SOLVING INEQUALITIES

4.3.3

WHY DO WE NEED INEQUALITIES?

Maria and Violet need to buy toilet paper and hand sanitizer. Walmart sells each roll of toilet paper for \$1.65 and a bottle of hand sanitizer for \$3. Albertsons sells each roll of toilet paper for \$1.78 and a bottle of hand sanitizer for \$2.80.

WHY DO WE NEED INEQUALITIES?

Maria and Violet need to buy toilet paper and hand sanitizer. Walmart sells each roll of toilet paper for \$1.65 and a bottle of hand sanitizer for \$3. Albertsons sells each roll of toilet paper for \$1.78 and a bottle of hand sanitizer for \$2.80.

Inequalities arise when we wish to know when one quantity is larger or smaller than another in terms of time, cost, rate, or any other attribute that a variable might measure.

An inequality compares two values, showing if one is < (less than), > (greater than), \le (less than or equal to), \ge greater than or equal to), or simply \ne (not equal) to another value.

In other words, for any numbers a and b, either a = b or $a \neq b$. If $a \neq b$ then there are two posibilities:

- 1. a < b
- 2. a > b

An inequality compares two values, showing if one is < (less than), > (greater than), \le (less than or equal to), \ge greater than or equal to), or simply \ne (not equal) to another value.

In other words, for any numbers a and b, either a = b or $a \neq b$. If $a \neq b$ then there are two posibilities:

- 1. a < b
- 2. a > b

One rule to remember!! If you multiply or divide by a negative number, you need to flip the inequality.

An inequality compares two values, showing if one is < (less than), > (greater than), \le (less than or equal to), \ge greater than or equal to), or simply \ne (not equal) to another value.

In other words, for any numbers a and b, either a = b or $a \neq b$. If $a \neq b$ then there are two possibilities:

1.
$$a < b$$

2.
$$a > b$$

One rule to remember!! If you multiply or divide by a negative number, you need to flip the inequality.

Ex 1:
$$x + 5 \ge 8$$

 $x \ge 8 - 5$
 $x \ge 3$

An inequality compares two values, showing if one is < (less than), > (greater than), \le (less than or equal to), \ge greater than or equal to), or simply \ne (not equal) to another value.

In other words, for any numbers a and b, either a = b or $a \neq b$. If $a \neq b$ then there are two possibilities:

1.
$$a < b$$

2.
$$a > b$$

One rule to remember!! If you multiply or divide by a negative number, you need to flip the inequality.

Ex 1:
$$x + 5 \ge 8$$

 $x \ge 8 - 5$
 $x \ge 3$

$$Ex 2: -x + 5 \ge 8$$
$$-x \ge 8 - 5$$
$$x \le -3$$

Maria and Violet need to buy toilet paper and hand sanitizer. Walmart sells each roll of toilet paper for \$1.65 and a bottle of hand sanitizer for \$3. Albertsons sells each roll of toilet paper for \$1.78 and a bottle of hand sanitizer for \$2.80.

Maria and Violet need to buy toilet paper and hand sanitizer. Walmart sells each roll of toilet paper for \$1.65 and a bottle of hand sanitizer for \$3. Albertsons sells each roll of toilet paper for \$1.78 and a bottle of hand sanitizer for \$2.80.

If we let W(t) be the cost of t toilet paper rolls with Walmart and if we let A(t) be the cost of t toilet paper rolls with Albertsons, which choice reflects the correct equations?

Walmart: 1 toilet paper roll 1.65, 1 bottle hand sanitizer \$3.00

Albertsons: 1 toilet paper roll \$1.78 and a bottle of hand sanitizer for

\$2.80

Walmart: 1 toilet paper roll 1.65, 1 bottle hand sanitizer \$3.00

Albertsons: 1 toilet paper roll \$1.78 and a bottle of hand sanitizer for \$2.80

- 1. Walmart: W(t) = 3t + 1.65, Albertsons: A(t) = 2.80t + 1.78
- 2. Walmart : W(t) = 3 + 1.65t , Albertsons : A(t) = 2.80 + 1.78t

SETTING UP AN INEQUALITY

Set up an inequality to be solved to determine the amount where Walmart is preferred over Albertsons.

SETTING UP AN INEQUALITY

Set up an inequality to be solved to determine the amount where Walmart is preferred over Albertsons.

- 1. Walmart < Albertsons
- 2. Albertsons < Walmart
- 3. Walmart ≠ Albertsons
- 4. I have no idea

LET'S PUT IT ALL TOGETHER AND SOLVE IT

What do we know?

- Equations: W(t) = 3 + 1.65t, A(t) = 2.80 + 1.75t
- Inequality: Walmart < Albertsons

LET'S PUT IT ALL TOGETHER AND SOLVE IT

What do we know?

- Equations: W(t) = 3 + 1.65t, A(t) = 2.80 + 1.75t
- Inequality: Walmart < Albertsons

Our Inequality is

$$3 + 1.65t < 2.80 + 1.75t$$

SOLVING AN INEQUALITY

$$3 + 1.65t < 2.80 + 1.75t$$

t?

SOLVING AN INEQUALITY

The solution to our inequality was t > 2, but what does that mean?

SOLVING AN INEQUALITY

The solution to our inequality was t > 2, but what does that mean?

- 1. If more than 2 toilet papers are bought, then Walmart would cost less than Albertsons.
- 2. If more than 2 toilet papers are bought, then Albertsons would cost less than Walmart.

Company A\$15 per month21 cents per minutes

Company B \$20 per month 18 center per minute

Steps to solving an inequality

Step 1: Set up equations

Step 2: Set up Inequality

Step 3: Solve for your variable

Step 4: Interpret your solution

THEOREM 4.11 - f(x) < g(x)

For any continuous real functions f and g, with domain D:

- a. If h is strictly increasing on the intersection of f(D) and g(D), then $f(x) < g(x) \Leftrightarrow h(f(x)) < h(g(x))$.
- b. If h is strictly decreasing on the intersection of f(D) and g(D), then $f(x) > g(x) \Leftrightarrow h(f(x)) > h(g(x))$.

Consider the inequality f(x) > g(x), where the functions f and g and with $f(x) = a^x$ and $g(x) = b^x$. Let $h(x) = \log x$. Now h is increasing, therefore,

$$f(x) > g(x) \Leftrightarrow h(f(x)) > h(g(x))$$

Consider the inequality f(x) > g(x), where the functions f and g and with $f(x) = a^x$ and $g(x) = b^x$. Let $h(x) = \log x$. Now h is increasing, therefore,

$$f(x) > g(x) \Leftrightarrow h(f(x)) > h(g(x))$$

If we substitute our values of f(x), g(x), and h(x), what do we end up with?

Consider the inequality f(x) > g(x), where the functions f and g and with $f(x) = a^x$ and $g(x) = b^x$. Let $h(x) = \log x$. Now h is increasing, therefore,

$$f(x) > g(x) \Leftrightarrow h(f(x)) > h(g(x))$$

We get

$$a^x > b^x \iff \log a^x > \log b^x$$

Use a power log on the right-hand side, and what do we get?

Consider the inequality f(x) > g(x), where the functions f and g and with $f(x) = a^x$ and $g(x) = b^x$. Let $h(x) = \log x$. Now h is increasing, therefore,

$$f(x) > g(x) \Leftrightarrow h(f(x)) > h(g(x))$$

We get

$$a^x > b^x \iff \log a^x > \log b^x$$

We get:

$$a^x > b^x \iff x \log a > x \log b$$

$$a^x > b^x \iff x \log a > x \log b$$

Remembering our rule, if x > 0, we can divide by x without changing the inequality. On the other hand, if x < 0, the division by x will flip the inequality.

Therefore, when $a^x > b^x$, then a > b if x is positive, and a < b if x is negative.

INTERMEDIATE VALUE THEOREM

Suppose f is a continuous function on the interval [a, b].

Then for every real number between f(a) and f(b), there is at least one real number x_0 between a and b such that $f(x_0) = y_0$.

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Step 1: Find the zeros of f

$$f(x) = \frac{(x+1)(x-3)^2}{5x+6}$$

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Step 1: Find the zeros of f

$$f(x) = \frac{(x+1)(x-3)^2}{5x+6}$$

$$x + 1 = 0$$
 $(x - 3)^2 = 0$ $5x + 6 = 0$ $x = ?$ $x = ?$

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Step 1: Find the zeros of f

$$f(x) = \frac{(x+1)(x-3)^2}{5x+6}$$

$$x + 1 = 0$$
 $(x - 3)^2 = 0$ $5x + 6 = 0$ $x = -1$ $x = 3$ $x = 1.2$

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Step 2: Find your intervals

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Step 2: Find your intervals

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Interval $(-\infty, -1)$:

We let
$$x = 2$$

We let
$$x = 2$$
 $f(-2) = \frac{-1(-5)^2}{-16} = \frac{25}{16} > 0$

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Interval $(-\infty, -1)$:

We let
$$x = 2$$

We let
$$x = 2$$
 $f(-2) = \frac{-1(-5)^2}{-16} = \frac{25}{16} > 0$

TRUE

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Interval
$$(-\infty, -1)$$
:

We let
$$x = 2$$

$$f(-2) = \frac{-1(-5)^2}{-16} = \frac{25}{16} > 0$$
 TRUE

We let
$$x = 0$$

$$f(0) = \frac{1(-3)^2}{-6} = -1.5 > 0$$

We let
$$x = 2$$

$$f(2) = \frac{3(-1)^2}{4} = \frac{3}{4} > 0$$

Interval
$$(3, \infty)$$
:

$$(3, \infty)$$
:

We let
$$x = 5$$

$$f(5) = \frac{6(2)^2}{19} = \frac{24}{19} > 0$$

TRUE

FALSE

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Interval
$$(-\infty, -1)$$
:

We let
$$x = 2$$

$$f(-2) = \frac{-1(-5)^2}{-16} = \frac{25}{16} > 0$$
 TRUE

Interval
$$(-1, 1.2)$$
:

We let
$$x = 0$$

$$f(0) = \frac{1(-3)^2}{-6} = -1.5 > 0$$

We let
$$x = 2$$

$$f(2) = \frac{3(-1)^2}{4} = \frac{3}{4} > 0$$

Interval
$$(3, \infty)$$
:

We let
$$x = 5$$

$$f(5) = \frac{6(2)^2}{19} = \frac{24}{19} > 0$$

Thus, the solution set to $\frac{(x+1)(x-3)^2}{5x+6} > 0$ is $(-\infty, -1) \cup (1.2, 3) \cup (3, \infty)$

SOLVE
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$

Intermediate Value Theorem:

Suppose f is a continuous function on the interval [a, b].

Then for every real number between f(a) and f(b), there is at least one real number x_0 between a and b such that $f(x_0) = y_0$.

Thus, the solution set to
$$\frac{(x+1)(x-3)^2}{5x+6} > 0$$
 is $(-\infty, -1) \cup (1.2, 3) \cup (3, \infty)$

Thus, the solution set to $\frac{(x+1)(x-3)^2}{5x+6} > 0$ is $(-\infty, -1) \cup (1.2, 3) \cup (3, \infty)$

INTERMEDIATE VALUE THEOREM

Step 1: Find your zeros
$$f(x) = \left[\left(\frac{x^2 + 10x + 25}{x - 5} \right) - 6 \right]$$

$$SOLVE \frac{x^2 + 10x + 25}{x - 5} > 6$$

Step 2: Find your intervals

Step 3: Find a representative of f for x in each interval

Interval

Let
$$x = ?$$

$$f(\) = \left[\left(\frac{(\)^2 + 10(\) + 25}{(\) - 5} \right) - 6 \right]$$