Name:

Show your work to receive credit! Carefully read the instructions for each problem.
You may only use writing utensils and a calculator. You are not allowed to use any other material (textbook, notes, other books, CyberBoard, electronic resources, communication devices, etc.)
Print out the test, write in the space provided. (If you don't have a printer, use your own paper - copy figures as good as you can and clearly mark the problem you are working on.)
When you have finished, scan your work or take photos with your cell phone, assemble into one PDF file. Then email the PDF file back to me at hknaust@utep.edu by 3:00 p.m. sharp.
The test has 5 problems on 6 pages. Good luck!
Problem 1 (20 points) Below is the phase portrait of the solution to a predator-prey system of autonomous differential equations satisfying the initial conditions $x(0)=y(0)=1$.

In the coordinate system below that, give a sketch of the time series $x(t)$ and $y(t)$. Clearly indicate which of your two graphs is $x(t)$ and which one is $y(t)$!

Problem 2 (20 points) Consider the following system of differential equations describing a predator-prey model:

$$
\begin{aligned}
x^{\prime} & =x(2-x)+4 x y \\
y^{\prime} & =y-x y
\end{aligned}
$$

1. Which of the two variables represents the prey population?

$$
\text { fiat of the } x y \text { term }
$$

2. Suppose $y\left(t_{0}\right)=0$ for some time t_{0}. Explain why this implies that $y(t)=0$ for all values of t.

$$
\text { then } y^{\prime}\left(t_{0}\right)=0 \text { as well, so }
$$

y in wot ch a Mgr ire ych=0 for all t
3. Describe in words the fate of the predator population when the prey population becomes extinct. Then draw the phaseline for the predator population in this situation.

Te $D \in \mathbb{Q}$ for x be c owe $x<x(2-x)$,
logistic growth.

Problem 3 (20 points) Consider the following system of differential equations:

$$
\begin{aligned}
x^{\prime} & =2 x \\
y^{\prime} & =x^{2}-3 y
\end{aligned}
$$

1. Find all solutions of this system.

$$
\begin{aligned}
& \text { The system is porsially deronplal } \\
& x^{\prime}=2 x \Rightarrow x=A e^{2 t} \\
& C_{[F} y^{\prime}=\left(A e^{2 t}\right)^{2}-3 y \\
& \Leftrightarrow y^{\prime}+3 y=A^{2} e^{4 t} \\
& \Leftrightarrow y^{\prime} 3 t+3 e^{3 t} y=A^{2} e^{7 t} \\
& \Leftrightarrow\left(y e^{3 t}=A^{2} e^{7 t}\right. \\
& \Leftrightarrow A^{3 t}=A_{7}^{2} e^{75}+B \\
& \Leftrightarrow y=\frac{A^{2}}{7} e^{4 t}+B e^{-3 t}
\end{aligned}
$$

2. Find the solution satisfying the initial conditions $x(0)=-7$ and $y(0)=0$.

$$
\begin{aligned}
& x=-7 e^{2 t} \\
& y=7 e^{4 t}-7 e^{-3 t}
\end{aligned}
$$

Problem 4 (20 points) Consider the system of linear differential equations $\mathbf{Y}^{\prime}=A \cdot \mathbf{Y}$, where $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)$.

1. Find the eigenvalues of the matrix A.
characteristic eff:

$$
\begin{array}{ll}
& (2-\lambda)(0-\lambda)-3=0 \\
\Leftrightarrow & -2 \lambda+\lambda^{2}-3=0 \\
\Leftrightarrow & \lambda^{2}-2 \lambda-3=0 \\
\Leftrightarrow & (\lambda+1)(\lambda-3)=0 \\
& \text { or } \lambda=-1 \text { or } \lambda \leq 3
\end{array}
$$

2. Find an eigenvector for each of the eigenvalues.

$$
\left.\begin{array}{c}
\lambda=-1-\lambda I d=\binom{31}{31} \\
\text { eigenvector } v \text { Satisfies } \\
\text { (A- } \lambda 1 d) \underline{v}=0 \\
\text { so wo get the condition } \\
3 v_{1}+v_{2}=0 \\
\text { car tale. }
\end{array}\right\}
$$

$$
\lambda=3
$$

$$
{ }^{3} A-\lambda(d)=\binom{-11}{3-3}
$$

we get the condition $-v_{1}+v_{2}=0$, so we
Can take $\underline{v}=\binom{1}{1}$
Contake: $\underline{v}=(-3)$
3. Write down the general solution of the system $\mathbf{Y}^{\prime}=A \cdot \mathbf{Y}$.

$$
y=k_{1}(-3) e^{-t}+k_{2}(i) e^{3 t}
$$

Problem 5 (20 points) Consider the following family of autonomous differential equations parametrized by α :

$$
\frac{d y}{d t}=y^{2}+\alpha y
$$

1. Sketch the bifurcation diagram of this family on the next page! Clearly indicate the locus of the equilibrium points and the phase line arrows in the various regions cut out by the locus of equilibrium points. As usual, do not forget to label the axes!
2. Find the bifurcation values) and describe how the qualitative behavior of the solutions changes at the bifurcation value (s).

$$
\begin{aligned}
\begin{array}{l}
\text { locus of the } \\
\text { equip. pt }
\end{array}\left\{\begin{aligned}
y^{2}+\alpha y=0 \quad & y(y+\alpha)-0 \\
& \Leftrightarrow \\
& =0 \text { or } y=-\alpha \\
& (2 \text { live })
\end{aligned}\right.
\end{aligned}
$$

$X=$ ois the onk ba fus cation value

