
2 Sequences and Accumulation Points

2.1 Convergent Sequences

Formally, a sequence of real numbers is a function ϕ : N → R. For instance the

function ϕ(n) =
1

n2
for all n ∈ N defines a sequence3. It is customary, though, to write

sequences by listing their terms such as

1,
1

4
,
1

9
,
1

16
, . . .

or by writing them in the form (an)n∈N; so in our particular example we could write

the sequence also as

(

1

n2

)

n∈N

. Note that the elements of a sequence come in a natural

order. For instance
1

49
is the 7th element of the sequence

(

1

n2

)

n∈N

.

Exercise 2.1
Let (an)n∈N denote the sequence of prime numbers in their natural order. What is
a5?

4

Exercise 2.2
Write the sequence 0, 1, 0, 2, 0, 3, 0, 4, . . . as a function ϕ : N→ R.

We say that a sequence (an) is convergent, if there is a real number a, such that for
all ε > 0 there is an N ∈ N such that for all n ∈ N with n ≥ N ,

|an − a| < ε.

The number a is called limit of the sequence (an). We also say in this case that the
sequence (an)n∈N converges to a.

3See Figure 19 on page 75 for a pronunciation guide of Greek letters.
4“a5” is pronounced “a sub 5”.



10 Sequences and Accumulation Points

Exercise 2.3
Spend some quality time studying Figure 1 on the next page. Explain how the
pictures and the parts in the definition correspond to each other. Also reflect on
how the “rigorous” definition above relates to your prior understanding of what it
means for a sequence to converge.

A sequence, which fails to converge, is called divergent. Figure 2 on page 12 gives an
example.

Exercise 2.4
1. Write down formally (using ε-N language) what it means that a given se-

quence (an)n∈N does not converge to the real number a.

2. Similarly, write down what it means for a sequence to diverge.

Exercise 2.5
Show that the sequence an =

(−1)n√
n

converges to 0.

Exercise 2.6
Show that the sequence an = 1− 1

n2 + 1
converges to 1.

The first general result below establishes that limits are unique.

Task 2.7
Show: If a sequence converges to two real numbers a and b, then a = b.

One way to proceed is to assume that the sequence converges to two numbers a and b
with a 6= b. Then one tries to derive a contradiction, since far out sequence terms must
be simultaneously close to both a and b.
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Figure 1: (i) A sequence (xn) converges to the limit a if . . . (ii) . . . for all ε > 0 . . . (iii)
. . . there is an N ∈ N, such that . . . (iv) . . . |xn − a| < ε for all n ≥ N
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Figure 2: A divergent sequence

We say that a set S of real numbers is bounded if there are real numbers m and M
such that

m ≤ s ≤M

holds for all s ∈ S.
A sequence (an) is called bounded if its range

{an | n ∈ N}

is a bounded set.

Exercise 2.8
Give an example of a bounded sequence which does not converge.

Task 2.9
Every convergent sequence is bounded.

Consequently, boundedness is necessary for convergence of a sequence, but is not suffi-
cient to ensure that a sequence is convergent.
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2.2 Arithmetic of Converging Sequences

The following results deal with the “arithmetic” of convergent sequences.

Task 2.10
If the sequence (an) converges to a, and the sequence (bn) converges to b, then the
sequence (an + bn) is also convergent and its limit is a+ b.

Task 2.11
If the sequence (an) converges to a, and the sequence (bn) converges to b, then the
sequence (an · bn) is also convergent and its limit is a · b.

Task 2.12
Let (an) be a sequence converging to a 6= 0. Then there are a δ > 0 and an M ∈ N

such that |am| > δ for all m ≥M .

Task 2.12 is useful to prove:

Task 2.13
Let the sequence (bn) with bn 6= 0 for all n ∈ N converge to b 6= 0. Then the

sequence

(

1

bn

)

is also convergent and its limit is
1

b
.

Task 2.14
Let (an) be a sequence converging to a. If an ≥ 0 for all n ∈ N, then a ≥ 0.
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2.3 Monotone Sequences

Let A be a non-empty set of real numbers. We say that A is bounded from above

if there is an M ∈ R such that a ≤ M for all a ∈ A. The number M is then called an
upper bound for A. Similarly, we say that A is bounded from below if there is an
m ∈ R such that a ≥ m for all a ∈ A. The number m is then called a lower bound

for A.

A sequence is bounded from above (bounded from below), if its range

{an | n ∈ N}

is bounded from above (bounded from below).

A sequence (an) is called increasing if am ≤ an for all m < n ∈ N. It is called
strictly increasing if am < an for all m < n ∈ N.

Analogously, a sequence (an) is called decreasing if am ≥ an for all m < n ∈ N. It is
called strictly decreasing if am > an for all m < n ∈ N.

A sequence which is increasing or decreasing is called monotone.

The following axiom is a fundamental property of the real numbers. It establishes that
bounded monotone sequences are convergent. Most results in Analysis depend on this
fundamental axiom.

Completeness Axiom of the Real Numbers. Let (an) be an increasing
bounded sequence. Then (an) converges.

The same result holds of course if one replaces “increasing” by “decreasing”. (Can you
prove this?)

Note that an increasing sequence is always bounded from below, while a decreasing
sequence is always bounded from above.

Task 2.15
Let a1 = 1 and an+1 =

√
2an + 1 for all n ∈ N. Show that the sequence (an)

converges.

Once we know that the sequence converges, we can find its limit as follows: Let

L = lim
n→∞

an.
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Then lim
n→∞

an+1 = L as well, and therefore L = lim
n→∞

√
2an + 1 =

√
2L+ 1. Since L is

positive and L satisfies the equation

L =
√
2L+ 1,

we conclude that the limit of the sequence under consideration is equal to 1 +
√
2.

Let A be a non-empty set of real numbers. We say that a real number s is the least

upper bound of A (or that s is the supremum of A), if

1. s is an upper bound of A, and

2. no number smaller than s is an upper bound for A.

We write s = supA.

Similarly, we say that a real number i is the greatest lower bound of A (or that i
is the infimum of A), if

1. i is a lower bound of A, and

2. no number greater than i is a lower bound for A.

We write i = inf A.

Exercise 2.16
Show the following: If a non-empty set A of real numbers has a maximum, then
the maximum of A is also the supremum of A.

An interval I is a set of real numbers with the following property:

If x ≤ y and x, y ∈ I, then z ∈ I for all x ≤ z ≤ y.

In particular, the set

[a, b] := {x ∈ R | a ≤ x ≤ b}
is called a closed interval. Similarly, the set

(a, b) := {x ∈ R | a < x < b}

is called an open interval.
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Exercise 2.17
Find the supremum of each of the following sets:

1. The closed interval [−2, 3]

2. The open interval (0,2)

3. The set {x ∈ Z | x2 < 5}

4. The set {x ∈ Q | x2 < 3}.

Exercise 2.18
Let (an) be an increasing bounded sequence. By the Completeness Axiom the
sequence converges to some real number a. Show that its range {an | n ∈ N} has a
supremum, and that the supremum equals a.

The previous task uses the Completeness Axiom for the Real Numbers. Note that
without using the Completeness Axiom we can still obtain the following weaker result:
If an increasing bounded sequence converges, then it converges to the supremum of its
range.

Task 2.19
The Completeness Axiom is equivalent to the following: Every non-empty set of
real numbers which is bounded from above has a supremum.

The following hints may be useful to prove the “hard” direction of this result. The three
hints are independent of each other and suggest different ways in which to proceed.
Assume the non-empty set S is bounded from above.

• Suppose a ∈ S and b is an upper bound of S. Then (a) there is an upper
bound b′ of S such that |b′ − a| ≤ |b − a|/2, or (b) there exists a′ ∈ S such that
|b− a′| ≤ |b− a|/2.

• Show that for all ε > 0 there is an element a ∈ S such that a + ε is an upper
bound for S.
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• Show that the set of upper bounds of S is of the form [s,∞). Then show that s
is the supremum of S.

Optional Task 2.1
Use the Completeness Axiom to show the following: For every positive real number
s ∈ R, s > 0, there is a natural number n ∈ N such that n− 1 ≤ s < n.

2.4 Subsequences

Recall that a sequence is a function ϕ : N→ R. Let ψ : N→ N be a strictly increasing
function5.

Then the sequence ϕ ◦ ψ : N→ R is called a subsequence of ϕ.

Here is an example: Suppose we are given the sequence

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
, . . .

The map ψ(n) = 2n then defines the subsequence

1

2
,
1

4
,
1

6
,
1

8
, . . .

If we denote the original sequence by (an), and if ψ(k) = nk for all k ∈ N, then we
denote the subsequence by (ank

).

So, in the example above,

an1
= a2 =

1

2
, an2

= a4 =
1

4
, an3

= a6 =
1

6
, . . .

Exercise 2.20
Let (an)n∈N =

(

1

n

)

n∈N
. Which of the following sequences are subsequences of

(an)n∈N?

1. 1,
1

2
,
1

3
,
1

4
,
1

5
. . .

5A function ψ : N → N is called strictly increasing if it satisfies: ψ(n) < ψ(m) for all n < m in N.
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2.
1

2
, 1,

1

4
,
1

3
,
1

6
,
1

5
. . .

3. 1,
1

3
,
1

6
,
1

10
,
1

15
. . .

4. 1, 1,
1

3
,
1

3
,
1

5
,
1

5
. . .

For the subsequence examples, also find the function ψ : N→ N.

Task 2.21
If a sequence converges, then all of its subsequences converge to the same limit.

Task 2.22
Show that every sequence of real numbers has an increasing subsequence or it has
a decreasing subsequence.6

Does your proof of Task 2.22 actually show a slightly stronger result?

The next fundamental result is known as the Bolzano-Weierstrass Theorem.

Task 2.23
Every bounded sequence of real numbers has a convergent subsequence.

6This result has a beautiful generalization due to Frank P. Ramsey (1903–1930), which unfortunately
requires some notation: Given an infinite subset M of N, we denote the set of doubletons from M by

P(2)(M) := {{m,n} | m,n ∈M and m < n} .

• Ramsey’s Theorem [24]. Let A be an arbitrary subset of P(2)(N). Then there is an infinite
subset M of N such that either

P(2)(M) ⊆ A, or P(2)(M) ∩ A = ∅.

You should prove Task 2.22 without using this theorem, but the result in Task 2.22 follows easily from
Ramsey’s Theorem: Set

A = {{m,n} | m < n and am ≤ an}.



2.5 Limes Inferior and Limes Superior* 19

Exercise 2.24
Let a < b. Every sequence contained in the interval [a, b] has a subsequence that
converges to an element in [a, b].

Task 2.25
Suppose the sequence (an) does not converge to the real number L. Then there is
an ε > 0 and a subsequence (ank

) of (an) such that

|ank
− L| ≥ ε for all k ∈ N.

We conclude this section with a rather strange result: it establishes convergence of a
bounded sequence without ever showing any convergence at all.

Task 2.26
Let (an) be a bounded sequence. Suppose all of its convergent subsequences
converge to the same limit a. Then (an) itself converges to a.

2.5 Limes Inferior and Limes Superior*

Let (an) be a bounded sequence of real numbers. We define the limes inferior7 and
limes superior of the sequence as

lim inf
n→∞

an := lim
k→∞

(inf{an | n ≥ k}) ,

and

lim sup
n→∞

an := lim
k→∞

(sup{an | n ≥ k}) .

7“limes” means limit in Latin.
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Optional Task 2.2
Explain why the numbers lim inf

n→∞

an and lim sup
n→∞

an are well-defined8 for every

bounded sequence (an).

One can define the notions of lim sup and lim inf without knowing what a limit is:

Optional Task 2.3
Show that the limes inferior and the limes superior can also be defined as follows:

lim inf
n→∞

an := sup

{

inf{an | n ≥ k} | k ∈ N

}

,

and

lim sup
n→∞

an := inf

{

sup{an | n ≥ k} | k ∈ N

}

.

Optional Task 2.4
Show that a bounded sequence (an) converges if and only if

lim inf
n→∞

an = lim sup
n→∞

an.

Optional Task 2.5
Let (an) be a bounded sequence of real numbers. Show that (an) has a subsequence
that converges to lim sup

n→∞

an.

Optional Task 2.6
Let (an) be a bounded sequence of real numbers, and let (ank

) be one of its con-

8An object is well-defined if it exists and is uniquely determined.
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verging subsequences. Show that

lim inf
n→∞

an ≤ lim
k→∞

ank
≤ lim sup

n→∞

an.

2.6 Cauchy Sequences

A sequence (an)n∈N is called a Cauchy sequence9, if for all ε > 0 there is an N ∈ N

such that for all m,n ∈ N with m ≥ N and n ≥ N ,

|am − an| < ε.

Informally speaking: a sequence is convergent, if far out all terms of the sequence are
close to the limit; a sequence is a Cauchy sequence, if far out all terms of the sequence
are close to each other.

We will establish in this section that a sequence converges if and only if it is a Cauchy
sequence.

You may wonder why we bother to explore the concept of a Cauchy sequence when it
turns out that Cauchy sequences are nothing else but convergent sequences. Answer:
You can’t show directly that a sequence converges without knowing its limit a priori.
The concept of a Cauchy sequence on the other hand allows you to show convergence
without knowing the limit of the sequence in question! This will nearly always be the
situation when you study series of real numbers. The “Cauchy criterion” for series turns
out to be one of most widely used tools to establish convergence of series.

Exercise 2.27
Every convergent sequence is a Cauchy sequence.

Exercise 2.28
Every Cauchy sequence is bounded.

9Named in honor of Augustin Louis Cauchy (1789–1857)
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Task 2.29
If a Cauchy sequence has a converging subsequence with limit a, then the Cauchy
sequence itself converges to a.

Task 2.30
Every Cauchy sequence is convergent.

Optional Task 2.7
Show that the following three versions of the Completeness Axiom are equivalent:

1. Every increasing bounded sequence of real numbers converges.

2. Every non-empty set of real numbers which is bounded from above has a
supremum.

3. Every Cauchy sequence of real numbers converges.

From an abstract point of view, our course in “Analysis on the Real Line” hinges on
two concepts:

• We can measure the distance between real numbers. More precisely we can
measure “small” distances: for instance, we have constructs such as “|an−a| < ε”
measuring how “close” an and a are.

• We can order real numbers. The statement “For all ε > 0 there is an n ∈ N

such that 0 < 1

n
< ε”, for example, relies exclusively on our ability to order real

numbers.

Thus the last two versions of the Completeness Axiom point to possible generalizations
of our subject matter.

The second version uses the concept of order (boundedness, least upper bound), but
does not mention distance. Section 2.5 gives clues how to define the limit concept in
such a scenario.
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The last version of the Completeness Axiom, on the other hand, requires the ability to
measure small distances, but does not rely on order. This will be useful when defining
completeness for sets such as C and Rn that cannot be ordered in the same way real
numbers can.

2.7 Accumulation Points

Given x ∈ R and ε > 0, we say that the open interval (x− ε, x+ ε) forms a neighbor-

hood of x.

We say that a property P (n) holds for all but finitely many n ∈ N if the set
{n ∈ N | P (n) does not hold} is finite.

Task 2.31
A sequence (an) converges to L ∈ R if and only if every neighborhood of L contains
all but a finite number of the terms of the sequence (an).

The real number x is called an accumulation point of the set S, if every neighborhood
of x contains infinitely many elements of S.

Task 2.32
The real number x is an accumulation point of the set S if and only if every
neighborhood of x contains an element of S different from x.

Note that finite sets do not have accumulation points.

The following exercise provides some more examples:

Exercise 2.33
Find all accumulation points of the following sets:

1. Q

2. N

3. [a, b)
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4.

{

1

n
| n ∈ N

}

.

Exercise 2.34
1. Find a set of real numbers with exactly two accumulation points.

2. Find a set of real numbers whose accumulation points form a sequence (an)
with an 6= am for all n 6= m.

Task 2.35
Show that x is an accumulation point of the set S if and only if there is a sequence
(xn) of elements in S with xn 6= xm for all n 6= m such that (xn) converges to x.

Task 2.36
Every infinite bounded set of real numbers has at least one accumulation point.

Optional Task 2.8
Characterize all infinite sets that have no accumulation points.

The next tasks in this section explore the relationship between the limit of a converging
sequence and accumulation points of its range.

Optional Task 2.9
1. Find a converging sequence whose range has exactly one accumulation point.

2. Find a converging sequence whose range has no accumulation points.
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3. Show that the range of a converging sequence has at most one accumulation
point.

Optional Task 2.10
Suppose the sequence (an) is bounded and satisfies the condition that am 6= an for
all m 6= n ∈ N. If its range {an | n ∈ N} has exactly one accumulation point a,
then (an) converges to a.

The remaining tasks investigate how accumulation points behave with respect to some
of the usual operations of set theory.

For any set S of real numbers, we denote by A(S) the set of all accumulation points of
S.

Optional Task 2.11
If S and T are two sets of real numbers and if S ⊆ T , then A(S) ⊆ A(T ).

Optional Task 2.12
If S and T are two sets of real numbers, then

A(S ∪ T ) = A(S) ∪A(T ).

Optional Task 2.13
1. Let (Sn)n∈N be a collection of sets of real numbers. Show that

⋃

n∈N

A(Sn) ⊆ A

(

⋃

n∈N

Sn

)

.

2. Find a collection (Sn)n∈N of sets of real numbers such that

⋃

n∈N

A(Sn) is a proper subset of A

(

⋃

n∈N

Sn

)

.
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Optional Task 2.14
Let S be a set of real numbers. Show that A(A(S)) ⊆ A(S).


