
4 Continuity

4.1 Definition and Examples

Let D be a set of real numbers and x0 ∈ D. A function f : D → R is said to be
continuous at x0 if the following holds: For all ε > 0 there is a δ > 0 such that for all
x ∈ D with

|x− x0| < δ,

we have that

|f(x)− f(x0)| < ε.

If the function is continuous at all x0 ∈ D, we simply say that f : D → R is continuous
on D.

Compare this definition of continuity to the earlier definition of having a limit. For
continuity, we want to ensure that the behavior of the function close to the point x0

nicely interacts with the behavior of the function at the point in question itself; thus
we require that x0 lies in the domain D, and that the “limit” equals f(x0). Note also
that we do no longer require in the definition of continuity that x0 is an accumulation
point of D.

Exercise 4.1
Let D be a set of real numbers and x0 ∈ D be an accumulation point of D. Then
the function f : D → R is continuous at x0 if and only if lim

x→x0

f(x) = f(x0).

Exercise 4.2
Let D be a set of real numbers and x0 ∈ D. Assume also that x0 is not an
accumulation point of D. Then the function f : D → R is continuous at x0.

Optional Task 4.1
Let D be a set of real numbers and x0 ∈ D. A function f : D → R is continuous at
x0 if and only if for all sequences (xn) in D converging to x0, the sequence (f(xn))
converges to f(x0).
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Exercise 4.3
Let f : R → R be defined by

f(x) =

{

|x|, if x ∈ Q

x2, if x ∈ R \Q

For which values of x0 is f(x) continuous?

Exercise 4.4
Let f : R → R be defined by

f(x) =

{

x sin
(

1

x

)

, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) continuous at x0 = 0? See Figure 3 on page 27.

Exercise 4.5
Let f : R → R be defined by

f(x) =

{

sin
(

1

x

)

, if x 6= 0, x ∈ R

0, if x = 0

Is f(x) continuous at x0 = 0?

See Figure 5 on page 30.

Exercise 4.6
Let f : (0, 1] → R be defined by

f(x) =

{

1, if x ∈ Q

0, if x ∈ R \Q

For which values of x0 is f(x) continuous?
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Exercise 4.7
Let f : (0, 1] → R be defined by

f(x) =







1

q
, if x =

p

q
with p, q relatively prime positive integers

0, if x ∈ R \Q

For which values of x0 is f(x) continuous? See Figure 6 on page 31.

It is interesting to note that in the late 1890s René-Louis Baire (1874–1932) proved
a beautiful result which implies that there are no functions on the real line that are
continuous at all rational numbers and discontinuous at all irrational numbers.

4.2 Combinations of Continuous Functions

Optional Task 4.2
Let D ⊆ R, and let f, g : D → R be functions continuous at x0 ∈ D. Then
f + g : D → R is continuous at x0.

Optional Task 4.3
Let D ⊆ R, and let f, g : D → R be functions continuous at x0 ∈ D. Then
f · g : D → R is continuous at x0.

Optional Task 4.4
Polynomials are continuous on R.

Optional Task 4.5
Let D ⊆ R, and let f : D → R be a function continuous at x0 ∈ D. Assume

additionally that f(x) 6= 0 for all x ∈ D. Then
1

f
: D → R is continuous at x0.
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Task 4.8
Let D,E ⊆ R, and let f : D → R be a function continuous at x0 ∈ D. Assume
f(D) ⊆ E. Suppose g : E → R is a function continuous at f(x0). Then the
composition g ◦ f : D → R is continuous at x0.

4.3 Uniform Continuity

We say that a function f : D → R is uniformly continuous on D if the following
holds: For all ε > 0 there is a δ > 0 such that whenever x, y ∈ D satisfy

|x− y| < δ,

then
|f(x)− f(y)| < ε.

Exercise 4.9
If f : D → R is uniformly continuous on D, then f is continuous on D. What is
the difference between continuity and uniform continuity?

Exercise 4.10
Let f : (0, 1) → R be defined by f(x) =

1

x
. Show that f is not uniformly continuous

on (0, 1).

Similarly one can show that the function f : R → R, defined by f(x) = x2, is continuous
on R, but fails to be uniformly continuous on R.

Task 4.11
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Show that
f is uniformly continuous on [a, b].
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Along the way, you probably want to use the Bolzano-Weierstrass Theorem (Task 2.24
on page 19) to prove this result.

In light of Exercise 4.10, the result of Task 4.11 must depend heavily on properties of
the domain. It is therefore natural to ask for what domains continuity automatically
implies uniform continuity. The following two tasks explore this question.

Optional Task 4.6
Let f : N → R be an arbitrary function. Then f is uniformly continuous on N.

Optional Task 4.7
Let D be a set of real numbers. Give a characterization of all the domains D such
that every continuous function f : D → R is uniformly continuous on D. [13]

Task 4.12
Let f : D → R be uniformly continuous on D. If D is a bounded subset of R, then
f(D) is also bounded.

Optional Task 4.8
Let f : D → R be uniformly continuous on D. If (xn) is a Cauchy sequence in D,
then (f(xn)) is also a Cauchy sequence.

Note a subtle, but important difference between the conclusion of the Task above and
the characterization of continuity in Exercise 4.1: Even though every Cauchy sequence
of elements inD will converge to some real number, that real number will not necessarily
lie in D.

Optional Task 4.9
If a function f : (a, b) → R is uniformly continuous on the open interval (a, b),
then it can be defined at the endpoints a and b in such a way that the extension
f : [a, b] → R is (uniformly) continuous on the closed interval [a, b].
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Thus, for instance, the function f : (0, 1) → R, given by f(x) = sin

(

1

x

)

is not uniformly

continuous on (0, 1).

It is often easier to show uniform continuity by establishing the following stronger con-
dition:

A function f : D → R is called a Lipschitz function on D if there is an M > 0 such
that for all x, y ∈ D

|f(x)− f(y)| ≤ M |x− y|

Exercise 4.13
Let f : D → R be a Lipschitz function on D. Then f is uniformly continuous on
D.

Task 4.14
Show: The function f(x) =

√
x is uniformly continuous on the interval [0, 1], but

it is not a Lipschitz function on the interval [0, 1].

4.4 Continuous Functions on Closed Intervals

The major goal of this section is to show that the continuous image of a closed bounded
interval is a closed bounded interval.

We say a function f : D → R is bounded, if there exists anM ∈ R such that |f(x)| ≤ M

for all x ∈ D.

Exercise 4.15
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Then f is
bounded on [a, b].

Optional Task 4.10
Let D be a set of real numbers. Give a characterization of all the domains D such
that every continuous function f : D → R is automatically bounded on D. [11]



4.4 Continuous Functions on Closed Intervals 41

We say that the function f : D → R has an absolute maximum if there exists an
x0 ∈ D such that f(x) ≤ f(x0) for all x ∈ D. Similarly, f : D → R has an absolute

minimum if there exists an x0 ∈ D such that f(x) ≥ f(x0) for all x ∈ D.

We can improve upon the result of Exercise 4.15 as follows:

Task 4.16
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Then f has
an absolute maximum (and an absolute minimum) on [a, b].

The next result is called the Intermediate Value Theorem.
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Figure 8: The Intermediate Value Theorem

Here the interval I can be any interval. Also: If x > y, we understand the interval (x, y)
to be the interval (y, x).

Task 4.17
Let f : I → R be a continuous function on the interval I. Let a, b ∈ I. If
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d ∈ (f(a), f(b)), then there is a real number c ∈ (a, b) such that f(c) = d. See
Figure 8 on the preceding page.

A continuous function maps a closed bounded interval onto a closed bounded interval:

Task 4.18
Let f : [a, b] → R be a continuous function on the closed interval [a, b]. Then
f ([a, b]) := {f(x) | x ∈ [a, b]} is also a closed bounded interval.

Task 4.19
Let f : [a, b] → R be strictly increasing (or decreasing, resp.) and continuous
on [a, b]. Show that f has an inverse on f([a, b]), which is strictly increasing (or
decreasing, resp.) and continuous.

Task 2.27 may be helpful to prove this result.

Task 4.20
Show that

√
x : [0,∞) → R is continuous on [0,∞).


