm edit quote Dested: Thu, 30 Apr 2020 17:33 Post subject: Re: 2.19 helmut wrote:

In Step 1, it looks like one could always pick $c_n=a_1$. You don't want that, right?

Since I set it up as an open interval, I thought I would avoid $c_n = a_1$. I did think about letting $c_1 = \frac{a_1+b_1}{2}$ - I could incorporate an algorithm like that.

helmut wrote: Also: Why is $(a_1, b_1) \cap (A \cup B) \neq \emptyset$?

If A is finite, and if $a_1 \neq max(A) \Rightarrow \exists w \in A \ s.t.w > a_1$. If A is infinite, then $\exists w \in A \ s.t.w > a_1$, assuming $a_1 \neq sup(A)$, but it hasn't been demonstrated what the sup is.

B is an infinite set in the $\mathbb R$. Unless $b_1 = inf(B)$, then $\exists w \in B \; s.t.w < b_1$.

🖧 edit 🛛 🔍 quote

Posted: Thu, 30 Apr 2020 18:57

solivas11

Post subject: Re: 2.19

Updated.

offline

Member

Joined: Mon, 30 Mar 2020 21:12 Posts: 15 Other half ($CA \Rightarrow sup \ property$)

Let A be a set bounded from above.

Let B be the set of upper bounds for A i.e. $B = \{b \in \mathbb{R} | b = UB(A) \text{ is true}\}$ $\iff B = \{b \in \mathbb{R} | \forall a \in A : a \leq b\}$

helmut wrote:

Step 1:

Show that B is an interval of the form (c,∞) or of the form $[c,\infty)$ for some $c\in\mathbb{R}$. You may use the CA for decreasing sequences.

Choose $a_1 \in A, b_1 \in B$.

Now, select $c_1 = \frac{a_1 + b_1}{2}$ If $c_1 \in B$, then let $a_2 = a_1$, and $b_2 = c_1$. If $c_1 \notin B$, $\Rightarrow c_1 \neq UB(A) \Rightarrow \exists a_2 \in A \ s.t. \ a_2 > c_1$. Also let $b_2 = b_1$. Now, select $c_2 = \frac{a_2 + b_2}{2}$ If $c_2 \in B$, then let $a_3 = a_2$, and $b_3 = c_2$. If $c_2 \notin B$, $\Rightarrow c_2 \neq UB(A) \Rightarrow \exists a_3 \in A \ s.t. \ a_3 > c_2$. Also let $b_3 = b_2$ Now, select $c_m = \frac{a_m + b_m}{2}$ If $c_m \in B$, then let $a_{m+1} = a_m$, and $b_{m+1} = c_m$. If $c_m \notin B$, $\Rightarrow c_m \neq UB(A) \Rightarrow \exists a_{m+1} \in A \ s.t. \ a_{m+1} > c_m$. Let $b_{m+1} = b_m$. By repeating the above, an increasing sequence a_n and a decreasing sequence b_n are created. Define the range of a_n as $\{a_n | n \in \mathbb{N}\}$, and define the range of b_n as $\{b_n | n \in \mathbb{N}\}$ Since a_n is increasing and bounded from above, via CA $a_n \to c \in \mathbb{R}$.

Since b_n is decreasing and bounded from below, via CA $b_n o c \in \mathbb{R}$

Since $b_n \to c$, then either $c \in \{b_n | n \in \mathbb{N}\}$ or $c \notin \{b_n | n \in \mathbb{N}\}$, and since B is unbounded from above, then B is in the form of $[c, \infty)$ or (c, ∞) .

helmut wrote:

Step 2:

Show $B = [c, \infty)$. How: It suffices to show that the limit of any decreasing sequence of elements in B converges to an element in B. (Why?)

Suppose $c \notin B \iff c \neq UB(A) \iff \exists n \in \mathbb{N} \ s.t. \ a_n > c$ However, since $a_n \to c$, and a_n is increasing and bounded, then $a_n \leq c \ \forall n \in \mathbb{N}$, otherwise would contradict increasing. Thus, B is of the form $[c, \infty)$

helmut wrote: Step 3: Show that c is the least upper bound of A.

Have to show: $sup(A) = c \iff c \ge a, \forall a \in A, and c \le x, \forall x \in B$ \iff $c = UB(A), and c \le x, \forall x \in B$

Let m < c

 $\begin{array}{l} \text{Suppose} \\ sup(A) = m \iff \\ m \geq a, \; \forall \; a \in A, \; and \; m \leq x, \; \forall \; x \in B \iff \\ m = UB(A), \; and \; m \leq x, \; \forall \; x \in B \end{array}$

However, if $m < c \Rightarrow m \notin B \Rightarrow m \neq UB(A) \Rightarrow m \neq sup(A)$ Therefore, $b \ge a, \forall a \in A, and b \le x, \forall x \in B \iff b = sup(A)$

Board index » Math 3341 » Chapter 2

All times are UTC - 6 hours

Who is online

Users	browsing	this	forum:	helmut
03613	Drowsing	uns	iorum.	nennut

Quick-mod tools: Unlock topic	Go		You can post new topics in this forum You can reply to topics in this forum You can edit your posts in this forum You can delete your posts in this forum				
Search for:	Go Jum	to: Chapter 2	▼ Go				
[Administration Control Panel]							
	Contact Us S.O.S. Math Privacy Statement Search 474 users online durii Powered by phpBB © 2001, 2 Copyright © 1999-2017 MathMed Math Medics, LLC P.O. Box 1239	matics Homepage the "old" CyberBoard g the last hour 05-2017 phpBB Group. cs, LLC. All rights reserv 5 - El Paso TX 79913 - U	ved. JSA				

www.sosmath.com/CBB/viewtopic.php?f=33&t=77607