1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set of **Natural Numbers**³:

The natural numbers are a set \mathbb{N} containing a special element called 0, and a function $S: \mathbb{N} \to \mathbb{N}$ satisfying the following axioms:

- (D1) S is injective⁴.
- (D2) $S(\mathbb{N}) = \mathbb{N} \setminus \{0\}.5$
- **(D3)** If a subset M of \mathbb{N} contains 0 and satisfies $S(M) \subseteq M$, then $M = \mathbb{N}$.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the **Principle of Induction**:

Task 1.1

Let P(n) be a predicate with the set of natural numbers as its domain. If

- 1. P(0) is true, and
- 2. P(S(n)) is true, whenever P(n) is true,

then P(n) is true for all natural numbers.

³A similar definition of the natural numbers was introduced by Giuseppe Peano in 1889: The natural numbers are a set \mathbb{N} containing a special element called 0, and a function

 $S: \mathbb{N} \to \mathbb{N}$ satisfying the following axioms:

⁽P1) $0 \in \mathbb{N}$.

⁽P2) If $n \in \mathbb{N}$, then $S(n) \in \mathbb{N}$.

⁽P3) If $n \in \mathbb{N}$, then $S(n) \neq 0$.

⁽P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the set A contains \mathbb{N} .

⁽P5) S(m) = S(n) implies m = n for all $m, n \in \mathbb{N}$.

⁴A function $f: A \to B$ is called *injective* if for all $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies $a_1 = a_2$. ⁵For a function $f: A \to B$, $f(A) := \{b \in B \mid f(a) = b \text{ for some } a \in A\}$.

Arithmetic Properties. Addition of natural numbers is established recursively in the following way: For a fixed but arbitrary $m \in \mathbb{N}$ we define

$$m+0 := m$$

 $m+S(n) := S(m+n)$ for all $n \in \mathbb{N}$

By Axiom (D3), adding n to the fixed m is then defined for all natural numbers n. It is not clear at this point that the recursive formula defines addition in a unique way. This will be proved later in Task 1.21.

Task 1.2

If we set S(0) := 1, then S(m) = m + 1 for all natural numbers $m \in \mathbb{N}$.

Use induction for the following:

Task 1.3

Show that addition on \mathbb{N} is associative.

Task 1.4

Show that addition on \mathbb{N} is commutative.

This last task implies in particular that 0 is the (unique) neutral element with respect to addition: n + 0 = 0 + n = n holds for all $n \in \mathbb{N}$.

Here is the cancellation law for addition:

If m + k = n + k, then m = n.

Multiplication of natural numbers is also defined recursively as follows: For a fixed but arbitrary $m \in \mathbb{N}$ we define

$$\begin{array}{rcl} m\cdot 0 &:= & 0 \\ m\cdot (n+1) &:= & m\cdot n + m & \text{ for all } n\in \mathbb{N} \end{array}$$

Task 1.22 will show that this recursive formula defines multiplication in a unique manner.

Task 1.6

Show that the following distributive law holds for natural numbers:

$$(m+n) \cdot k = m \cdot k + n \cdot k.$$

Task 1.7

Show that 1 is the neutral element with respect to multiplication: For all natural numbers m,

$$m \cdot 1 = 1 \cdot m = m$$
.

Task 1.8

Show that multiplication on \mathbb{N} is commutative.

Show that multiplication on \mathbb{N} is associative.

Task 1.10

Show that multiplication is zero-divisor free:

 $m \cdot n = 0$ implies m = 0 or n = 0.

Finally we can impose a **total order**⁶ on \mathbb{N} as follows: We say that $m \leq n$, if there is a natural number k, such that m + k = n.

Show that " \leq " is indeed a total order:

Task 1.11

" \leq " is reflexive⁷.

Task 1.12

" \leq " is anti-symmetric⁸.

 $^{^6}$ A relation \sim on A is called a *total order*, if \sim is reflexive, anti-symmetric, transitive, and has the property that for all $a,b\in A,\ a\sim b$ or $b\sim a$ holds.

⁷A relation \sim on A is reflexive if for all $a \in A$, $a \sim a$.

⁸A relation \sim on A is anti-symmetric if for all $a,b \in A$ the following holds: $a \sim b$ and $b \sim a$ implies that a=b.

" \leq " is transitive⁹.

Task 1.14

For all $m, n \in \mathbb{N}$, $m \le n$ or $n \le m$.

Show the following two compatibility laws:

Task 1.15

If $m \leq n$, then $m + k \leq n + k$ for all $k \in \mathbb{N}$.

Task 1.16

If $m \leq n$, then $m \cdot k \leq n \cdot k$ for all $k \in \mathbb{N}$.

Last not least, here is the cancellation law for multiplication:

⁹A relation \sim on A is transitive if for all $a,b,c\in A$ the following holds: $a\sim b$ and $b\sim c$ implies that $a\sim c$.

If $m \cdot k = n \cdot k$, then m = n or k = 0.

Infinite Sets and the Existence of the Set of Natural Numbers. Do natural numbers exist? Following Dedekind, we will say that a set M is **infinite**, if there is an injective map $f: M \to M$ that is not surjective 10 .

Task 1.18

Show that the set of natural numbers as defined on p. 2 is infinite.

Thus, the existence of the set of natural numbers implies the existence of infinite sets. In fact, we will show that the converse also holds:

Theorem. If there is an infinite set, then there is a model for the natural numbers.

<u>Proof:</u> Let A be an infinite set. Then there is a function $S:A\to A$ that is injective, but not surjective. Thus we can find an $a_0\in A$ with $a_0\not\in S(A)$. Let

$$\mathcal{K} = \{ B \subseteq A \mid a_0 \in B \text{ and } S(B) \subseteq B \}$$

Note that $A \in \mathcal{K}$, so $\mathcal{K} \neq \emptyset$. We set

$$N = \bigcap_{B \in \mathcal{K}} B.$$

Observe that $N \in \mathcal{K}$. Indeed, $a_0 \in N$, since $a_0 \in B$ for all $B \in \mathcal{K}$. Also

$$S(N) = S\left(\bigcap_{B \in \mathcal{K}} B\right) \subseteq \bigcap_{B \in \mathcal{K}} S(B) \subseteq \bigcap_{B \in \mathcal{K}} B = N.$$

¹⁰A function $f: A \to B$ is called *surjective*, if f(A) = B.

By its definition the set N is thus the smallest element of \mathcal{K} .

Finally we show that N with the function $S: N \to N$ (as successor function) and a_0 (in the role of 0) satisfies Axioms (D1)–(D3).

As the restriction of the injective function $S: A \to A$ to N, the function $S: N \to N$ is also injective. Thus (D1) is satisfied.

For (D2) we have to show that $S(N) = N \setminus \{a_0\}$. Since $a_0 \notin S(N)$ and $S(N) \subseteq N$, we obtain that $S(N) \subseteq N \setminus \{a_0\}$. For the remaining subset relation suppose to the contrary that there is a second element missing from the range of N: there is an element $n_0 \in N$ satisfying $n_0 \notin S(N)$ and $n_0 \neq a_0$. Set $N_0 = N \setminus \{n_0\}$. Note that $a_0 \in N_0$ and that $S(N_0) \subseteq N_0$. Thus $N_0 \in \mathcal{K}$. We also know that $N_0 \subsetneq N$, yielding a contradiction.

Now let $M \subseteq N$, with $a_0 \in M$, and satisfying $S(M) \subseteq M$. Then $M \in \mathcal{K}$, and thus, again using the minimality of N in \mathcal{K} , it follows that $M \supseteq N$. This proves (D3) and completes the proof.

Task 1.19

Present the proof of this Theorem.

Recursion and Uniqueness. Before we give a proof of the "essential" uniqueness of the natural numbers, we will follow Dedekind and establish the following general **Recursion Principle**:

Task 1.20

Let A be an arbitrary set, and let $a \in A$ and a function $f : A \to A$ be given. Then there exists a unique map $\varphi : \mathbb{N} \to A$ satisfying

- 1. $\varphi(0) = a$, and
- 2. $\varphi \circ S = f \circ \varphi$.

Here is a possible outline for a proof: Consider all subsets $K \subseteq \mathbb{N} \times A$ with the following properties:

- 1. $(0, a) \in K$, and
- 2. If $(n, b) \in K$, then $(S(n), f(b)) \in K$.

Clearly $\mathbb{N} \times A$ itself has these properties; we can therefore define the smallest such set: Let

$$L = \bigcap \{ K \subseteq \mathbb{N} \times A \mid K \text{ satisfies (1) and (2)} \}.$$

Now show by induction that for every $n \in \mathbb{N}$ there is a unique $b \in A$ with $(n, b) \in L$. This property defines φ by setting $\varphi(n) = b$ for all $n \in \mathbb{N}$.

The Recursion Principle makes it possible to define a recursive procedure (the function φ) via a formula (the function f).

Task 1.21

Define addition of an arbitrary natural number n and the fixed natural number m using the Recursion Principle.

Task 1.22

Define multiplication of an arbitrary natural number n with the fixed natural number m using the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in the following sense:

Task 1.23

Suppose that \mathbb{N} , $S: \mathbb{N} \to \mathbb{N}$ and 0 satisfy Axioms (D1)–(D3), and that \mathbb{N}' , $S': \mathbb{N}' \to \mathbb{N}'$ and 0' satisfy Axioms (D1)–(D3) as well.

Then there is a bijection $^{11}\varphi: \mathbb{N} \to \mathbb{N}'$ such that

1.
$$\varphi(0) = 0'$$
, and

$$2. \ \varphi \circ S = S' \circ \varphi.$$

¹¹A function $f: A \to B$ is a *bijection*, if it is both injective and surjective.