## A Substitution Technique

You will explore a substitution technique which transforms certain differential equations into separable differential equations, which can then be solved by the method discussed in class.

1 Warm-up Exercise. Find the general solution of the following differential equations. Express the solutions in explicit form, whenever possible.

1. $\frac{d y}{d t}=\frac{3 t^{2} y}{1+t^{3}}$
2. $\frac{d y}{d t}=\frac{5 y}{t(y+2)}$
3. $\frac{d y}{d t}=\sqrt{1-y^{2}}$
4. $\frac{d y}{d t}=\frac{1}{y \sqrt{1-y^{2}}}$

For $t>0$ consider the differential equation

$$
\begin{equation*}
\frac{d y}{d t}=\frac{y^{2}+t y}{t^{2}} \tag{1}
\end{equation*}
$$

This differential equation is neither separable nor linear. We will now perform a substitution: we will replace $y(t)$ in the equation by

$$
z(t)=\frac{y(t)}{t}
$$

or equivalently

$$
y(t)=t z(t) .
$$

We will also have to replace $\frac{d y}{d t}$ by an expression containing $z(t)$ and $z^{\prime}(t)$, using the product rule:

$$
\frac{d y}{d t}=z+t \frac{d z}{d t}
$$

Performing the substitution on both sides of the differential equation (1) reads as:

$$
\begin{equation*}
z+t \frac{d z}{d t}=z^{2}+z \tag{2}
\end{equation*}
$$

Simplifying, we obtain the separable differential equation:

$$
\begin{equation*}
t \frac{d z}{d t}=z^{2} \tag{3}
\end{equation*}
$$

2 Show that equation (3) has the solutions $z(t)=\frac{1}{C-\ln t}$
Finally we re-substitute: The solutions to the original equation (1) are given by

$$
y(t)=t z(t)=\frac{t}{C-\ln t} .
$$

What is special about the differential equation (1)? It can be written in the form $\frac{d y}{d t}=F\left(\frac{y}{t}\right)$, i.e. the right hand side depends only on the quotient of $y$ and $t$ and not on $y$ and $t$ independently.
3 What is this function $F$ for the differential equation (1)?
Differential equations of the form $\frac{d y}{d t}=F\left(\frac{y}{t}\right)$ are called homogeneous.
4 Show that the substitution $z(t)=\frac{y(t)}{t}$ transforms a homogeneous differential equation into a separable differential equation (in $z(t)$ )!
5 Solve the following differential equations. Express the solutions in explicit form if possible.

1. $\frac{d y}{d t}=\frac{t^{2}+t y+y^{2}}{t^{2}}$
2. $\frac{d y}{d t}=\frac{y-t}{y+t}$
3. $\frac{d y}{d t}=-\frac{t^{2}+y^{2}}{t y}$

$$
\text { 4. } \frac{d y}{d t}=\frac{y}{t}+\sin \left(\frac{y}{t}\right)
$$

6 Investigate the slope fields of homogeneous differential equations: How can you tell from the slope field that a given differential equation is homogeneous? Hint: Find the lines on which the slope is constant.
7 Investigate the slope field of the differential equation

$$
\begin{equation*}
\frac{d y}{d t}=\frac{y-t+3}{y+t-1} \tag{4}
\end{equation*}
$$

Using your observations in 6, explain why the differential equation is not homogeneous. Compare the slope field to the slope field of the homogeneous equation

$$
\begin{equation*}
\frac{d y}{d t}=\frac{y-t}{y+t} \tag{5}
\end{equation*}
$$

Find a substitution method to transform the differential equation (4) into the homogeneous differential equation (5), then solve differential equation (4).

