Math 2326

A Substitution Technique

You will explore a substitution technique which transforms certain differential equations into linear differential equations, which can then be solved by the method discussed in class.

1 Warm-up Exercise. Find the general solution of the following differential equations:

1. $y^{\prime}(t)+y(t)=e^{t}$
2. $y^{\prime}(t)+t y(t)=t$
3. $\left(1+t^{2}\right) y^{\prime}(t)-2 t y(t)=2 t\left(1+t^{2}\right)$
4. $y^{\prime}(t)+(\cot t) y(t)=2 \csc t$

For $y>0$ consider the differential equation

$$
\begin{equation*}
y^{\prime}(t)+\frac{2}{t} y(t)=\frac{1}{t^{2}}(y(t))^{3} . \tag{1}
\end{equation*}
$$

This differential equation is not linear because of the $y(t)^{3}$ term. We will now perform a substitution: we will replace $y(t)$ in the equation by

$$
z(t)=y(t)^{-2}
$$

or equivalently

$$
y(t)=z(t)^{-1 / 2}
$$

We will also have to replace $y^{\prime}(t)$ by an expression containing $z(t)$ and $z^{\prime}(t)$, using the chain rule:

$$
y^{\prime}(t)=(-1 / 2) z(t)^{-3 / 2} z^{\prime}(t)
$$

Performing the substitution the differential equation (1) reads as:

$$
\begin{equation*}
(-1 / 2) z(t)^{-3 / 2} z^{\prime}(t)+\frac{2}{t} z(t)^{-1 / 2}=\frac{1}{t^{2}} z(t)^{-3 / 2} \tag{2}
\end{equation*}
$$

Multiplying by the reciprocal of the term in front of $z^{\prime}(t)$, we obtain the linear differential equation:

$$
\begin{equation*}
z^{\prime}(t)-\frac{4}{t} z(t)=-\frac{2}{t^{2}} . \tag{3}
\end{equation*}
$$

2 Show that equation (3) has the solutions $z(t)=\frac{2}{5 t}+C t^{4}$
Finally we re-substitute: The solutions to the original equation (1) are given by

$$
y(t)=z(t)^{-1 / 2}=\left(\frac{2}{5 t}+C t^{4}\right)^{-1 / 2}
$$

3 Show that the substitution $z(t)=y(t)^{1-n}$ transforms a differential equation of the form

$$
\begin{equation*}
y^{\prime}(t)+p(t) y(t)=q(t) y(t)^{n} \tag{4}
\end{equation*}
$$

into a linear differential equation (in $z(t)$) for $n \neq 0,1$!
4 Find the general solution of equation (4) for the cases $n=0$ and $n=1$.
A differential equation of the type $y^{\prime}(t)+p(t) y(t)=q(t) y(t)^{n}$ is called a Bernoulli Equation.

5 Solve the following differential equations for the initial condition $y(1)=2$:

1. $y^{\prime}(t)-y(t)=-y(t)^{4}$
2. $t^{2} y^{\prime}(t)-t y(t)=y(t)^{2}$
3. $y^{\prime}(t)=\frac{1}{y(t)}-\frac{y(t)}{t+2}$

6 Solve the differential equations in 5 for the initial condition $y(1)=-2$. (You must slightly adapt the method for this initial condition! Why?)
7 The method of solving Bernoulli equations does not work when the initial condition is chosen so that $y=0$. Why? (This does not mean necessarily that a solution does not exist.) What can you say about the solutions to the differential equations in 5 satisfying the initial condition $y(1)=0$?

