
1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set
of Natural Numbers3:

The natural numbers are a set N containing a special element called 0,
and a function S : N → N satisfying the following axioms:

(D1) S is injective4.

(D2) S(N) = N \ {0}.5

(D3) If a subset M of N contains 0 and satisfies S(M) ⊆ M , then

M = N.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the
Principle of Induction:

Task 1.1

Let P (n) be a predicate with the set of natural numbers as its domain. If

1. P (0) is true, and

2. P (S(n)) is true, whenever P (n) is true,

then P (n) is true for all natural numbers.

3A similar definition of the natural numbers was introduced by Giuseppe Peano in 1889:

The natural numbers are a set N containing a special element called 0, and a function

S : N → N satisfying the following axioms:

(P1) 0 ∈ N.

(P2) If n ∈ N, then S(n) ∈ N.

(P3) If n ∈ N, then S(n) 6= 0.

(P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the

set A contains N.

(P5) S(m) = S(n) implies m = n for all m,n ∈ N.

4A function f : A → B is called injective if for all a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2.
5For a function f : A → B, f(A) := {b ∈ B | f(a) = b for some a ∈ A}.
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Arithmetic Properties. Addition of natural numbers is established recursively
in the following way: For a fixed but arbitrary m ∈ N we define

m+ 0 := m

m+ S(n) := S(m+ n) for all n ∈ N

By Axiom (D3), adding n to the fixed m is then defined for all natural numbers n.
It is not clear at this point that the recursive formula defines addition in a unique
way. This will be proved later in Task 1.21.

Task 1.2

If we set S(0) := 1, then S(m) = m+ 1 for all natural numbers m ∈ N.

Use induction for the following:

Task 1.3

Show that addition on N is associative.

Task 1.4

Show that addition on N is commutative.

This last task implies in particular that 0 is the (unique) neutral element with
respect to addition: n+ 0 = 0 + n = n holds for all n ∈ N.

Here is the cancellation law for addition:
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Task 1.5

If m+ k = n+ k, then m = n.

Multiplication of natural numbers is also defined recursively as follows: For a fixed
but arbitrary m ∈ N we define

m · 0 := 0

m · (n+ 1) := m · n+m for all n ∈ N

Task 1.22 will show that this recursive formula defines multiplication in a unique
manner.

Task 1.6

Show that the following distributive law holds for natural numbers:

(m+ n) · k = m · k + n · k.

Task 1.7

Show that 1 is the neutral element with respect to multiplication: For all natural
numbers m,

m · 1 = 1 ·m = m.

Task 1.8

Show that multiplication on N is commutative.
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Task 1.9

Show that multiplication on N is associative.

Task 1.10

Show that multiplication is zero-divisor free:

m · n = 0 implies m = 0 or n = 0.

Finally we can impose a total order6 on N as follows: We say that m ≤ n, if there
is a natural number k, such that m+ k = n.

Show that “≤” is indeed a total order:

Task 1.11

“≤” is reflexive7.

Task 1.12

“≤” is anti-symmetric8.

6A relation ∼ on A is called a total order, if ∼ is reflexive, anti-symmetric, transitive, and has
the property that for all a, b ∈ A, a ∼ b or b ∼ a holds.

7A relation ∼ on A is reflexive if for all a ∈ A, a ∼ a.
8A relation ∼ on A is anti-symmetric if for all a, b ∈ A the following holds: a ∼ b and b ∼ a

implies that a=b.
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Task 1.13

“≤” is transitive9.

Task 1.14

For all m,n ∈ N, m ≤ n or n ≤ m.

Show the following two compatibility laws:

Task 1.15

If m ≤ n, then m+ k ≤ n+ k for all k ∈ N.

Task 1.16

If m ≤ n, then m · k ≤ n · k for all k ∈ N.

Last not least, here is the cancellation law for multiplication:

9A relation ∼ on A is transitive if for all a, b, c ∈ A the following holds: a ∼ b and b ∼ c implies
that a ∼ c.
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Task 1.17

If m · k = n · k, then m = n or k = 0.

Infinite Sets and the Existence of the Set of Natural Numbers. Do natural
numbers exist? Following Dedekind, we will say that a set M is infinite, if there is
an injective map f : M → M that is not surjective10.

Task 1.18

Show that the set of natural numbers as defined on p. 2 is infinite.

Thus, the existence of the set of natural numbers implies the existence of infinite
sets. In fact, we will show that the converse also holds:

Theorem. If there is an infinite set, then there is a model for the natural numbers.

Proof: Let A be an infinite set. Then there is a function S : A → A that is injective,
but not surjective. Thus we can find an a0 ∈ A with a0 6∈ S(A). Let

K = {B ⊆ A | a0 ∈ B and S(B) ⊆ B}

Note that A ∈ K, so K 6= ∅. We set

N =
⋂

B∈K

B.

Observe that N ∈ K. Indeed, a0 ∈ N , since a0 ∈ B for all B ∈ K. Also

S(N) = S

(

⋂

B∈K

B

)

⊆
⋂

B∈K

S(B) ⊆
⋂

B∈K

B = N.

10A function f : A → B is called surjective, if f(A) = B.
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By its definition the set N is thus the smallest element of K.

Finally we show that N with the function S : N → N (as successor function) and
a0 (in the role of 0) satisfies Axioms (D1)–(D3).

As the restriction of the injective function S : A → A to N , the function S : N → N

is also injective. Thus (D1) is satisfied.

For (D2) we have to show that S(N) = N \ {a0}. Since a0 6∈ S(N) and S(N) ⊆ N ,
we obtain that S(N) ⊆ N \ {a0}. For the remaining subset relation suppose to the
contrary that there is a second element missing from the range of N : there is an
element n0 ∈ N satisfying n0 6∈ S(N) and n0 6= a0. Set N0 = N \ {n0}. Note that
a0 ∈ N0 and that S(N0) ⊆ N0. Thus N0 ∈ K. We also know that N0 $ N , yielding
a contradiction.

Now let M ⊆ N , with a0 ∈ M , and satisfying S(M) ⊆ M . Then M ∈ K, and thus,
again using the minimality of N in K, it follows that M ⊇ N . This proves (D3) and
completes the proof.

Task 1.19

Present the proof of this Theorem.

Recursion and Uniqueness. Before we give a proof of the “essential” uniqueness
of the natural numbers, we will follow Dedekind and establish the following general
Recursion Principle:

Task 1.20

Let A be an arbitrary set, and let a ∈ A and a function f : A → A be given.
Then there exists a unique map ϕ : N → A satisfying

1. ϕ(0) = a, and

2. ϕ ◦ S = f ◦ ϕ.
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Here is a possible outline for a proof: Consider all subsets K ⊆ N × A with the
following properties:

1. (0, a) ∈ K, and

2. If (n, b) ∈ K, then (S(n), f(b)) ∈ K.

Clearly N× A itself has these properties; we can therefore define the smallest such
set: Let

L =
⋂

{K ⊆ N×A | K satisfies (1) and (2)} .

Now show by induction that for every n ∈ N there is a unique b ∈ A with (n, b) ∈ L.
This property defines ϕ by setting ϕ(n) = b for all n ∈ N.

The Recursion Principle makes it possible to define a recursive procedure (the func-
tion ϕ) via a formula (the function f).

Task 1.21

Define addition of an arbitrary natural number n and the fixed natural number
m using the Recursion Principle.

Task 1.22

Define multiplication of an arbitrary natural number n with the fixed natural
number m using the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in
the following sense:

Task 1.23

Suppose that N, S : N → N and 0 satisfy Axioms (D1)–(D3), and that N′,
S′ : N′ → N′ and 0′ satisfy Axioms (D1)–(D3) as well.

Then there is a bijection11ϕ : N → N′ such that
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1. ϕ(0) = 0′, and

2. ϕ ◦ S = S′ ◦ ϕ.

11A function f : A → B is a bijection, if it is both injective and surjective.
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