Name:
Math 2326
Test 1
Spring 2021
Show your work to receive credit! Carefully read the instructions for each problem.
You may only use writing utensils and a calculator. You are not allowed to use any other material (textbook, notes, other books, CyberBoard, electronic resources, communication devices, etc.)
Print out the test, write in the space provided. (If you don't have a printer, use your own paper - copy figures as good as you can and clearly mark the problem you are working on.) When you have finished, scan your work or take photos with your cell phone, assemble into one PDF file. Then email the PDF file back to me at hknaust@utep.edu by 3:00 p.m. The test has 5 problems on 5 pages. Good luck!

Problem 1 (20 points) Find the solution to the following initial-value problem in explicit form. (This means write the solution as $y(t)=\ldots$)

$$
y^{\prime}+2 t y=6 t \quad y(0)=4
$$

This is a linear (and separable) $D \in Q$.

$$
\begin{aligned}
& \text { thus } y(t)=3+C e^{-t^{2}} \\
& \text { solve the IVP: } y(0)=4
\end{aligned}
$$

$$
\begin{aligned}
\text { no } \quad 4 & =3+C e^{0}=3+C \Rightarrow C=1 \\
\rightarrow \quad y t & =3+e^{-t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\text { Jutepration factor } \quad P_{S}=2 t \\
I(t)=e^{\int p(t) d t}=e^{2 t d t}=e^{t^{2}}
\end{array} \\
& \text { Multiple, } b, I(t) \text { : } \\
& \underbrace{y^{\prime} e^{t^{2}}+2 t e^{t^{2}} y}=6 t e^{t^{2}} \\
& \underbrace{y}_{\left(y e^{t^{2}}\right)^{\prime}}=6 t e^{t^{2}} \\
& \text { Jutegrate: } y e^{t^{2}}=3 e^{t^{2}}+C{ }^{2} \text {, } \\
& \text { thus } y(t)=3+C e^{-t^{2}} \text { Note }\left(e^{t^{2}}\right)=2 t e^{t^{2}} \text { as chitin rule }
\end{aligned}
$$

Problem 2 (20 points) Solve the following initial value problem in explicit form.

$$
\frac{d y}{d t}=\frac{1}{(y-1)(t+1)}, \quad y(0)=2 .
$$

This is a separable $D \in Q$:

$$
(y-1) d y=\frac{d t}{t+1}
$$

Tuteprate on both sides:
don't weed abs. value since for $\mid \cup P, t=0$ and lanst+i>0

$$
\frac{y^{2}}{2}-y=\ln (t+1)<+C
$$

This is a quedretice exertion in y.
using the quadratic formula re get

$$
y=1 \pm \sqrt{1+2 \ln (t+1)+c}
$$

Since $y(0)=2>1$ in the IVT, se con discard the" - "answer:

$$
\begin{aligned}
y & =1+\sqrt{1+2 \ln (t+1)+C} \\
y(0) & =2 \text { yield, } c=0 \\
\rightarrow y & =1+\sqrt{1+2 \ln (t+1)}
\end{aligned}
$$

Problem 3 (20 points) A glass tank initially contains 15 gallons of salt water containing 6 pounds of salt. Suppose salt water containing 1 pound of salt per gallon is pumped into the top of the tank at a rate of 2 gallons per minute, while a well-mixed solution leaves the bottom of the tank at the same rate of 2 gallons per minute.

1. Write an initial-value problem that models the amount of salt in the tank over time. Do not forget to properly introduce all variables you are going to use.
Let $s(t)$ the amount of salt in the tank st time t (inks) Every minute 2 lis of salt enters the tank; she the colttucentition in the tack is $\frac{s(t)}{15} \frac{\operatorname{los}}{\mathrm{~g}}$, and the outflow rete is $2 \frac{9}{4 \text { min }}$,
$2 \frac{s(t)}{15}$ las of salt will lave the tank per minn te $\rightarrow \frac{d s}{d t}=2-2 \frac{s(t)}{15}$
2. Solve the initial value problem in explicit form!

This is a liver $D \in Q$. I \quad b $=e^{\frac{2}{15 t}}$

$$
\begin{aligned}
& \frac{d s}{d t}+\frac{2}{15} s=2 \\
& \underbrace{s^{\prime} \frac{2}{2} t+\frac{2}{15} e^{\frac{2}{15} t}}_{\left(e^{\frac{2}{15} t}\right)^{\prime}}=2 e^{\frac{2}{15} t}
\end{aligned}
$$

Solving and finding C
yields

$$
s(t)=15-9 e^{-\frac{2}{15} t}
$$

Note that $\lim _{t \rightarrow \infty} S(t)=15$, as expected!

Problem 4 (20 points) Use Euler's Method with step viz $\Delta t=1 \mathrm{t}$ a approximate $y(1), y(2), y(3)$ and $y(4)$ for the initial value problem

$$
\begin{array}{ll}
t_{0}=0 \quad y_{0}=1 \\
t_{1}=0+1=1 & y_{1}=1+f(0,1) \cdot 1=1+1=2 \\
t_{2}=1+1=2 & y_{2}=2+f(1,2) \cdot 1=2+0=2 \\
t_{3}=2+1=3 & y_{3}=2+f(2,2) \cdot 1=2-2=0 \\
t_{4}=3+1=4 & y_{4}=0+f(3,0) \cdot 1=0-6=-6
\end{array}
$$

Problem 5 (20 points) Consider the autonomous differential equation

$$
\frac{d y}{d t}=y(y-3)(y+2)^{2}
$$

1. Find the equilibrium points!

$$
\frac{d y}{d t}=x=y=0, y=3 \text { or } y=-2
$$

2. Insert the phaseline and the equilibrium solutions into the graph below. Then sketch the solution satisfying the initial condit $y(0)=2$. (Do not forget to label the axes!)

3. Find $\lim _{t \rightarrow \infty} y(t)$ for the solution satisfying the initial condition $y(2)=-1$.

$$
\lim _{t \rightarrow \infty} y(t)=T
$$

4. Find $\lim _{t \rightarrow \infty} y(t)$ for the solution satisfying the initial condition $y(1)=1$.

$$
\lim _{t \rightarrow \infty} y(t)=0
$$

