1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set
of Natural Numbers?:

The natural numbers are a set N containing a special element called 0,
and a function S : N — N satisfying the following axioms:

(D1) S is injective®.
(D2) S(N) =N\{0}°

(D3) If a subset M of N contains 0 and satisfies S(M) C M, then
M =N.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the
Principle of Induction:

Task 1.1
Let P(n) be a predicate with the set of natural numbers as its domain. If

1. P(0) is true, and

2. P(S(n)) is true, whenever P(n) is true,

then P(n) is true for all natural numbers.

3A similar definition of the natural numbers was introduced by GIUSEPPE PEANO in 1889:
The natural numbers are a set N containing a special element called 0, and a function
S : N — N satisfying the following axioms:
(P1) 0eN.
(P2) Ifn €N, then S(n) € N.
(P3) Ifn €N, then S(n) # 0.
(P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the

set A contains N.

(P5) S(m) = S(n) implies m =n for all m,n € N.

4A function f A — B is called injective if for all a1,a2 € A, f(a1) = f(az2) implies a1 = as.
°For a function f: A — B, f(A) :={b € B | f(a) = b for some a € A}.



Arithmetic Properties. Addition of natural numbers is established recursively
in the following way: For a fixed but arbitrary m € N we define

m+0 = m
m+S(n) = Sm+n) foralln e N

By Axiom (D3), adding n to the fixed m is then defined for all natural numbers n.
It is not clear at this point that the recursive formula defines addition in a unique
way. This will be proved later in Task 1.21.

Task 1.2
If we set S(0) := 1, then S(m) = m + 1 for all natural numbers m € N.

Use induction for the following:

Task 1.3
Show that addition on N is associative.

Task 1.4

Show that addition on N is commutative.

This last task implies in particular that 0 is the (unique) neutral element with
respect to addition: n + 0 =0+ n = n holds for all n € N.

Here is the cancellation law for addition:



Task 1.5
Ifm+k=n+k, then m =n.

Multiplication of natural numbers is also defined recursively as follows: For a fixed
but arbitrary m € N we define

m-0 = 0

m-(n+1) := m-n+m foralln e N

Task 1.22 will show that this recursive formula defines multiplication in a unique
manner.

Task 1.6

Show that the following distributive law holds for natural numbers:

(m+n)-k=m-k+n-k.

Task 1.7
Show that 1 is the neutral element with respect to multiplication: For all natural
numbers m,

m-1=1-m=m.

Task 1.8
Show that multiplication on N is commutative.




Task 1.9

Show that multiplication on N is associative.

Task 1.10
Show that multiplication is zero-divisor free:

m-n =0 implies m = 0 or n = 0.

Finally we can impose a total order® on N as follows: We say that m < n, if there
is a natural number k, such that m + k = n.

Show that “<” is indeed a total order:

Task 1.11
7

“<” is reflexive’.

Task 1.12

“<” is anti-symmetric®.

SA relation ~ on A is called a total order, if ~ is reflexive, anti-symmetric, transitive, and has
the property that for all a,b € A, a ~ b or b ~ a holds.

"A relation ~ on A is reflexive if for all a € A, a ~ a.

8A relation ~ on A is anti-symmetric if for all a,b € A the following holds: a ~ b and b ~ a
implies that a=b.



Task 1.13

“<” g transitive?.

Task 1.14

For all m,n e N, m <norn <m.

Show the following two compatibility laws:

Task 1.15
If m <n,then m+k<n+kforall keN.

Task 1.16
If m <n,thenm-k<n-kforall k€ N.

Last not least, here is the cancellation law for multiplication:

9A relation ~ on A is transitive if for all a,b,c € A the following holds: a ~ b and b ~ ¢ implies
that a ~ c.



Task 1.17

Ifm-k=n-k, thenm=nor k=0.

Infinite Sets and the Existence of the Set of Natural Numbers. Do natural

numbers exist? Following Dedekind, we will say that a set M is infinite, if there is

an injective map f : M — M that is not surjective'©.

Task 1.18

Show that the set of natural numbers as defined on p. 2 is infinite.

Thus, the existence of the set of natural numbers implies the existence of infinite
sets. In fact, we will show that the converse also holds:

Theorem. If there is an infinite set, then there is a model for the natural numbers.

Proof: Let A be an infinite set. Then there is a function S : A — A that is injective,
but not surjective. Thus we can find an ag € A with ag ¢ S(A). Let

K={BCA]|ap€ Band S(B) C B}

Note that A € K, so K # (. We set

N=()B

Bek

Observe that N € K. Indeed, ag € N, since ag € B for all B € K. Also

S(N)—S(ﬂ B)g (N SB)<()B=N

BeK Bek BeK

A function f: A — B is called surjective, if f(A) = B.



By its definition the set IV is thus the smallest element of K.

Finally we show that N with the function S : N — N (as successor function) and
ap (in the role of 0) satisfies Axioms (D1)—(D3).

As the restriction of the injective function S : A — A to N, the function S: N — N
is also injective. Thus (D1) is satisfied.

For (D2) we have to show that S(N) = N \ {ap}. Since ag ¢ S(N) and S(N) C N,
we obtain that S(IN) C N \ {ap}. For the remaining subset relation suppose to the
contrary that there is a second element missing from the range of N: there is an
element ng € N satisfying ng ¢ S(N) and ng # ag. Set Ny = N \ {ng}. Note that
ap € Ny and that S(Ny) € Ny. Thus Ny € K. We also know that Ny ; N, yielding
a contradiction.

Now let M C N, with ag € M, and satisfying S(M) C M. Then M € K, and thus,
again using the minimality of N in K, it follows that M O N. This proves (D3) and
completes the proof.

Task 1.19
Present the proof of this Theorem.

Recursion and Uniqueness. Before we give a proof of the “essential” uniqueness
of the natural numbers, we will follow Dedekind and establish the following general
Recursion Principle:

Task 1.20
Let A be an arbitrary set, and let a € A and a function f : A — A be given.
Then there exists a unique map ¢ : N — A satisfying

1. ¢(0) =a, and

2. poS=foop.




Here is a possible outline for a proof: Consider all subsets K C N x A with the
following properties:

1. (0,a) € K, and

2. If (n,b) € K, then (S(n), f(b)) € K.
Clearly N x A itself has these properties; we can therefore define the smallest such

set: Let
L= ﬂ{K CNx A | K satisfies (1) and (2)}.

Now show by induction that for every n € N there is a unique b € A with (n,b) € L.
This property defines ¢ by setting ¢(n) = b for all n € N.

The Recursion Principle makes it possible to define a recursive procedure (the func-
tion ¢) via a formula (the function f).

Task 1.21
Define addition of an arbitrary natural number n and the fixed natural number
m using the Recursion Principle.

Task 1.22
Define multiplication of an arbitrary natural number n with the fixed natural
number m using the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in
the following sense:

Task 1.23
Suppose that N, S : N — N and 0 satisfy Axioms (D1)-(D3), and that N/,
S": N — N and 0/ satisfy Axioms (D1)—(D3) as well.

Then there is a bijection''¢ : N — N’ such that




1. ¢(0) =0, and

2. poS=95o0p.

A function f: A — B is a bijection, if it is both injective and surjective.
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