

S.O.S. Mathematics CyberBoard • View topic - 2.32

solivas11

5/7/2020

Post subject: Re: 2.32

D Posted: Thu, 30 Apr 2020 22:39

5/7/2020

offline

Member

Joined: Mon, 30 Mar 2020 21:12 Posts: 20

S.O.S. Mathematics CyberBoard • View topic - 2.32

I thought it would be a good idea to start back at square one. Dr. Knaust gave some pointers on how to modify the original plan by Maria.

Mdluevano2 wrote:

The real number x is an accumulation point of set S if and only if every neighborhood of x contains an element of S different from x.

Show x is an accumulation point of S \Rightarrow Let $\varepsilon_1 = 1$ Then we can find $x_1 \in (x + \varepsilon_1, x - \varepsilon_1)$ of set S where $x_1 \neq x$ Let $\varepsilon_2 = |x_1 - x|$ Since $x_1 \neq x \Rightarrow \epsilon_2 > 0$ Then we can find $x_2 \in (x + \varepsilon_2, x - \varepsilon_2)$ of set S where $x_2 \neq x$ or $x_2 \neq x_1$ Let $\varepsilon_3 = |x_2 - x|$ Since $x_2 \neq x \Rightarrow \epsilon_3 > 0$ Then we can find $x_3 \in (x + \varepsilon_3, x - \varepsilon_3)$ of set S where $x_3 \neq x$ or $x_i \neq x_j$ for $i \neq j$ If we continue Then we can find $x_n \in (x + \varepsilon_n, x - \varepsilon_n)$ of set S where $x_n \neq x$ or $x_i \neq x_j$ for $i \neq j$

Mdluevano2 wrote: Neighborhood of x contains an element of S different from $x \leftarrow$ If $x_n \in (x+1, x-1)$ of set SThen we can find $x_n \neq x \forall n \geq N$ which are different from S

I think a similar, if not same, procedure can be used for the other direction. Since x is an accumulation point, then you can vary the epsilon to find unique elements of S in the neighborhood of x. Alternatively, if you can vary the epsilon so as to find unique elements of S in the neighborhood of x, and do this for infinitely many epsilon (since $x_n \neq x$), then infinitely many elements of S can be found in the neighborhood of x, making it an accumulation point.

helmut

online

Site Admin

Тор

Post subject: Re: 2.32

profile 84 pm

Idea is sound. $\ensuremath{\mathfrak{S}}$ How do you make sure that $\lim_{n \to \infty} \varepsilon_n = 0$?

🏹 email

Joined: Sat, 26 Apr 2003 15:14 Posts: 2272 Location: El Paso TX (USA)

Тор

solivas11

Joined: Mon, 30 Mar 2020 21:12 Posts: 20

Post subject: Re: 2.32

D Posted: Wed, 06 May 2020 18:59

The real number x is an accumulation point of set S if and only if every neighborhood of x contains an element of S different from x.

solivas11 wrote:

Since x is an accumulation point, then you can vary the epsilon to find unique elements of S in the neighborhood of x.

Mdluevano2 wrote:

The real number x is an accumulation point of set $S \Rightarrow$ every neighborhood of x contains an element of S different from x.

Let $\varepsilon_1 = 1$ Then we can find $x_1 \in (x + \varepsilon_1, x - \varepsilon_1)$ of set S where $x_1 \neq x$

Let $\varepsilon_2 = |x_1 - x|$ Since $x_1 \neq x \Rightarrow \epsilon_2 > 0$ Then we can find $x_2 \in (x + \varepsilon_2, x - \varepsilon_2)$ of set S where $x_2 \neq x$ or $x_2 \neq x_1$

Let $\varepsilon_3 = |x_2 - x|$ Since $x_2 \neq x \Rightarrow \epsilon_3 > 0$ Then we can find $x_3 \in (x + \varepsilon_3, x - \varepsilon_3)$ of set S where $x_3 \neq x$ or $x_i \neq x_j$ for $i \neq j$

If we continue Then we can find

 $x_n \in (x + \varepsilon_n, x - \varepsilon_n)$ of set S where $x_n \neq x$ or $x_i \neq x_j$ for $i \neq j$

solivas11 wrote:

Alternatively, if you can vary the epsilon so as to find unique elements of S in the neighborhood of x, and do this for infinitely many epsilon (since $x_n \neq x$), then infinitely many elements of S can be found in the neighborhood of x, making it an accumulation point.

Mdluevano2 wrote:

Every neighborhood of x contains an element of S different from $x\Rightarrow$ The real number x is an accumulation point of set S

Let $\varepsilon_1 = 1$ Then we can find $x_1 \in (x + \varepsilon_1, x - \varepsilon_1)$ of set S where $x_1 \neq x$ Let $\varepsilon_2 = \frac{|x_1 - x|}{2}$ Since $x_1 \neq x \Rightarrow \epsilon_2 > 0$ Then we can find $x_2 \in (x + \varepsilon_2, x - \varepsilon_2)$ of set S where $x_2 \neq x$ or $x_2 \neq x_1$ Let $\varepsilon_3 = \frac{|x_2 - x|}{2}$ Since $x_2 \neq x \Rightarrow \epsilon_3 > 0$ Then we can find $x_3 \in (x + \varepsilon_3, x - \varepsilon_3)$ of set S where $x_3 \neq x$ or $x_i \neq x_j$ for $i \neq j$ If we continue Then we can find $x_n \in (x + \varepsilon_n, x - \varepsilon_n)$ of set S where $x_n \neq x$ or $x_i \neq x_j$ for $i \neq j$

helmut wrote: Idea is sound. ${ e \over \Theta}$ How do you make sure that $\lim_{n \to \infty} \varepsilon_n = 0$?

Since we bisect the ε s.t. $\varepsilon_{n+1} = \frac{|x_n - x|}{2}$, then we decrease the ε exponentially.

We can do this since every neighborhood of x contains an element of S different from $x \iff \forall x_n \in S \ x_n \neq x \Rightarrow \forall n \in \mathbb{N} \ \varepsilon_{n+1} > 0$, including the original ε_1 initially set.

Thus, $\lim_{n\to\infty} \varepsilon_n = 0$ and for infinitely many epsilon (since $x_n \neq x$), then infinitely many elements of S can be found in the neighborhood of x, making it an accumulation point.

!? 🔕 🗙

quote

Тор

helmut

Post subject: Re: 2.32

Dested: Thu, 07 May 2020 13:49

edit

online	Nice. I credit for Sergio!		
Site Admin			
	The greater danger for most of us lies not i aim too low, and achieving our mark Micl	n setting our aim too h helangelo Buonarroti	igh and falling short; but in setting our
Joined: Sat, 26 Apr 2003 15:14 Posts: 2272 Location: El Paso TX (USA)	😤 profilo) 🌘 👷 nm -) (🏹 omail		(Se adit (⁹⁾ quata
Тор			Cr edit duote
Display p	osts from previous: All posts V Sort by	Post time V Asc	ending 🔻 Go
newtopic 🗿 post	Page 2 of 2 [24 posts]		Go to page Previous 1, 2
Board index » Math 3341 »	Chapter 2		All times are UTC - 6 hours
Who is online			
Users browsing this forum: he	Imut		
Quick-mod tools: Lock topic	▼ Go		You can post new topics in this forum You can reply to topics in this forum You can edit your posts in this forum You can delete your posts in this forum
Search for:	Go Jump to:	Chapter 2	▼ Go
	[Administration Contr	ol Panel]	
Contact Us S.O.S. Mathematics Homepage Privacy Statement Search the "old" CyberBoard 804 users online during the last hour Powered by phpBB © 2001, 2005-2017 phpBB Group. Copyright © 1999-2017 MathMedics, LLC. All rights reserved. Math Medics, LLC P.O. Box 12395 - El Paso TX 79913 - USA			