Math 2326 Competing Species Laboratory 4B
Consider the non-linear differential system

$$
\begin{aligned}
x^{\prime} & =x(-x-y+70) \\
y^{\prime} & =y(-2 x-y+a)
\end{aligned}
$$

where a is a real parameter. Assume that a varies between the values -10 and 170.

1 Find all equilibrium points of the system. Their location and number will, of course, depend on a.

2 Classify the equilibrium points by linearization.
3 At what values of a does the number of equilibrium points change?
4 At what values of a does the "type" of an equilibrium point change (e.g., from sink to saddle)?

5 The system models a situation, where two animal species compete for limited resources. $x(t)$ and $y(t)$ denote the sizes of the two animal populations at time t.

Explain, why the differential system above might be a reasonable model for such a situation. What is the meaning of the parameter a ?

6 Can you make predictions about the long-term fate of the animal populations? How does the parameter a affect their fate?

