Let $\mathcal{K}$ denote the set of $2 \times 2$ matrices of the form $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$, where $a, b \in \mathbb{R}$.

1. Show: If $A$ and $B$ are elements in $\mathcal{K}$, then $A+B \in \mathcal{K}$.
2. Show: If $A$ and $B$ are elements in $\mathcal{K}$, then $A \cdot B \in \mathcal{K}$.
3. Show that $A \cdot B=B \cdot A$ holds for all elements $A, B \in \mathcal{K}$.
4. Note that the identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is an element of $\mathcal{K}$. Show: If the matrix $A=\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$ in $\mathcal{K}$ satisfies $a^{2}+b^{2} \neq 0$, then $A$ has a matrix inverse. What is $A^{-1}$ ? Does $A^{-1}$ always lie in $\mathcal{K}$ ?
5. Show that we can identify $\mathcal{K}$ with $\mathbb{C}$, i.e., find a bijection $f: \mathcal{K} \rightarrow \mathbb{C}$ such that $f(A+B)=f(A)+f(B)$ and $f(A \cdot B)=f(A) \cdot f(B)$. (This is easier than it sounds.)
6. Under this identification, find the element $I$ in $\mathcal{K}$ that corresponds to $i \in \mathbb{C}$ (not surprisingly, there are actually two possible choices). Compute $I \cdot I$.
7. Under this identification, what is the "conjugate" of an element in $\mathcal{K}$, what is the "modulus" of an element in $\mathcal{K}$ ?
