Bifurcations in Linear Systems ${ }^{1}$

Consider the following system of first-order linear differential equations:

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{rr}
a & b \\
-1 & -1
\end{array}\right) \cdot\binom{x(t)}{y(t)},
$$

where a and b are real parameters.
1 For each value of a and b, classify the system's equilibrium points (as sinks, spirals, etc.). Draw a picture in the " $a b$ "-plane, and indicate the regions corresponding to the various types (for instance: shade all (a, b) values for which the origin is a sink red, the values for which the origin is a spiral sink orange, and so forth). Be sure to include all the computations necessary to draw the picture.

As the values of a and b are changed and the point (a, b) moves from one region to another, the "equilibrium type" changes. Such a change is called a bifurcation. A typical bifurcation occurs when a harmonic oscillator changes from being underdamped to being overdamped.
2 Which of the bifurcations in your picture affect the long term behavior of the solutions?
3 What is happening at the boundary between regions?

[^0]
[^0]: ${ }^{1}$ This laboratory is based on a student laboratory in "Differential Equations" by Blanchard, Devaney and Hall.

