The Curve of Pursuit ${ }^{1}$

An interesting geometric problem-first considered by Leonardo da Vinciarises when one tries to determine the path of a pursuer chasing its prey. The simplest problem is to find the curve along which a vessel moves in pursuing another vessel that flees along a straight line, assuming that the speeds of both vessels are constant.

Let's assume vessel A, traveling at a speed α, is pursuing vessel B, which is traveling at speed β. In addition, assume vessel A begins at time $t=0$ at the origin and pursues vessel B, which begins at the point $(b, 0), b>0$, and travels up the line $x=b$. After t hours, vessel A is located at the point $P=(x, y)$ and vessel B is located at the point $Q=(b, \beta t)$. The goal is to describe the locus of points P; that is to find y as a function of x.

[^0]1. Vessel A is pursuing vessel B , so at time t, vessel A must be heading right at vessel B . Thus the tangent line to the curve of pursuit at P must pass through the point Q. For this to be true, show that

$$
\frac{d y}{d x}=\frac{y-\beta t}{x-b}
$$

2. We know that the speed at which vessel A is traveling, so we know that the distance it travels in time t is αt. This distance is also the length of the pursuit curve from $(0,0)$ to (x, y). Using the arclength formula, show that

$$
\alpha t=\int_{0}^{x} \sqrt{1+\left[\frac{d y}{d u}\right]^{2}} d u
$$

3. Solve the formulas in 1. and 2. for the variable t to obtain

$$
\frac{y}{\beta}-\frac{(x-b)}{\beta} \frac{d y}{d x}=\frac{1}{\alpha} \int_{0}^{x} \sqrt{1+\left[\frac{d y}{d u}\right]^{2}} d u
$$

4. Set $w(x)=d y / d x$ and differentiate both sides of the equation above with respect to x to obtain the first-order differential equation

$$
(x-b) \frac{d w}{d x}=-\frac{\beta}{\alpha} \sqrt{1+w^{2}}
$$

5. Using appropriate initial values for both x and $w=d y / d x$ when $t=0$, show that the solution of the equation in 4 . is given by

$$
\frac{d y}{d x}=w(x)=\frac{1}{2}\left[\left(1-\frac{x}{b}\right)^{-\frac{\beta}{\alpha}}-\left(1-\frac{x}{b}\right)^{\frac{\beta}{\alpha}}\right] .
$$

6. For the case $\alpha>\beta$, integrate the expression in 5 . with respect to x to obtain y as a function of x. What is the initial condition for y when $t=0$?
7. For the case $\alpha>\beta$, find the location where vessel A will intercept vessel B.
8. Repeat 6. for the case $\alpha=\beta$.
9. For the case $\alpha=\beta$, will vessel A ever reach vessel B ?

[^0]: ${ }^{1}$ This laboratory is based on a group project in "Fundamentals of Differential Equations" by R. Kent Nagle and Edward B. Saff.

